混合型超级电容器的建模与制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种随着材料科学的发展而出现的新一代功率型储能元件。它既具有传统电容器的大电流快速充放电的特性,又具备蓄电池的高储能密度特性,在电动车、脉冲功率系统、电能武器、UPS和叉式升降机等领域有着广泛的应用,是能源技术研究的热点。
     本文以近年来国外出现的混合型超级电容器为研究背景,比较深入地研究了这种新型超级电容器的建模、制备及其测试。首先,本文在Conway模型和电极的物理结构的基础上建立了二氧化钌/活性炭复合电极的模型,着重分析了超级电容器的恒流放电特性,探究在不同配比下二氧化钌和活性炭的复合电极的阻抗性能和电容特性的基本变化规律。同时,针对目前典型的压覆电极薄膜的特点,进一步修正和改进模型,分析由压覆式电极组成的超级电容器的特性,并在理论上初步探讨超级电容器内阻、电容量和相角的影响因素。
     超级电容器的核心技术在于其电极制备,通常多孔电极材料的物理特征决定着电极的电化学性能。本文通过对不同孔径和形状的多孔电极的静电场仿真计算,得到了多孔电极内部电场的分布情况。仿真结果表明通过控制孔径和孔形状等参数可改善多孔电极的电场分布,提高电极的电容量。
     为了提高超级电容器的工作电压使之满足脉冲功率源的要求,本文设计并研制了混合型超级电容器单元。它将电解电容器的阳极和超级电容器的阴极结合,所以同时具有电解电容器和超级电容器的优点,从本质上提高了超级电容器的工作电压,进一步提高了储能密度。实验结果表明,该单元工作电压可达到100V以上,最大储能密度和功率密度分别为0.37J/g、8250W/g。在此单元基础上,进一步设计了由100只混合型超级电容器单元并联构成的储能模块。通过仿真分析,验证了储能单元的放电性能可以满足大电流快速充放电的要求。当该模块向0.38 mΩ/10 mH的电感性负载放电时,放电电流可以达到2kA,放电功率达200KW。在此仿真结果的基础上,制备出性能参数为0.06F/3mΩ/0.3kJ的超级电容器储能模块样品,并进行了实验研究。测试结果表明由混合型超级电容器单元组成的储能装置可以满足脉冲功率系统的要求。
     二氧化钌是目前所有超级电容器电极材料中性能最好的材料,但其有限的资源和昂贵的价格限制了它更广泛的使用。本文通过在二氧化钌中掺入其它材料和利用微波法改良二氧化钌性能两种方法达到提高二氧化钌的性能和利用率、减少其用量的目的。根据国际研究前沿,选择了二氧化钌、二氧化锰和活性炭材料,制成不同比例的复合电极,并对其性能进行了测试和分析。结果表明当电极材料中二氧化钌、二氧化锰和活性炭的质量比各占20%、20%和60%时,其性能价格比最合适。通过微波加热的方法改进了Sol-gel法制取RuO2·xH2O,制取了具有良好性能的RuO2·xH2O电极材料,并通过实验确定微波加热时间的工艺参数。实验表明,当微波炉中档输出(功率为972W)、微波加热时间为8分钟时,制取的RuO2·xH2O性能最佳。该电极的比电容可达806F/g,内阻为0.41Ω,最大功率密度和能量密度分别为1.785kW/kg、29.09Wh/kg。
     为了满足超级电容器大电流充放电的实验研究,设计并制作了基于PIC单片机控制的恒流测试系统,通过实际混合型超级电容器单元的充放电实验,进一步验证了测试系统的可操作性和恒流输出的稳定性,可用于超级电容器的大电流循环充放电测试。
     本论文的研究工作得到国家自然科学基金资助(No.50577075)。
Supercapacitor has been developed as a new type of energy-storage component following the development of material science. It has the ability both of fast charging-discharging as traditional capacitor, and of high energy-storage density as battery. It has got many applications, such as in electric vehicles, pulse power system, electromagnetism arms, UPS and forklift, and becomes a hotspot in energy technology.
