全反式维甲酸诱导同种心脏移植耐受
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的全反式维甲酸(At-RA)是维生素A的代谢产物,它具有抑制炎症、调节免疫和诱导细胞分化等作用。而炎症和免疫因素是器官移植排斥反应的主要致病原因。因此,本研究在小鼠异位心脏移植模型上探讨At-RA对器官移植排斥反应的作用。
     方法本研究以C57BL/6小鼠为受体,BALB/c或C3H/He小鼠为供体建立了小鼠腹腔心脏移植模型。在急性排斥反应模型,从心脏移植前1天开始受体小鼠每天经口给予At-RA (3 mg·kg-1)或玉米油0.2ml,观察移植物存活时间。移植术后第7天,摘取供心行组织病理学、免疫组化和western blot检查。并摘取受体小鼠脾脏,分别用混合淋巴细胞反应、western blot和流式细胞术进行细胞增殖反应、细胞因子和免疫细胞的检测。在慢性排斥反应模型,对照组小鼠术后第1,3,5天腹腔注射CD154单克隆抗体MR1(10mg·kg-1),实验组小鼠在对照组的基础上从移植前1天开始每天经口给予At-RA (3mg·kg-1),连续给予60天,观察移植物存活时间。移植术后第100天,摘取供心行组织病理学、免疫组化和PCR检查。然后我们从经At-RA干预的移植物长期存活的受体小鼠分离CDllc+树突状细胞(DC),并将其过继转移到刚接受心脏移植的受体小鼠体内,观察移植物存活时间。移植术后第7天,收集受体小鼠的脾细胞,用流式细胞术进行免疫细胞的检测。
     结果在急性排斥反应模型,At-RA组的移植物存活时间比对照组显著延长(95.17±12.40天vs.9.67±0.62天,P<0.05),移植物排斥反应分级评分显著降低。与对照组相比,At-RA组受体小鼠的脾细胞对供体(BALB/c)脾细胞的增殖反应较低,但对第三方(C3H/He)来源的脾细胞的增殖反应无差别。At-RA组受体小鼠的脾脏CD4+CD25+Foxp3+调节T细胞(Treg)的比例显著高于对照组,而CD4+IL-17+ Th17细胞的比例显著低于对照组。At-RA组心脏移植物Foxp3的表达显著高于对照组。At-RA组受体小鼠的脾脏和心脏移植物TGF-β蛋白的表达显著高于对照组,而IL-6蛋白的表达显著低于对照组。At-RA组受体小鼠的脾脏CDllc+ DC表面CD40、CD80、CD86和MHCⅡ的表达较对照组显著降低。在慢性移植模型,At-RA组移植物的管腔阻塞率、内膜与中膜面积之比、移植物纤维化区域、CD4和CD8阳性细胞浸润以及IFN-γ和IL-10 mRNA表达较对照组均明显降低。CDllc+ DC过继转移显著延长了BALB/c来源的供心的存活时间,而没有延长C3H/He来源的供心的存活时间。并且CDllc+ DC过继转移小鼠的脾细胞的Treg细胞比例较对照组升高,但Th17细胞的比例降低。
     结论At-RA通过直接的和DC介导的对Treg和Th17细胞的调节作用延长了心脏移植物的存活时间,减轻了心脏移植物血管病变。本研究为临床应用At-RA治疗心脏移植物排斥反应提供了理论基础和实验依据。
Background. All-trans retinoic acid (At-RA) has been shown to have a variety of functions including roles in inhibiting inflammation and modulating immune function, as well as inducing cell differentiation. Since inflammatory and immunological factors appear to be major pathological elements of allograft rejection, we speculated that At-RA may offer therapeutic promise. Here, we investigated the role of At-RA in allograft rejection in a murine cardiac transplantation model.
     Methods. We performed fully MHC-mismatched heterotopic murine cardiac transplantation. In acute rejection, recipient mice were given At-RA (3 mg·kg-1·d-1) or vehicle orally beginning 1 day before cardiac transplantation. Seven days after transplantation, allografts were harvested for histological, immunohistochemical and western blot examination. In addition, recipient spleens were studied by mixed lymphocyte reaction, western blot and flow cytometry. In chronic rejection, recipient mice were given anti-CD 154 antibody MR1 (10mg·kg-1) intraperitoneally on days 1,3 and 5 or anti-CD 154 antibody MR1 (10mg·kg-1) on days 1,3 and 5 plus At-RA (3 mg·kg-1·d-1) beginning day-1 for 60 consective days. Allografts were harvested for histological, immunohistochemical and PCR study 100 days after transplantation. Then we transfered CD11c+ dendritic cells (DC) from At-RA-treated long-term graft accepting hosts into mice that recently underwent transplantation. Recipient spleens were harvested for flow cytometry analysis at 7 days after transplantation.
     Results. In acute rejection, animals given At-RA showed significantly longer cardiac allograft survival than control mice (95.17±12.40 days versus 9.67±0.62 days, P<0.05). Splenocytes isolated from At-RA-treated mice elicited a significantly lower proliferation in response to donor (BALB/c) but not third-party (C3H/He) splenocytes than controls. In vivo At-RA treatment increased frequency of splenic CD4+CD25+ Foxp3+ regulatory T cells (Treg) and reduced frequency of splenic CD4+IL-17+Th17 cells. Moreover, At-RA treatment increased the expression of Foxp3 in allografts. Interestingly, At-RA increased the expression of TGF-βand prevented the expression of IL-6 in spleens and allografts. At-RA induced low expression of CD40, CD80, CD86, and MHCⅡmolecules of CD 11 c+ DC in vivo. In chronic rejection, neointimal hyperplasia was significantly lower in allografts from mice treated with MR1 plus At-RA (luminal occlusion,26.99±6.54%) than in those from control mice (47.27±5.27%, P<0.05). Allografts from MR1 plus At-RA-treated recipients showed significantly reduced expression of IFN-y and IL-10. Furthermore, transfer of CD11c+ DC from At-RA-treated long-term graft accepting hosts into mice that recently underwent transplantation resulted in donor (BALB/c)-specific graft acceptance and in a significantly higher frequency of splenic Treg and a significantly lower frequency of splenic Th17 cells.
     Conclusions. At-RA prolongs allograft survival through direct and DC-mediated effects on Treg and Thl7 cells. Our data indicate that At-RA may have therapeutic properties ideally served for the treatment of allograft rejection.