     Hybrid supercapacitor has appeared in USA in recent years. Based on this new kind of supercapacitor, the relevant research for its modeling, preparation and testing are accomplished in deep. The first, a model of the composite electrodes with RuO2·xH2O/active carbon is set up based on the Conway model and electrode physical construction, the discharge characteristic at constant current is specially analyzed, and the regularity for change of the impedance and capacitance for composite electrodes at different mass ratios is explored. At the same time, the model for the typical pressed electrode is modified and improved, the characteristics of supercapacitor composed by pressed electrodes are analyzed, and the effect factors of inner resistance, capacitance and phase angle are discussed in theory.
     The key technology of supercapacitors is the preparation of their electrodes, the physical characteristics of porous electrodes determines the electrochemistry behaviors of the electrodes directly. The electrostatic fields of different apertures and shapes are simulated by finite element method to obtain the electrostatic fields distribution of the porous electrodes. The simulation results show that the electrostatic field and capacitance of porous electrodes will be improved by changing the apertures and shapes of the electrodes.
     In order to raise the working voltage of supercapacitor for pulse power system, a hybrid super-capacitor unit, which is composed of the anode of electrolytic capacitor and the cathode of supercapacitor, has been designed and studies. It has the merits of the electrolytic capacitor and supercapacitor, and enhances the working voltage of supercapacitor to improve energy density. The experiment results indicate the working voltage of the hybrid supercapacitor unit can achieve to 100V, energy density is 0.37J/g and power density is 8250W/g. Based on the hybrid supercapacitor unit, the hybrid supercapacitor module that has 100 parallel units is designed, and the simulation results validate that the module can satisfy the demand of fast charging and discharging at large current. When the load of 0.38 mΩ/10 mH inductance is discharged, the discharging current can be achieved to 2kA and the discharging power 200kW. Based on this simulated results, the hybrid super-capacitor module of 0.06F/3mΩ/0.3kJ is designed and studied on the experiments. The test results show that the hybrid super-capacitor module can fulfill the needs of pulse power system.
     At present, the performance of RuO2 is the best in the all materials, but the finite resource and dear price limit its more extended usage. In this work, two methods that mixed other material into RuO2·xH2O and prepared RuO2·xH2O by microwave have been used to improve the performance and usage of RuO2. According to the international foreland research, the composite electrodes of RuO2·xH2O, MnO2 and active carbon with different mass ratios were prepared and tested. The results show that the performance of composite electrodes is the best, when the mass ratio of RuO2·xH2O, MnO2 and active carbon is 20%:20%:60%. RuO2-xH2O which exhibits the super performance is prepared by the Sol-gel method improved by microwave and tested their electrochemical performances to make sure the process parameter, such as heating times. The experiment results exhibit that the performance of RuO2·xH2O is the best when the power is the mid-range output (power of 972W) and the heating time is 8min. The specific capacitance of this electrode is 806F/g, the inner impedance is 0.41Ω, and the maximum power density and energy density are 1.785kW/kg and 29.09Wh/kg, respectively.
     In order to research the charge and discharge performance of supercapacitors, in this paper, the constant current test system based on PIC microcontroller as the controller is designed. The software and hardware tests make further proving the maneuverability and stability of the system. Through the charging and discharging experiment for the hybrid super-capacitor, the results show that the system can obtain good constant current to satisfy the charging and discharging experiments for super-capacitor at large current.
     This work is supported by National Natural Science Foundation of China (No.50577075).
引文
[1]R.Kotz, M.Carlen. Principles and applications of electrochemical capacitors[J]. Electrochimca Acta, 2000,45(15-16):2483-2498.
    [2]B.E.Conway. Transition from "Supercapacitor"to "battery" behavior in electrochemical energy storage[J]. J.Electrochem.Soc.1991,138(6):1539-1548.
    [3]A.Burke. Ultracapacitors:why, how, and where is the technology[J]. J. Power Sources.2000,91(1): 37-50.
    [4]B.E.Conway.电化学超级电容器—科学原理及技术应用[M].陈艾译.北京:化学工业出版社,2005.
    [5]M.Winter, Brodd. R. J. What are batteries, fuel cells, and supercapcitors?[J]. Chemical Reviews.2004, 104(10):4245-4269.
    [6]W.G. Pell, B. E. Conway. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes [J]. J Power Sources.2004,136(2):334-345.
    [7]Yong Zhang, Hui Feng, Xingbing Wu. Progress of electrochemical capacitor electrode materials:A review[J]. International Journal of Hydrogen Energy.2009,34(11):4889-4899.
    [8]亚菲.超级电容器活性炭电极材料的孔径调控和表面改性[D].上海:同济大学,2008.