引文
1. Boilson BA, Raichlin E, Park S J, et al. Device therapy and cardiac transplantation for end-stage heart failure. CurrProbl Cardiol 2010; 35:8.
    2. Walsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance. J Clin Invest 2004; 114:1398.
    3. Schiopu A, Wood KJ. Regulatory T cells:hypes and limitations. Curr Opin Organ Transplant 2008; 13:333.
    4. Sagoo P, Lombardi G, Lechler RI. Regulatory T cells as therapeutic cells. Curr Opin Organ Transplant 2008; 13:645.
    5. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007; 148:32.
    6. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197: 322.
    7. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J.2006; 27:779.
    8. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg 2006; 29: 779.
    9. Bettelli E, Carrier Y, GaoWet al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    10. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179.
    11.Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 441:231.
    12. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 2007; 7:610.
    13. Raimondi G, Sumpter TL, Matta BM, et al. Mammalian target of rapamycin inhibition and alloantigen-specific regulatory T cells synergize to promote long-term graft survival in immunocompetent recipients. J Immunol 2010; 184:624.
    14. Yamazaki S, Bonito AJ, Spisek R, et al. Dendritic cells are specialized accessory cells along with TGF-β for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood 2007; 110:4293.
    15. Evans TR, Kaye SB. Retinoids:present role and future potential. Br J Cancer 1999; 80: 1.
    16. Muindi JRF, Frankel SR, Huselton C, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res 1992; 52: 2138.
    17. Thacher SM, Vasudevan JCR. Therapeutic applications for ligands of retinoid receptors. Curr Pharm Des 2000; 6:25.
    18. Barstad RM, Hamers MJ, Stephens RW, Sakariassen KS. Retinoic acid reduces induction of monocyte tissue factor and tissue factor/factor Ⅶa-dependent arterial thrombus formation. Blood 1995; 86:212-218.
    19. Koyama T., Hirosawa S. Anticoagulant effects of synthetic retinoids and activated vitamin D-3. Semin Thromb Hemost 1998; 24:217-226.
    20. Back O, Nilsson TK. Retinoids and fibrinolysis. Acta Derm Venereol 1995; 75: 290-292.
    21. Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256.
    22. Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 2007; 37:2396.
    23. Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 2007; 179:3724.
    24. Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008,111:1013.
    25. Hill JA, Hall JA, Sun CM, et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity 2008; 29:758.
    1. Carrel A, Guthrie CC. The transplantation of veins and organs. Am Med 1905; 10:1101.
    2. Mann FC, Priestley JT, Markowitz J, et al. Transplantation of the intact mammalian heart. Arch Surg 1933; 26:219.
    3. Corry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16:343.
    4. Glysing-Jensen T, Raisanen-Sokolowski A, Sayegh, MH, et al. Chronic blockade of CD28-B7-mediated T-cell costimulation by CTLA4Ig reduces intimal thickening in MHC class Ⅰ and Ⅱ incompatible mouse heart allografts. Transplantation 1997; 64: 1641.
    5. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381:434.
    6. Wang CY, Mazer SP, Minamoto K, et al. Suppression of murine cardiac allograft arteriopathy by long-term blockade of CD40-CD154 interactions. Circulation 2002; 105:1609.
    7. Yamada A, Salama AD, Sho M, et al. CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo. J Immunol 2005; 174:1357.
    8. Fischbein MP, Yun J, Laks H, et al. Regulated interleukin-10 expression prevents chronic rejection of transplanted hearts. J Thorac Cardiovasc Surg 2003; 126:216.
    9. Nagano H, Mitchell RN, Taylor MK, et al. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest 1997; 100:550.
    10. Dietrich H, Hu Y, Zou Y, et al. Mouse model of transplant arteriosclerosis:role of intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol 2000; 20:343.
    11. Yun JJ, Whiting D, Fischbein MP, et al. Combined blockade of the chemokine receptors CCR1 and CCR5 attenuates chronic rejection. Circulation 2004; 109:932.
    12. Akashi S, Sho M, Kashizuka H, et al. A novel small-molecule compound targeting CCR5 and CXCR3 prevents acute and chronic allograft rejection. Transplantation 2005; 80:378.
    13. Raimondi G, Sumpter TL, Matta BM, et al. Mammalian target of rapamycin inhibition and alloantigen-specific regulatory T cells synergize to promote long-term graft survival in immunocompetent recipients. J Immunol 2010; 184:624.
    14. Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2008; 14:88.
    15. Yuan XL, Jesus PC, Isabela SK, et al A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. JExp Med 2008; 205:3133.
    16. Kosuge H, Haraguchi G, Koga N, et al. Pioglitazone prevents acute and chronic cardiac allograft rejection. Circulation 2006; 113:2613.
    17. Hauben E, Gregori S, Draghici E, et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 2008; 112:1214.
    1. Steinman TI, Becker BN, Frost AE, et al. Guidelines for the referral and management of patients eligible for solid organ transplantation. Transplantation 2001; 71:1189.
    2. Orens JB, Shearon TH, Freudenberger RS, et al. Thoracic organ transplantation in the United States,1995-2004. Am J Transplant 2006; 6:1188.
    3. Stoica SC, Goddard M, Large SR. The endothelium in clinical cardiac transplantation. Ann Thorac Surg 2002; 73:1002.
    4. Billingham ME. Histopathology of graft coronary disease. J. Heart Lung Transplant 1992;11:S38.
    5. Weis M, von Scheidt W. Coronary artery disease in the transplanted heart. Annu Rev Med 2000;51:81.
    6. Taylor DO, Edwards LB, Boucek MM, et al. Registry of the International Society for Heart and Lung Transplantation:twenty-third official adult heart transplantation report-2006. JHeart Lung Transplant 2006; 25:869.
    7. Thacher SM, Vasudevan JCR. Therapeutic applications for ligands of retinoid receptors. Curr Pharm Des 2000; 6:25.
    8. Wakino S, Kintscher U, Kim S, et al. Retinoids inhibit proliferation of human coronary smooth muscle cells by modulating cell cycle regulators.Arterioscler Thromb Vasc Biol 2001; 21:746.
    9. Miano JM, Topouzis S, Majesky MJ, et al. Retinoid receptor expression and all-trans retinoic acid-mediated growth inhibition in vascular smooth muscle cells. Circulation 1996; 93:1886.
    10. Wang C, Han M, Zhao XM, Wen JK. Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid.J Biochem 2008;144(3):313.
    11. Axel DI, Frigge A, Dittmann J, et al. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc Res 2001;49(4):851.
    12. Miano JM, Kelly LA, Artacho CA, et al. All-trans-retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery after balloon withdrawal injury. Circulation 1998; 98:1219.
    13. Wiegman PJ, Barry WL, McPherson JA, et al. All-trans retinoic acid limits restenosis after balloon angioplasty in the focally atherosclerotic rabbit:a favorable effect on vessel remodeling. Arterioscler Thromb Vasc Biol 2000; 20:89.
    14. Preston IR, Tang G, Tilan JU, et al. Retinoids and pulmonary hypertension. Circulation 2005; 111:782.
    15. Billingham ME, Cary NR, Hammond ME, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection:Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 1990; 9:587.
    16. Kosuge H, Haraguchi G, Koga N, Maejima Y, Suzuki J, Isobe M. Pioglitazone prevents acute and chronic cardiac allograft rejection. Circulation 2006; 113:2613.
    17. Kirk AD, Burkly LC, Batty SD et al. Treatment with humanized monoclonal antibody against CD 154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5:686.
    18. Kirk AD, Harlan DM, Armstrong NN et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997:8789.
    19. Montgomery SP, Xu H, Tadaki DK et al. Combination induction therapy with monoclonal antibodies specific for CD80, CD86 and CD154 in non-human primate renal transplantation. Transplantation 2002; 74:1365.
    20. Parker DC, Greiner D L, Phillips NE, et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci U S A 1995; 92:9560.
    21. Wang CY, Mazer SP, Minamoto K, et al. Suppression of murine cardiac allograft arteriopathy by long-term blockade of CD40-CD154 interactions. Circulation 2002; 105(13):1609.
    22. Evans TR, Kaye SB Retinoids:present role and future potential. Br J Cancer 1999; 80:1.
    23. Miundi JRF, Frankel SR, Huselton C, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res 1992; 52: 2138.
    24. Barstad RM, Hamers MJ, Stephens RW, Sakariassen KS. Retinoic acid reduces. induction of monocyte tissue factor and tissue factor/factor Ⅶa-dependent arterial thrombus formation. Blood 1995; 86:212.
    25. Koyama T, Hirosawa S. Anticoagulant effects of synthetic retinoids and activated vitamin D-3. Semin Thromb Hemost 1998; 24:217.
    26. Back O, Nilsson TK. Retinoids and fibrinolysis. Acta Derm Venereol 1995; 75:290.
    27. Merville P, Pouteil-Noble C, Wijdenes J, Potaux L, Touraine JL, Banchereau J. Detection of single cells secreting IFN-gamma, IL-6, and IL-10 in irreversibly rejected human kidney allografts, and their modulation by IL-2 and IL-4. Transplantation 1993; 55:639.
    28. Merville P, Pouteil-Noble C, Wijdenes J, Potaux L, Touraine JL, Banchereau J. Cells infiltrating rejected human kidney allografts secrete IFN-gamma, IL-6, and IL-10, and are modulated by IL-2 and IL-4. Transplant Proc.1993; 25:111.
    29. Pavlakis M, Strehlau J, Lipman M, Shapiro M, Maslinski W, Strom TB. Intragraft IL-15 transcripts are increased in human renal allograft rejection. Transplantation 1996; 62:543.
    30. Takei Y, Sims TN, Urmson J, Halloran PF. The central role for interferon-y receptor in the regulation of renal MHC expression. J Am Soc Nephrol 2000; 11:250.
    31. Raisanen-Sokolowski A, Glysing-Jensen T, Koglin J, Russell ME. Reduced transplant arteriosclerosis in murine cardiac allografts placed in interferon-gamma knockout recipients. Am J Pathol 1998; 152:359.
    32. Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-y deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest 1997; 100:550.
    33. van Loosdregt J, van Oosterhout MF, Bruggink AH, et al. The chemokine and chemokine receptor profile of infiltrating cells in the wall of arteries with cardiac allograft vasculopathy is indicative of a memory T-helper 1 response. Circulation 2006; 114:1599.
    34. Karczewski M, Karczewski J, Poniedzialek B, Wiktorowicz K, Smietanska M, Glyda M. Distinct cytokine patterns in different states of kidney allograft function. Transplant Proc.2009; 41:4147.
    35. Sadeghi M, Daniel V, Naujokat C, et al. Evidence for IFN-gamma up-and IL-4 downregulation late post-transplant in patients with good kidney graft outcome. Clin Transplant 2007; 21:449.
    36. Wei B, Baker S, Wieckiewicz J, Wood KJ. IFN-gamma triggered STAT1-PKB/AKT signalling pathway influences the function of alloantigen reactive regulatory T cells. Am J Transplant 2010; 10:69.
    37. Mittal SK, Sharma RK, Gupta A, Naik S. Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. Transplantation 2009; 88:435.
    38. Zuo Z, Wang C, Carpenter D, Okada Y, Nicolaidou E, Toyoda M, Trento A, Jordan SC. Prolongation of allograft survival with viral IL-10 transfection in a highly histoincompatible model of rat heart allograft rejection. Transplantation 2001; 71:686.
    39. Raisanen-Sokolowski A, Glysing-Jensen T, Russell ME. Leukocyte-suppressing influences of interleukin (IL)-10 in cardiac allografts:insights from IL-10 knockout mice. Am JPathol 1998; 153:1491.
    40. Furukawa Y, Becker G, Stinn JL, et al. Interleukin-10 (IL-10) augments allograft arterial disease:paradoxical effects of IL-10 in vivo. Am J Pathol 1999; 155:1929.
    41.Hasegawa T, Visovatti SH, Hyman MC, Hayasaki T, Pinsky DJ. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat Protoc 2007; 2:471.
    42. Rossini, Aldo A., Dale L. Greiner, and John P. Mordes. Induction of Immunologic Tolerance for Transplantation. Physiol. Rev.79:99-141,1999.
    1. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    2. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179.
    3. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 441:231.
    4. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330.
    5. Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005; 102:5126.
    6. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121.
    7. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197: 322.
    8. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J 2006; 27:779.
    9. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg 2006; 29: 779.
    10. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9:1144.