    [9]Shi H. Activated carbons and double layer capacitance [J]. Electrochim Acta.1996,41 (40):1633-1639.
    [10]Qu. D. Y, Shi H. Studies of activated carbons used in double-layer capacitors [J]. J Power Sources. 1998,74(1):99-107.
    [11]J. Chmiola, G. Yushin, Y. Gogotsi, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science[J].2006,313(22):1760-1763.
    [12]J. Chmiola., C. Largeot, P.-L.Taberna, et al. Desolvation of ions in subnanometer pores its effect on capacitance and double-layer theory. Angewandte Chemie International Edition[J].2008,47(18): 3392-3395.
    [13]Eliad L., Salitra G., Sofer A, et al. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves[J]. Langmuir.2005,21 (7):3198-3202.
    [14]Huang J S, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie International Edition.2008,47(3):520-524.
    [15]Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry-A European Journal. 2008,14(22):6614-6626.
    [16]Wang L, Morishita T, Toyoda M, et al. Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions [J]. Electrochim Acta.2007,53:882-886.
    [17]慈颖.基于碳材料和氧化钌超级电容器的研究[D].中国科学院,2007.
    [18]Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Beguin F. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Adv Funct Mater.2007, 17:1828-1836.
    [19]Noh J S, Schwarz J A. Effect of HNO3 treatment on the surface acidity of activated carbon[J]. Carbon. 1990,28(5):675-682.
    [20]Mykola Seredych, Denisa Hulicova-Jurcakova, Gao Qing Lub. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon.2008,46(11):1475-1488.
    [21]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon.2001,39(9):937-50.
    [22]Vasile V. N.OBreja. On the performance of supercapacitors with electrodes based on carbon nanotubes and cabon activated material-A view[J]. Physica E.2008,40(7):2596-2605.
    [23]J.A. Fernandez, S. Tennison, O. Kozynchenko. Effect of mesoporosity on specific capacitance of carbons[J].Carbon.2009,47(6):1598-1604.
    [24]Denisa Hulicova-Jurcakovab, Mykola Seredycha, Gao Qing Lu,et al. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance[J]. Carbon.2009,47(6):1576-1584.
    [25]D. Kalpana, K. Karthikeyan, N.G. Renganathan,et al. Camphoric carbon nanobeads-A new electrode material for supercapacitors. Electrochemistry Communications[J].2008,10(7):977-979.
    [26]V. Ruiza, C. Blancoa, R. Santamaria, et al. An activated carbon monolith as an electrode material for supercapacitors[J]. Carbon.2009,47(1):195-200.
    [27]Jun Li, Xianyou Wang, Ying Wang, et al. Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors[J]. J Non-Crystalline Solids.2008,354(1):19-24.
    [28]Fang B, Binder L. Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor[J]. Electrochim Acta.2007,52(24):6916-21.
    [29]Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, et al. Superior electric double layer capacitors using ordered mesoporous carbons[J]. Carbon 2006,44(2):216-24.
    [30]Honda Y, Haramoto T, Takeshige M, Shiozaki H, Kitamura T, Ishikawa M. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance[J]. Electrochem Solid-State Lett.2007,10(4):A106-110.
    [31]Osamu Kimizuk, Osamu Tanaike, Junya Yamashita, et al. Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes[J]. Carbon.2008,46(14):1999-2001.
    [32]Lijun Gao, Aiping Peng, Zhi YongWang, et al. Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors[J]. Solid State Communications.2008,146(9-10):380-383.
    [33]Hao Zhang, Gao ping Cao, Zhi yong Wang, et al. Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils[J].Carbon.2008,46(5):818-832.
    [34]E. Raymundo-Pinero, Fabrice Leroux, Francois Beguin. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer[J]. Advanced Materials.2006, 18(14):1877-1822.
    [35]Guifen Lv, Dingcai Wu, Ruowen Fu,et al. Electrochemical properties of conductive filler/carbon aerogel composites as electrodes of supercapacitors[J]. Journal of Non-Crystalline Solids.2008, 354(40-41):4567-4571.
    [36]Zheng J P, Cygan P J, Jew T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J Electrochem Soc.1995,142(8):2699-2703.
    [37]Xiaorong Liu, Peter G. Pickup. Ru oxide supercapacitors with high loadings and high power and energy densities [J].J Power Sources.2008,176(1):410-416.