    11. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+) CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. JExp Med 2002; 196:389.
    12. Graca L, Thompson S, Lin CY, et al. Both CD4(+) CD25(+) and CD4(+) CD25(-) regulatory cells mediate dominant transplantation tolerance. J Immunol 2002; 168:5558.
    13. Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24:677.
    14. Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256.
    15. Schambach F, Schupp M, Lazar MA,et al. Activation of retinoic acid receptor-a favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 2007; 37:2396.
    16. Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 2007; 179:3724.
    17. Elias KM, Laurence A, DavidsonTS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood,2008; 111:1013.
    18. Hill JA, Hall JA, Sun CM, et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity 2008; 29:758.
    19. Walsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance. J Clin Invest 2004; 114:1398.
    20. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133:775.
    21.Shevach EM. From vanilla to 28 flavors:multiple varieties of T regulatory cells. Immunity 2006; 25:195.
    22. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531.
    23. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330.
    24. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299:1057.
    25. Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4:337.
    26. Xia G, He J, Zhang Z, Leventhal JR. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation 2006; 82:1749.
    27. Pu LY, Wang XH, Zhang F, et al. Adoptive transfusion of ex vivo donor alloantigen-stimulated CD4(+)CD25(+) regulatory T cells ameliorates rejection of DA-to-Lewis rat liver transplantation. Surgery 2007; 142:67.
    28. Benghiat FS, Graca L, Braun MY, et al. Critical influence of natural regulatory CD25+ T cells on the fate of allografts in the absence of immunosuppression. Transplantation 2005; 79:648.
    29. Game DS, Hernandez-Fuentes MP, Chaudhry AN, Lechler RI. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. JAm Soc Nephrol 2003; 14:1652.
    30. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9:1144.
    31. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+) CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. JExp Med 2002; 196:389.
    32. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H. Both CD4(+) CD25(+) and CD4(+) CD25(-) regulatory cells mediate dominant transplantation tolerance. J Immunol 2002; 168:5558.
    33. Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2008; 14:88.
    34. Pons JA, Revilla-Nuin B, Baroja-Mazo A, et al. FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation 2008; 86:1370.
    35. Suchin EJ, Langmuir PB, Palmer E et al. Quantifying the frequency of alloreactive T cells in vivo:new answers to an old question. J Immunol 2001; 166:973.
    36. Tang Q, Henriksen KJ, Bi M et al. In vitro-expanded antigenspecific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199:1455.
    37. Schenk S, Kish DD, He C et al. Alloreactive T cell responses and acute rejection of single class Ⅱ MHC-disparate heart allografts are under strict regulation by CD4+ CD25+ T cells. J Immunol 2005; 174:3741.
    38. Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB. The balance of deletion and regulation in allograft tolerance. Immunol Rev 2003; 196:75.
    39. Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006; 177(12):8338.
    40. Chen X, Oppenheim JJ, Winkler-Pickett RT, et al. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 2006; 36:2139.
    41. Sharma MD, Baban B, Chandler P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117:2570.
    42. Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005; 201:1061.
    43. Doganci A, Eigenbrod T, Krug N, et al. The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo.J Clin Invest 2005; 115:313.
    44. Peng G, Guo Z, Kiniwa Y, et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005; 309:1380.
    45. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    46. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278:1910.
    47. Wei L, Laurence A, Elias KM, and O'SheaJJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282:34605.
    48. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203:2271.
    49. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183:2593.
    50. Kawaguchi M, Kokubu F, Odaka M, et al. Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine,ML-1 (IL-17F), via Raf I-MEK-ERK pathway. J Allergy Clin Immunol 2004; 114:.444.
    51. Henness S, Johnson CK, Ge Q, et al. IL-17A augments TNF-α-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 2004; 114:958.
    52. KornT, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature 2007; 448:484.
    53. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448:480.
    54. Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes:a potential role in psoriasis. Eur J Immunol 2006; 36:1309.
    55. Nagalakshmi ML, Rascle A, Zurawski S, et al. Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol 2004; 4:679.
    56. Radaeva S, Sun R, Pan HN, et al. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis:IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004; 39:1332.
    57. Wolk K, Witte E, Hoffmann U, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes:a potential systemic role of IL-22 in Crohn's disease. J Immunol 2007; 178:5973.
    58. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179.
    59. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature 2006; 441:235.
    60. Acosta-RodriguezEV, Napolitani G, Lanzavecchia A, and Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8:942.
    61. Kimura A, Naka T, Kishimoto T. IL-6-dependent and-independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci U S A 2007; 104:12099.
    62. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs Th17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8:967.
    63. Nishihara M, Ogura H, Ueda N, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+Th with a minimum effect on that of Treg in the steady state. Int Immunol 2007; 19:695.
    64. Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. JImmunol 2007; 178:4901.
    65. Ivanov 11, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121.
    66. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORa and RORy. Immunity 2008; 28:29.
    67. Eberl G, Marmon S, Sunshine MJ, et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004; 5: 64.
    68. Kurebayashi S, Ueda E, Sakaue M, et al. Retinoidrelated orphan receptor y (RORy) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci U S A 2000; 97:10132.
    69. Sun z, Unutmaz D, Zou YR, et al. Requirement for RORy in thymocyte survival and lymphoid organ development. Science 2000; 288:2369.
    70. Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006; 7: 929.
    71. Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7:937.
    72. Laurence A,. Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26:371.
    73. Amadi-Obi A, Yu CR, Liu X, et al. Th17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007; 13:711.
    74. Yuan XL, Jesus PC, Isabela SK, et al A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. JExp Med 2008; 205:3133.
    75. Korn T, Bettelli E, Gao W,et al. IL-21 initiates an alternate pathway to induce proinflammatory Th17 cells. Nature 2007; 448:484.
    76. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    77. Kang SG, Piniecki RJ, Hogenesch H, et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology 2007; 132:966.
    78. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. JExp Med 2007; 204:1765.
    79. Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of FoxP3 T reg cells via retinoic acid. J Exp Med 2007; 204:1775.
    80. Coombes JL, Siddiqui KRR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD 103+ DCs induces FoxP3+ regulatory T cells via a TGF-P and retinoic acid-dependent mechanism. J Exp Med 2007; 204:1757.
    81. Szondy Z, Reichert U, and F'es¨us L. Retinoic acids regulate apoptosis of T lymphocytes through an interplay between RAR and RXR receptors. Cell Death Differ 1998; 5:4.
    82. Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 2008; 181:2277.
    1. Banchereau J, Pascual V, Palucka AK. Autoimmunity through cytokine-induced dendritic cell activation. Immunity 2004; 20:539.
    2. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685.
    3. Tarbell KV, Yamazaki S, Steinman RM. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol 2006; 18:93.
    4. Jenkins MK, Khoruts A, Ingulli E, et al. In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 2001; 19:23.
    5. Levings MK, Gregori S, Tresoldi E, et al. Differentiation of Trl cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 2005; 105:1162.
    6. Penna G, Giarratana N, Amuchastegui S, et al. Manipulating dendritic cells to induce regulatory T cells. Microbes Infect 2005; 7:1033.
    7. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193:F5.
    8. Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system:turning lymphocytes off. Science 1998; 280:243.
    9. Akbari O, Freeman GJ, Meyer EH, et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2002;8:1024.
    10. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213.
    11. Fisson S, Djelti F, Trenado A, et al. Therapeutic potential of self-antigen-specific CD4+ CD25+ regulatory T cells selected in vitro from a polyclonal repertoire. Eur J Immunol 2006; 36:817.
    12. Moseman EA, Liang X, Dawson AJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol 2004; 173:4433.
    13. Ochando JC, Homma C, Yang Y, et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 2006; 7:652.
    14. Watanabe N, Wang YH, Lee HK, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005; 436:1181.
    15. Fehervari Z, Sakaguchi S. Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 2004; 16:1769.
    16. Hauben E, Roncarolo MG. Human CD4+ regulatory T cells and activation-induced tolerance. Microbes Infect 2005; 7:1023.
    17. Mahnke K, Enk AH. Dendritic cells:key cells for the induction of regulatory T cells? Curr Top Microbiol Immunol 2005; 293:133.
    18. Kover K, Moore WV. Initiation of rejection of established islet allografts by third-party thyroid allografts and splenic dendritic cells. Diabetes 1991; 40:754.
    19. Goldstein DR. Toll-like receptors and other links between innate and acquired alloimmunity. Curr Opin Immunol 2004; 16:538.
    20. McLellan AD, Brocker EB, Kampgen E. Dendritic cell activation by danger and antigen-specific T-cell signalling. Exp Dermatol 2000; 9:313.
    21. Barratt-Boyes SM, Thomson AW. Dendritic cells:tools and targets for transplant tolerance. Am J Transplant 2005; 5:2807.
    22. Coenen JJ, Koenen HJ, van Rijssen E, Hilbrands LB, Joosten I. Tolerizing effects of co-stimulation blockade rest on functional dominance of CD4+CD25+ regulatory T cells. Transplantation 2005; 79:147.
    23. Guillonneau C, Aubry V, Renaudin K, et al. Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Transplantation 2005; 80:255.
    24. Saurer L, McCullough KC, Summerfield A.In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J Immunol 2007; 179:3504.
    25. Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204: 1775.
    26. Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004; 199:1401.
    27. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005; 6:1219.
    28. Banchereau, J, Steinman R M. Dendritic cells and the control of immunity. Nature 1998; 392:245.
    29. Steinman R M, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685.
    30. Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 1997; 185:541.
    31. Menges M, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor induce antigen-specific protection of mice from autoimmunity. J Exp Med 2002; 195:15.
    32. Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol 2005; 174:7433.
    33. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 2007; 7:610.
    34. Hackstein H, Thomson AW. Dendritic cells:emerging pharmacological targets of immunosuppressive drugs. Nature Rev Immunol 2004; 4:24.
    35. Morelli, AE, Thomson, AW. Dendritic cells:regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 2003; 196:125.
    36. Chauveau C, et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 2005; 106:1694.
    37. Maraskovsky E, et al. Dramatic increase in the numbers of functionally mature dendritic, cells in Flt3 ligand-treated mice:multiple dendritic cell subpopulations identified. J Exp Med 1996; 184:1953.
    38. Pulendran B, et al. Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. JExp Med 1998; 188:2075.
    39. Coates PT, et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 2003; 102:2513.
    40. Eto M, Hackstein H, Kaneko K, et al. Promotion of skin graft tolerance across MHC barriers by mobilization of dendritic cells in donor hemopoietic cell infusions. J Immunol 2002; 169:2390.
    41. Hackstein H, et al. Normal donor bone marrow is superior to Flt3 ligand-mobilized bone marrow in prolonging heart allograft survival when combined with anti-CD40L (CD154). Am J Transplant 2002; 2:609.
    42. Coates PT, et al. In vivo-mobilized kidney dendritic cells are functionally immature, subvert alloreactive T-cell responses, and prolong organ allograft survival. Transplantation 2004; 77:1080.
    43. Steptoe R J, et al. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity. J Immunol 1997; 159:5483.
    44. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95:2484.
    45. Gould DS, Auchincloss H Jr. Direct and indirect recognition:the role of MHC antigens in graft rejection. Immunol Today 1999; 20:77.
    46. Garrovillo M, Ali A, Oluwole SF. Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation 1999; 68:1827.
    47. Ali A, Garrovillo M, Jin MX, et al. Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation 2000; 69:221.
    48. Oluwole OO, et al. Indirect allorecognition in acquired thymic tolerance:induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 2001; 50:1546.
    49. Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am J Transplant 2005; 5:228.
    50. Peche H, Trinite B, Martinet B, Cuturi MC. Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 2005; 5:255.
    51. Sato K, Yamashita N, Yamashita N, Baba M, Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003; 18:367.
    52. Jiang S, Camara N, Lombardi G Lechler RI. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 2003; 102:2180.
    53. Yu G, Xu X, Vu M D, et al. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 2006; 203:1851.
    54. Morelli AE. The immune regulatory effect of apoptotic cells and exosomes on dendritic cells:its impact on transplantation. Am J Transplant 2006; 6:254.
    55. Hawiger D, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194:769.
    56. Bonifaz L, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196: 1627.
    57. Larregina AT, Morelli AE. Handbook of Dendritic Dells:Biology, Diseases, and Therapies. Wiley-VCH, Weinheim,2006.591-618.
    58. Morelli AE, et al. Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells:dependence on complement receptors and effect on cytokine production. Blood 2003;101:611.