    [38]Yan-Zhen Zheng, Hai-Yang Ding, Mi-Lin Zhang. Hydrous-ruthenium-oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors.Thin Solid Films[J].2008,516(21):7381-7385.
    [39]Chi-Chang Hu, Ming-Jue Liu, Kuo-Hsin Chang. Anodic deposition of hydrous ruthenium oxide for supercapaciors:Effects of the AcO concentration, plating temperature, and oxide loading[J]. Electrochimica Acta.2008,53(6):2679-2687.
    [40]T.P. Gujar, V.R. Shinde, C.D. Lokhande. Spray deposited amorphous RuO2 for an effective use in electrochemical Supercapacitor[J].Electrochemistry communications.2007,9(3):504-510.
    [41]Q.L.Fang, D.A.Evans, S.L.Roberson, et al. Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors [J]. J.Electrochem.Soc.2001,148(8):A833-A 837.
    [42]V.D.Patake, C.D.Lokhande. Chemical synthesis of nano-porous ruthenium oxide (RuO2) zthin films for supercapacitor application[J].Applied Surface Science.2008,254(9):2820-2824.
    [43]V. Subramanian, Sean C. Hall, Patricia H. Smith. Mesoporous anhydrous RuO2 as a supercapacitor electrode material[J]. Solid State Ionics.2004,175(1-4):511-515.
    [44]Wonjoo Lee,R. S. Mane,V. V. Todkar, et al. Implication of Liquid-Phase Deposited Amorphous RuO2 Electrode for Electrochemical Supercapacitor[J]. Electrochemical and Solid-State Letters.2007, 10(9):A225-227.
    [45]Han-Ki Kim, Suk-Ho Cho, Young-Woo Ok. All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes [J]. J. Vac. Sci. Technol.2003, B 21(3):949-952.
    [46]黎小辉,黎运宇,甘卫平等.超级电容器氧化物电极材料的研究进展[J].广东有色金属学报.2006,16(1):62-66.
    [47]Lin Y H, Zhao N N, Nie W, et al. Synthesis of Ruthenium Dioxide Nanoparticles by a Two-Phase Route and Their Electrochemical Properties [J]. J Phys Chem.C.2008,112(42):16219-24.
    [48]Sugimoto W, Iwata H, Murakami Y, Takasu Y.Electrochemical capacitor behavior of layered ruthenic acid hydrate[J]. J Electrochem Soc 2004,151(8):A1181-1187.
    [49]Bo Gao, Xiaogang Z, Changzhou Y, Juan L, Long Y. Amorphous Ru1-yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors[J]. Electrochim Acta 2006,52(3):1028-32.
    [50]Zang J F, Bao S J, Li C M, et al. Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO2 and Its Electrochemical supcapacitor[J]. J Phys.Chem.C.2008,112(38):14843-47.
    [51]Wei-Chun Chen, Chi-Chang Hua, Chen-Ching Wang, Chun-Kuo Min. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors[J]. J Power Sources.2004,125(2):292-298.
    [52]Miller. J. M., Dunn. B., Tran. T. D., et al. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes[J]. J. Electrochem. Soc.1997,144(12):L309-L311.
    [53]Lee J K, Pathan M H, Jung K D, et al, Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide, Journal of Power Sources[J].2006,159(2):1527-1531.
    [54]Min M, Machida K, Jang J H, et al. Hydrous RuO2/Carbon Black Nanocomposites with 3D Porous Structure by Novel Incipient Wetness Method for Supercapacitors[J]. J Electrochem. Soc.2006, 153(2):A334-338.
    [55]苏凌浩,范少华,崔玉民.纳米MnO2超级电容器的研究综述.河南科技大学学报:自然科学版[J].2006,27(1):35-38.
    [56]Pang S C, Anderson M A, Chapman T W. Novel Electrode Materials for Thin-film Utracapacitors:Comparison of Electrochemical Properties of Sol 2Ge12Derived and Electrodeposited Manganese Dioride[J]. J Electrochem Soc.2000,147(2):444-450.
    [57]Brousse. T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. J. Electrochem. Soc.2006,153(12):A2171-A2180.
    [58]张熊.二氧化锰及其纳米复合材料的可控制备与性能研究[D].北京:北京化工大学.2008
    [59]Broughton J N, Brett M J. Investigation of Thin Sputtered Mn Films for Electrochemical Capacitors[J]. Electrochimica Acta,2004,49(25):4439-4446.