    59. Wang Z, et al. Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am J Transplant 2006; 6:1297.
    60. Thery C, Zitvogel L, Amigorena S. Exosomes:composition, biogenesis and function. Nature Rev Immunol 2002; 2:569.
    61. Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104:3257.
    62. Peche H, Renaudin K, Beriou G, et al. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 2006; 6:1541.
    63. Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. JExp Med 2004; 199:1401.
    64. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133.
    65. Luo X, Tarbell KV, Yang H, et al. Dendritic cells with TGF-betal differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2007; 104:2821.
    66. Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. JExp Med 2007; 204:1765.
    67. Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004; 21:527.
    68. Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256.
    69. Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 2007; 7:1457.
    1. Newell KA, Larsen CP, Kirk AD. Transplant tolerance:Converging on a moving target. Transplantation 2006; 81:1.
    2. Lakkis FG, Arakelov A, Konieczny BT, Inoue Y. Immunologic'ignorance' of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 2000; 6:686.
    3. Zhou P, Hwang KW, Palucki D, et al.Secondary lymphoid organs are important but not absolutely required for allograft responses. Am J Transplant 2003; 3:259.
    4. Chalasani G, Dai Z, Konieczny BT, et al. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc Natl Acad Sci U S A 2002; 99:6175.
    5. Lechler R, Chai JG, Marelli-Berg F, et al. The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology 2001; 103:262.
    6. Rothstein DM, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev 2003; 196:85.
    7. Clarkson MR, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation 2005; 80:555.
    8. Adams AB, Larsen CP, Pearson TC, Newell KA. The role of TNF receptor superfamily molecules in organ transplantation. Am J Transplant 2002; 2:12.
    9. Khoury SJ, Sayegh MH. The roles of the new negative T cell costimulatory pathways in regulating autoimmunity.Immunity 2004; 20:529.
    10. Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Transplant 2003; 3:516.
    11. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3:199.
    12. Torrealba JR, Katayama M, Fechner JH Jr, et al.Metastable tolerance to rhesus monkey renal transplants is correlated with allograft TGF-beta 1+CD4+ T regulatory cell infiltrates. J Immunol 2004; 172:5753.
    13. Salama AD, Najafian N, Clarkson MR, et al. Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol 2003; 14:1643.
    14. VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest 2000; 106:145.
    15. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3):1151.
    16. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4:337.
    17. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299:1057.
    18. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 2003; 4:330.
    19. Yu A, Malek TR. Selective availability of IL-2 is amajor determinant controlling the production of CD4+CD25+Foxp3+ T regulatory cells. J Immunol 2006; 177:5115.
    20. Pennington DJ, Silva-Santos B, Silberzahn T, et al.. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 2006; 444:1073.
    21. Lin W, Haribhai D, Relland LM, et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 2007; 8:359.
    22. Fontenot JD, Dooley JL, Farr AG, et al. Developmental regulation of Foxp3 expression during ontogeny. JExp Med 2005; 202:901.
    23. Cabarrocas J, Cassan C, Magnusson F, et al. Foxp3+ CD25+ regulatory T cells specific for a neoself-antigen develop at the double-positive thymic stage. Proc Natl Acad Sci USA 2006; 103:8453.
    24. Aschenbrenner K, D'Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007; 8:351.
    25. Huang B, Pan PY, Li Q, et al.Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66:1123.
    26. Fu S, Zhang N, Yopp AC, et al. TGF-beta induces Foxp3+ T-regulatory cells from CD4+ CD25- precursors. Am J Transplant 2004; 4:1614.
    27. Chen W, Jin W, Hardegen N, et al.Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198):1875.
    28. Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003; 101:4862.
    29. Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005; 6:1219.
    30. Barrat FJ, Cua DJ, Boonstra A, et al. In vitro generation of interleukin 10-producing regulatory CD4 (+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med 2002; 195:603.
    31. Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 2005; 65:5020.
    32. Rifa'i M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 2004; 200: 1123.
    33. Jarvis LB, Matyszak MK, Duggleby RC, et al.Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur J Immunol 2005; 35: 2896.
    34. Hahn BH, Singh RP, La Cava A, Ebling FM. Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFbeta-secreting CD8+ T cell suppressors.J Immunol 2005; 175:7728.
    35. Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195:695.
    36. Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003; 102:4107.
    37. Bienvenu B, Martin B, Auffray C, et al. Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J Immunol 2005; 175:246.
    38. Annunziato F, Cosmi L, Liotta F, et al.Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. JExp Med 2002; 196:379.
    39. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9:1144.
    40. Godfrey WR, Ge YG, Spoden DJ, et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004; 104:453.
    41. Hanash AM, Levy RB. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005; 105:1828.
    42. Hara M, Kingsley CI, Niimi M, et al.IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001; 166:3789.
    43. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004; 104:895.
    44. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. JExp Me d 2001; 193:1285.
    45. Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection:CTLA-4-and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002; 168:1080.
    46. Levings MK, Sangregorio R, Sartirana C, et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. JExp Med 2002; 196:1335.
    47. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+)regulatory T cells is mediated by cell surface-bound transforming growth factor beta. JExp Med 2001; 194:629.
    48. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. JExp Med 2000; 192:295.
    49. Takahashi T, Tagami T, Yamazaki S, et al.Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. JExp Med 2000; 192:303.
    50. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188:287.
    51. Trenado A, Charlotte F, Fisson S, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112:1688.
    52. Waldmann H, Graca L, Cobbold S, Adams E, Tone M, Tone Y. Regulatory T cells and organ transplantation. Semin Immunol 2004; 16:119.
    53. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194:823.
    54. Steitz J, Bruck J, Lenz J, et al. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001; 61:8643.
    55. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163:5211.
    56. Onizuka S, Tawara I, Shimizu J, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59:3128.
    57. Golgher D, Jones E, Powrie F, et al. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 2002; 32:3267.
    58. Annacker O, Burlen-Defranoux O, Pimenta-Araujo R, et al. Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J Immunol2000; 164:3573.
    59. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. JExp Med 1999; 190:995.
    60. Seddon B, Mason D. Regulatory T cells in the control of autoimmunity:the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4(+)CD45RC-cells and D4(+)CD8(-) thymocytes. J Exp Med 1999; 189:279.
    61. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB (low) CD4+ T cells. J Exp Med 1996; 183:2669.
    62. Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells:induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10:1969.
    63. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531.