    [60]江奇,陈召勇,于作龙等.LiMn2作电化学超级电容器电极材料的性能初探[J].功能材料.2001,32(10):1060-1062.
    [61]Luo J M,Gao B,Zhang X G. High capacitive performance of nanostructured Mn-Ni-Co oxide composites for Supercapacitor[J]. Materials Research Bulletin.2008,43(5):1119-1125.
    [62]Prasad KR, Miura N. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor[J]. Electrochem Solid-State Lett.2004,7(11):A425-428.
    [63]Lee C Y, Tsai H M, Chuang H J, et al. Characteristics and Electrochemical Performance of Supercapacitors with Manganese Oxide-Carbon Nanotube Nanocomposite Electrodes[J].J Electrochem.Soc. 2005,152(4):A716-A720.
    [64]Wu M-S, Huang Y-A, Yang C-H, et al. Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors[J].Int J Hydrogen Energy.2007,32(17):4153-9.
    [65]Zhao D-D, Bao S-J, ZhouW-J, et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor[J]. Electrochem. Commun.2007,9(5):869-74.
    [66]Chen L-M, Lai Q-Y, Hao Y-J, et al. Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes[J]. J Alloys and Compounds.2009,467(1):465-471.
    [67]Zhang Z J, Chen X Y, Wang B N, Shi C W. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties [J]. J. Cryst. Growth.2008, 310(24):5453-5457.
    [68]L.Cao, F.Xu, Y.Y.Liang, et al. Preparation of novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density[J]. Advanced Materials.2004,16(20):853-857.
    [69]Morishita T, Soneda Y, Hatori H, Inagaki M. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor[J]. Electrochim Acta.2007,52(7):2478-84.
    [70]Choi D, Kumta PN. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J]. J Electrochem Soc.2006,153(12):A2298-303.
    [71]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J].材料导报.2007,21(3):29-31.
    [72]Belanger Daniel, Ren Xiaoming, et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors [J]. J Electrochem Soc.2000,147(8):2923
    [73]Florence Fusalba, Gouerec Pascal, Dominique Villers, et al. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors[J]. J Electrochem Soc.2001,148(1):A1-A6.
    [74]Yahya A. I., Jonho C, Su R. S., et al. Hydrogel-Assisted Polyaniline Microfiber as Controllable Electrochemical Actuatable Supercapacitor[J]. J Electrochemical Society.2009,156(4):A313-A317.
    [75]Li Weikuan, Chen Juan, Zhao Junjun,et al. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Mater Lett.2005,59(7):800.
    [76]Naoi. K, Suematsu.S, Hanada.M, et al. Enhanced cyclability of π-π stacked supramolecular (1,5-diaminoanthraquinone) oligomer as an electrochemical capacitor material[J]. J Electrochem Soc.2002, 149(4):472
    [77]B.C. Kim, J.M. Ko, G.G. Wallace, et al. A novel capacitor material based on Nafion-doped polypyrrole[J]. J Power Sources.2008,177(2):665-668.
    [78]D. Kalpana, Y.S. Lee, Y. Satod. New, low-cost, high-power poly(o-anisidine-co-metanilic acid)/activated carbon electrode for electrochemical supercapacitors[J]. J Power Sources.2009,190(2): 592-595.
    [79]Zhong-Ai Hu, Yu-Long Xie, Yao-XianWang, et al. Polyaniline/Sn02 nanocomposite for supercapacitor applications [J]. Materials Chemistry and Physics.2009,114(2):990-995.
    [80]Wang Y-G, Wang Z-D, Xia Y-Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes [J]. Electrochem. Acta.2005,50(28):5641-5646.
    [81]Algharaibeh Z, Liu X R, Pick up P G. An asymmetric anthraquinone-modified carbon/ruthenium oxide Supercapacitor[J]. J Power Sources.2009,187(2):640-643.
    [82]Su L H, Zhang X G, Yuan C Z, et al. Symmetric Self-Hybrid Supercapacitor Consisting of Multiwall Carbon Nanotubes and Co-Al Layered Double Hydroxides [J]. J Electrochem Soc.2008,155(2):A110-114.
    [83]Chen L-M, Lai Q-Y, Hao Y-J, et al. Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes [J]. J Alloys. Compounds.2009,467(1-2):465-471.