    64. Mahnke K, Johnson TS, Ring S, Enk AH. Tolerogenic dendritic cells and regulatory T cells:a twoway relationship. JDermatol Sci 2007; 46:159.
    65. Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur JImmunol 2000; 30:1538.
    66. Lu LF, Lind EF, Gondek DC, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442:997.
    67. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    68. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179.
    69. Mangan PR, Harrington LE, O'Quinn DB et al. Transforming growth factor-beta induces development of the T (H) 17 lineage.Nature 2006; 441:231.
    70. Hoeve MA, de Savage ND, BT et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 2006; 36:661.
    71. Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133.
    72. Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123.
    73. Rangachari M, Mauermann N, Marty RR et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 2006; 203:2009.
    74. Ivanov Ⅱ,McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121.
    75. Hoeve MA, de Savage ND, BT et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 2006; 36:661.
    76. Li Yang, David E. Anderson, Clare Baecher-Allan, et al. Hafler.IL-21 and TGF-Pare required for differentiation of human TH17 cells. Nature 2008; 454:350.
    77. Vanaudenaerde BM, Dupont LJ, Wuyts WA et al. The role of interleukin-17 during acute rejection after lung transplantation.Eur Respir J 2006; 27:779.
    78. Li J, Simeoni E, Fleury S et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg 2006; 29:779.
    79. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72:348.
    80. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection:IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162:577.
    81. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179.
    82. Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235.
    83. Mangan PR, Harrington LE, O'Quinn DB et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 441:231.
    84. Wekerle T, Kurtz J, Ito H, et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 2000; 6:464.
    85. Adams AB, Durham MM, Kean L, et al.Costimulation blockade, busulfan, and bone marrow promote titratable macrochimerism, induce transplantation tolerance, and correct genetic hemoglobinopathies with minimal myelosuppression. J Immunol 2001; 167:1103.
    86. Buhler LH, Spitzer TR, Sykes M, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease.Transplantation 2002; 74:1405.
    87. Kawai T, Cosimi AB, Wee SL, et al.Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 2002; 73:1757.
    88. Wekerle T, Kurtz J, Sayegh M, et al. Peripheral deletion after bone marrow transplantation with costimulatory blockade has features of both activation-induced cell death and passive cell death. J Immunol 2001; 166:2311.
    89. Opelz G, Terasaki PI. Poor kidney-transplant survival in recipients with frozen-blood transfusions or no transfusions. Lancet 1974; 2:696.
    90. Demetris AJ, Murase N, Ye Q, et al. Analysis of chronic rejection and obliterative arteriopathy. Possible contributions of donor antigen-presenting cells and lymphatic disruption. Am JPathol 1997; 150:563.
    91. Subbotin V, Sun H, Aitouche A, et al. Abrogation of chronic rejection in a murine model of aortic allotransplantation by prior induction of donor-specific tolerance. Transplantation 1997; 64:690.
    92. Blumberg N, Heal JM. The transfusion immunomodulation theory:the Thl/Th2 paradigm and an analogy with pregnancy as a unifying mechanism. Semin Hematol 1996; 33:329.
    93. Douillard P, Pannetier C, Josien R, et al. Donor-specific blood transfusion-induced tolerance in adult rats with a dominant TCR-Vbeta rearrangement in heart allografts. J Immunol 1996; 157:1250.
    94. Van Twuyver E, Kast WM, Mooijaart RJ, et al. Induction of transplantation tolerance by intravenous injection of allogeneic lymphocytes across an H-2 class Ⅱ mismatch. Different mechanisms operate in tolerization across an H-2 class I vs. H-2 class Ⅱ disparity. Eur J Immunol 1990; 20:441.
    95. Vojtiskova M, Lengerova A. Thymus-mediated tolerance to cellular alloantigens. Transplantation 1968; 6:13.
    96. Posselt A M, Barker CF, TomaszewskiJE, et al. Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 1990; 249:1293.
    97. Dono K, Wood ML, Ozato H, et al. Marked prolongation of rat skin xenografts induced by intrathymic injection of xenogeneic splenocytes and a short course of rapamycin in antilymphocyte serum-treated mice. Transplantation 1995; 59:929.
    98. Shin YT, Adams DH, Wyner LR, et al. Intrathymic tolerance in the Lewis-to-F344 chronic cardiac allograft rejection model. Transplantation 1995; 59:1647.
    99. Campos L, Alfrey EJ, Posselt AM, et al. Prolonged survival of rat orthotopic liver allografts after intrathymic inoculation of donor-strain cells. Transplantation 1993; 55: 866.
    100. Remuzzi G, Rossini M, Imberti O, et al. Kidney graft survival in rats without immunosuppressants after intrathymic speglomerular transplantation. Lancet 1991; 337:750.
    101. Oluwole SF, Chowdhury NC, Jin MX, et al. Induction of transplantation tolerance to rat cardiac allografts by intrathymic inoculation of allogeneic soluble peptides. Transplantation 1993; 56:1523.
    102. Oluwole SF, Jin MX, Chowdhury NC, et al. Effectiveness of intrathymic inoculation of soluble antigens in the induction of specific unresponsiveness to rat islet allografts without transient recipient immunosuppression. Transplantation 1994; 58:1077.
    103. Madrenas J, Schwartz RH, Germain RN. Interleukin 2 production, not the pattern of early T-cell antigen receptor-dependent tyrosine phosphorylation, controls anergy induction by both agonists and partial agonists. Proc. Natl. Acad. Sci. USA 1996; 93: 9736.
    104. Jones ND, Fluck NC, Roelen DL, et al. Deletion of alloantigen-reactive thymocytes as a mechanism of adult tolerance induction following intrathymic antigen administration. Eur J Immunol 1997; 27:1591.
    105. Knechtle SJ, Wang J, Graeb C, et al. Direct MHC class I complementary DNA transfer to thymus induces donor-specific unresponsiveness, which involves multiple immunologic mechanisms. J Immunol 1997; 159:152.
    106. Davies JD, Martin G, Phillips J, et al. T-cell regulation in adult transplantation tolerance. J Immunol 1996; 157:529.
    107. AltersSE, Song HK, Fathman CG. Evidence that clonal anergy is induced in thymic migrant cells after anti-CD4-mediated transplantation tolerance. Transplantation 1993; 56:633.
    108. Rep MH, Van Oosten BW, Roos MT, et al. Treatment with depleting CD4 Mechmonoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-gamma secreting TH1 cells in humans. J Clin Invest 1997; 99: 2225.
    109. Raisa Nen-Sokolowski A, Mottram PL, Glysing-Jensen T, et al. Heart transplants in interferon-gamma, interleukin 4, and interleukin 10 knockout mice:recipient environment alters graft rejection. J Clin Invest 1997; 100:2449.
    110. LehmannM, Graser E, Risch K, et al. Anti-CD4 monoclonal antibody-induced allograft tolerance in rats despite persistence of donor-reactive T cells. Transplantation 1997; 64:1181.
    111. Onodera K, Lehmann M, Akalin E, et al. Induction of "infectious" tolerance to MHC-incompatible cardiac allografts in CD4 monoclonal unreantibody-treated sensitized rat recipients. J Immunol 1996; 157:1944.
    112. Charlton B, Auchincloss H Jr, Fathman CG. Mechanisms of transplantation tolerance. Annu Rev Immunol 1994; 12:707.
    113. Plain KM, Fava L, Spinelli A, et al. Induction of tolerance with non-depleting anti-CD4 monoclonal antibodies is associated with down regulation of Th2 cytokines. Transplantation 1997; 64:1559.
    114. Wang ZQ, Dudhane A, Orlikowsky T, et al. CD4 engagement induces Fas antigen-dependent apoptosis of T cells in vivo. Eur J Immunol 1994; 24:1549.
    115. Alters SE, Shizuru JA, Ackerman J, et al. Anti-CD4 mediates clonal anergy during transplantation tolerance induction. J Exp Med 1991; 173:491.
    116. Lazarovits Al, Poppema S, White MJ, et al. Inhibition of alloreactivity in vitro by monoclonal antibodies directed against restricted isoforms of the leukocyte-common antigen (CD45). Transplantation 1992; 54:724.
    117. LazarovitsAI, Poppema S, Zhang Z, et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 1996; 380:717.
    118. OnoderaH, Motto DG, Koretzky GA, et al. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J Biol Chem 1996; 271: 22225.
    119. IsobeM, Yagita H, Okumura K, et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992; 255:1125.
    120. Iwata T, Kamei Y, Esaki S, et al. Immunosuppression by anti-ICAM-1 and anti-LFA-1 monoclonal antibodies of free and vascularized skin allograft rejection. Immunobiology 1996; 195:160.
    121. MiwaS, Isobe M, Suzuki J, et al. Effect of anti-intercellular adhesion molecule-1 and anti-leukocyte function associated antigen-1 monoclonal antibodies on rat-to-mouse cardiac xenograft rejection. Surgery 1997; 121:681.
    122. Zeng Y, Gage A, Montag A, et al. Inhibition of transplant rejection by pretreatment of xenogeneic pancreatic islet cells with anti-ICAM-1 antibodies. Transplantation 1994; 58:681.
    123. Faustman D, Coe C. Prevention of xenograft rejection by masking donor HLA class I antigens. Science 1991; 252:1700.
    124. Smith RM, Chen ZK, Foulkes R, et al.Prolongation of murine vascularized heart allograft survival by recipient-specific anti-major histocompatibility complex class II antibody. Transplantation 1997; 64:525.
    125. Steinmuller D. Passenger leukocytes and the immunogenicity of skin allografts:a critical reevaluation. Transplant Proc 1981; 13:1094.
    126. Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allograft by the addition of donor strain dendritic cells. J Exp Med 1982; 155: 31.
    127. Markmann JF, Tomaszewski J, Posselt AM, et al. The effect of islet cell culture in vitro at 247C on graft survival and MHC antigen expression. Transplantation 1990; 49:272.
    128. Azuma H, Chandraker A, Nadeau K, et al. Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection. Proc Natl Acad Sci U S A 1996;93:12439.
    129. PearsonTC,. Alexander DZ, Corbascio M, et al.Analysis of the B7 costimulatory pathway in allograft rejection. Transplantation 1997; 63:1463.
    130. Tran HM, Nickerson PW, Restifo AC, et al.Distinct mechanisms for the induction and maintenance of allograft tolerance with CTLA4-Fc treatment. J Immunol 1997; 159: 2232.
    131. Steurer W, Nickerson PW, Steele AW, et al. Ex vivo coating of islet cell allografts with murine CTLA4/Fc promotes graft tolerance. J Immunol 1995; 155:1165.
    132. Perez VL, Van Parijs L, Biuckians A, et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6:411.
    133. LakkisFG, Konieczny BT, Saleem S, et al. Blocking the CD28-B7 T cell costimulation pathway induces long term cardiac allograft acceptance in the absence of IL-4. J Immunol 1997; 158:2443.
    134. ParkerDC, Greiner DL, Phillips NE, et al. MORDES, AND A. A. ROSSINI. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci U S A 1995; 92:9560.
    135. MarkeesTG, Phillips NE, NoelleRJ, et al. Prolonged survival of mouse skin allografts in recipients treated with donor splenocytes and antibody to CD40 ligand. Transplantation 1997; 64:329.
    136. Starzl TE, Demetris AJ, Murase N, et al.Cell migration chimerism, and graft acceptance. Lancet 1992; 339:1579.
    137. Foster RD, Fan L, Niepp M, et al. Donor-specific tolerance induction in composite tissue allografts. Am JSurg 1998; 176:418.
    138. Gammie JS, Pham SM. Simultaneous donor bone marrow and cardiac transplantation: can tolerance be induced with the development of chimerism? Curr Opin Cardiol 1999; 14:126.
    139. Cohen IR, Weiner HL. T-cell vaccination. Immunol Today 1989; 9:332.
    140. Masroor S, Itescu S, Artrip JH, et al. Induction of tolerance in rodent cardiac allotransplantation using an MHC class I-derived peptide and cyclosporin A. Ann Thorac Surg 1998; 65:144.
    141. Reemtsen BL, Kato H,Wang TS, et al. Intrathymic immunomodulation and the "infectious" tolerance pathway in allograft recipients. J Surg Res 1999; 84:1.
    142. Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2008; 14:88.
    143. Zheng XX, Markees TG, Hancock WW, et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD 154 monoclonal antibody treatment. J Immunol 1999; 162:4983.
    144. He XY, ChenJ, Verma N, et al. Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses. Transplantation 1998; 65:1145.