    [84]A. Laforgue, P. Simon,J. F. Fauvarque, et al. Activated Carbon Conducting Polymer Hybrid Supercapacitors[J]. J Electrochem. Soc.2003,150(5):A645-651.
    [85]Li Hui-qiao, Zou You, Xia Yong-yao. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor[J]. Electrochimca Acta.2007, 52(5):2153-2157.
    [86]Snook G A, Wilson G J, Pandolfo A G. Mathematical functions for optimisation of conducting polymer/activated carbon asymmetric supercapacitors[J]. J Power Sources.2009,186(1):216-223.
    [87]Amatucci G, F, Pasquier A D, T. Zheng. An Asymmetric Hybrid Nonaqueous Energy Storage Cell[J].J. Electrochem. Soc.2001,148(8):A930.
    [88]Ma S-B, Nam K-W, Yoon W-S, et al. A novel concept of hybrid capacitor based on manganese oxide materials[J]. Electrochem. Comm.2007,9(12):2807-2811.
    [89]Yun Xue, Ye Chen, Mi-Lin Zhang,et al. A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes[J]. Materials Letters.2008,62(23):3884-3886.
    [90]Y. Zhao, Y.Y.Wang, Q.Y. Lai, et al. Pseudocapacitance properties of AC/LiNi1/3Co1/3Mn1/3O2 asymmetric supercapacitor in aqueous electrolyte[J]. Synthetic Metals.2009,159(3-4):331-337.
    [91]Li H Q, Cheng L, Xia Y Y. A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-Ion Battery Cathode and Active Carbon[J]. Electrochemical and Solid-State Letters.2005,8(9):A443-436.
    [92]Pasquier A D,Laforgue A. Simon P. Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device[J]. J Power Sources.2004,125(1):95-102.
    [93]S. A. Kazaryan,S. V. Litvinenko,G. G. Kharisov. Self-Discharge of Heterogeneous Electrochemical Supercapacitor of PbO2|H2SO4|C Related to Manganese and Titanium Ions[J]. J Electrochem. Soc.2008, 155(6):A464-473
    [94]Yu N F, Gao L J. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid Supercapacitor[J]. Electrochem.Comm.2009, 11(1):220-222.
    [95]Da-Wei Wang, Feng Li, Hui-Ming Cheng. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric Supercapacitor[J].J Power Sources.2008,185(2):1563-1568.
    [96]D. Evans, Seekonk, Mass. Capacitor[P]. US. US Patent 5,369,547,1994.
    [97]H.I.Becher. Electrochemical double layer capacitor[P]. US patent:US3634736,1972.
    [98]D Boos, J Metcalfe. Electrolytic capacitor employing paste electrodes[P]. US patent:US3634736, 1972.
    [99]Sanada K, Hosocawa M. Electric double-layer capacitor super capacitor[J]. NEC Res.&Develop., 1979,55:21-28.
    [100]Haisheng Chen, ThangNgoc Cong, Wei Yang et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science,2009,19(3):291-312.
    [101]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评[J].电源技术.2007,131(11):921-925.
    [102]A.Chu, P.Braatz. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles:I. Initial characterization[J]. J.Power Sources.2002, 112(1):236-246.
    [103]郭国才.计算机与电化学测试技术[J].计算机与应用科学,2003,20(3):31-45
    [104]徐伟光.综合电化学工作站硬件设计与实现[D].哈尔滨:哈尔滨工业大学.2006.
    [105]陈永真.电容器及其应用[M].北京:科学出版社,2005.
    [106]T Zhou, B Francois.Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system[J]. International Journal of Hhydrogen Energy.2009,34(1):21-30.
    [107]高颖,邬冰.电化学基础[M].北京:化学工业出版社.2004.
    [108]Oliver Bohlen, Julia Kowal, Dirk Uwe Sauer. Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model[J].J Power Sources.2007,172(1):468-475.
    [109]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社.2002.
    [110]V.Barsukov, S.Chivikov. The "capacitof" concept of the current-producing mechanism in polyaniline-type conducting polyers[J]. Electrochimica Acta.1996,41(11):1773-1779.
    [111]R. P. Simpraga, B. E. Conway. The real-area scaling factor in electrocatalysis and in charge storage by supercapacitors[J]. Electrochimica Acta.1998,43(19):3045-3058.
    [112]Wang, K. P,H. Teng. Structure Feature and Double-layer Capactive Perfermance of Porous Carbon Powder Derived from Polyacrylonitrile-based Carbon Fiber. J Electrochem Soc.2007,154(1)A993-8.
    [113]R.A. Dougal, L. Gao,S.Liu. Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation[J]. J Power Sources.2004,126(1-2):250-257.
    [114]S.Buller,E.Karden,D.Kok,etc.Modeling the dynamic behavior of supercapacitors using impedance spectroscopy[J].IEEE transactions on industry applications.2002,38(6):1622-162
    [115]Oliver Bohlen, Julia Kowal, Dirk Uwe Sauer. Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications[J]. J Power Sources.2007, 173(1):626-632.
    [116]F. Rafik, H. Gualous, R. Gallay,et al. Frequency, thermal and voltage Supercapacitor characterization and modeling[J]. J power Sources.2007,165(2):928-934.
    [117]李忠学,陈杰.基于阻抗综合的碳基超级电容器性能仿真[J].农业机械学报.2007,38(5):172-176.
    [118]F.Belhachemi, S.Rael, B.Davat. Physical based model of power electric double-layer supercapacitors[C]. IAS Annual Meeting, Italy,2000:3069-3076.
    [119]Marie-Francoise J.-N., Gualous H, Berthon A. Supercapacitor thermal-and electrical-behavior modelling using ANN[C]. Electric Power Applications, IEEE Proceedings:Electric Power Applications, 2006,153(2):255-262.
    [120]Chuan Lin, James A.Ritter, Branko N.Popov et al, A mathematical model of an electrochemical capacitor with double-layer and faradaic processes[J]. Journal of The Electrochemical Society,1999, 146(9)3168-3175
    [121]Hossein Farsi, Fereydoon Gobal. Artificial neural network simulator for Supercapacitor performance prediction[J]. Computational Materials Science,2007,39(3):678-683
    [122]孔治国.电动客车用超级电容器组动态均衡技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [123]W.C.Chen, C.C.Hu, C.C.Wang, et al.Electrochemical characterization of activated carbon ruthenium oxide nanoparticles composites for supercapacitors[J]. J Power Sources.2004.125(2):292-29
    [124]张莉.混合型超级电容器的相关理论和实验研究[D].大连:大连理工大学,2006.
    [125]廖敏夫.基于光控模块的多断口真空开关研究[D].大连:大连理工大学,2004.
    [126]唐兴伦,范群波,张朝晖等.ANSYS工程应用教程:热与电磁学篇[M].北京:中国铁道出版社,2003.
    [127]孙明礼,胡仁喜,崔海蓉等.ANSYS10.0电磁学有限元实例指导教程[M].北京:机械工业出版社,2007.
    [128]张莉,邹积岩等.40V混合型超级电容器的研究[J].电子学报.2004(8):1253-1255.
    [129]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社.2001.
    [130]Reddy R N, Reddy R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. J. Power Sources,2003,124(1):330-337.
    [131]约瑟夫·王著.朱永春,张玲译.分析电化学:原著第3版[M].北京:化学工业出版社,2009.
    [132]杜一平主编.现代仪器分析方法[M].上海:华东理工大学出版社,2008.
    [133]栾秀珍,房少军,金红等.微波技术[M].北京:北京邮电大学出版社.2009.
    [134]庄凯,梁逵,李兵红等.微波法制备煤基超级电容器用活性炭[J].炭素.2006,125(1):43-45.
    [135]Peng Yu,Xiong Zhang,Yao Chen,et al. Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method[J]. Materials Chemistry and Physics.2009, 118(2-3):303-307.
    [136]陈卫祥,韩贵,LEE Jim-Yang等.微波辐射合成钌/碳纳米复合材料及其在电化学超级电容器的应用[J].化学学报.2003,61(12)2033-2035.
    [137]陈卫祥,赵杰,王鹏等.一种超级电容器用Ru/C纳米复合电极材料的制备方法[P].中国,C01G55/00 (2006.01)I,200510061830.6,2006.
    [138]刘为民,张莉,宋金岩.一种可用于超级电容器性能测试的恒流源[J].仪器仪表学报.2006,27(6):928-929
    [139]张莉,于芃,邹积岩.程控恒功率放电测试装置.中南大学学报[J].2007,38(7):1164-1168