用户名: 密码: 验证码:
Ⅰ.丹参酮ⅡA对压力超负荷大鼠心肌肥厚信号转导系统MAPK通路的影响 Ⅱ.缺血后适应方法对脑的保护作用及其在复苏中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[摘要]目的建立大鼠胸主动脉部分缩窄诱导心肌肥厚动物模型。方法雄性SD大鼠30只,随机分为两组:胸主动脉缩窄组20只和同期假手术组10只。在右无名动脉和左颈总动脉之间将主动脉结扎于8G针头上,随后将针头退出即可。术后10周,采用超声心动图检测心脏、观察心脏的大体剖面以及HE染色、测量心肌肥厚指数评价心肌肥厚的效果。结果术后10周,肉眼观:模型组心脏体积明显大于对照组。M型超声示:模型组较假手术组缩短分数下降,左室内径和室壁厚度明显增加。超声测量结果示:模型组与假手术组比较:室间隔厚度增加明显(2.527+0.269 vs.1.943+0.1) mm, (P<0.01);后壁厚度增加明显(2.492+0.242 vs.1.902+0.076)(P<0.01);缩短分数略减小(49+7.681 vs.55.7+9.828)(P>0.05);左室舒张末期内径、左室收缩末期内径及射血分数均无明显变化。心脏肥厚指数明显增大(3.196+0.11 vs.1.785+0.099)P<0.01。结论胸主动脉缩窄可以导致大鼠心肌肥厚,为研究心室肥厚、心肌功能障碍以及心肌重构提供了一个很好的模型。
     目的探讨丹参酮ⅡA对大鼠胸主动脉缩窄诱导的心肌肥厚及MAPK(丝裂原活化蛋白激酶)信号转导通路的影响。方法通过在右无名动脉和左侧颈总动脉之间部分缩窄胸主动脉诱导大鼠心肌肥厚模型。将制好模型的大鼠随机分成6组:假手术组、胸主动脉缩窄组、胸主动脉缩窄组+低剂量丹参酮组(5mg/kg)、胸主动脉缩窄组+中剂量丹参酮组(10mg/kg)、胸主动脉缩窄组+高剂量丹参酮组(20mg/kg)、胸主动脉缩窄组+缬沙坦组(10mg/kg)。用药8周后,B超检测心肌肥厚程度和心功能的变化,将心肌样本沿横切面切开并做HE染色,Western blot法分析心肌MAPK信号蛋白表达变化。结果胸主动脉缩窄组相对于假手术组在心脏重量指数、左室重量指数、心肌纤维直径、左心室后壁及室间隔厚度均增加。而丹参酮ⅡA和缬沙坦组均可减轻上述变化的程度。Western blot结果显示:相对假手术组,模型组的p-ERK(磷酸化的细胞外信号调节激酶)和p-p38(磷酸化的p38丝裂原活化蛋白激酶)均减少,差异均具有统计学意义(均P<0.01)。相对于模型组,各丹参酮和缬沙坦治疗组p-ERK减少,差异均具有统计学意义(均P<0.05);另外,丹参酮高剂量和中剂量组,以及缬沙坦治疗组p-p38增加,差异均具有统计学意义(均P<0.05)。结论丹参酮ⅡA通过调节MAPK通路中的蛋白表达而发挥其抑制心肌肥厚的作用。
     目的研究缺血后适应对全脑缺血再灌注大鼠突触超微结构及突触素表达的影响。方法将动物随机分成3组(每组8只):假手术组(C)、缺血再灌注组(Ⅰ)和缺血+后适应组(Post-con)。按照四血管阻塞法制作脑缺血模型:假手术组:分离动物颈总动脉,不阻断血流;缺血再灌注组:阻断双侧颈总动脉10min再灌注;缺血+后适应组:阻断双侧颈总动脉10min再灌注,于再灌注的初期给予15s灌注/15s夹闭,共三个循环的后适应。动物全脑缺血48h后断头处死,取海马组织包埋切片后,用透射电子显微镜观察海马CA1区神经元超微结构变化,并应用免疫组化和Westernblot方法观察突触素的表达。结果①电镜观察:缺血+后适应(Post-con)组与缺血再灌注(Ischemic)组相比,神经毡内突触数目较多,线粒体、突触损伤较轻。②免疫组化染色:缺血+后适应(Post-con)组与缺血再灌注(Ischemic)组相比,海马区突触素免疫活性增高,免疫产物的颗粒较大、密集、染色深;细胞排列较规则,细胞肿胀较轻。③Westernblot:缺血+后适应(Post-con)组与缺血再灌注(Ischemic)组相比,海马区突触素蛋白表达增高,三组比较差异有统计学意义(P<0.05)。结论缺血后适应可以减轻神经元的再灌注损伤,并通过调节神经元的可塑性,促进受损神经功能的恢复。
     摘要现代心肺复苏技术的实施可以增加患者的自主循环恢复率并提高患者的入院率,但是患者的生存出院率却仍然不是很理想,主要原因为心跳骤停后的脑损伤。后适应现象的发现为我们打开了一扇通往内源性的神经保护之门。后适应的保护机制包括:在缺血再灌注时,减轻线粒体的钙超载和氧化应激、激活再灌注损伤救援激酶通路、预防线粒体通透性转运孔的开放。后适应的潜在临床应用优势在于能用于意外的或者是难以预测的缺血情况下的复灌。前期的实验研究显示后适应可以用于减轻突发性的冠状动脉阻塞、急性心梗以及中风后的缺血再灌注损伤。由于心跳骤停复苏时心脏和脑要面临与前述的疾病相似的病理生理过程,我们推测后适应原理同样可以用于心肺复苏的临床实践中来减轻心肺复苏后的脑损伤。我们提出了一种新的心肺复苏程序:后适应心脑复苏法。这种方法步骤为:先进行胸部按压18秒,停止按压10秒(进行通气),共3个循环。然后进行持续的胸部按压直到患者恢复自主循环。后适应心肺复苏法不仅可以为重要器官的提供血流,而且可以激活内源性的保护机制来减轻心跳骤停后的脑损伤。我们认为这个方法作为心肺复苏时脑保护的干预措施,能简单、安全、有效地预防和减轻心跳骤停后的脑损伤,改善心跳骤停的预后。
Objective To construct cardiac hypertrophy model by partially binding thoracic aorta in rats. Methods Thirty male Sprague Dawley(SD) rats were divided into sham surgery (n=10) and operation (n=20) randomly. Operation methods: The suture was snugly tied around the 22-gauge needle and the aorta which was between the origin of the right innominate and left common carotid arteries. After ligation, the needle was quickly removed. Echocardiography、the external appearance and HE staining was performed 10 weeks after the surgery. Results After 10 weeks, the volume of heart in operated rats is increased than sham-operation groups. Compared with the sham-operated, M-mode demonstrated that the operated group's left ventricle (LV) cavity and the posterior wall thickness increased markedly and its fractional shortening decreased. Compared with sham-operation groups, the operated rats showed that the interventricular septum thickness (2.527+0.269 vs.1.943+0.1, P<0.01),and the posterior wall thickness (2.492+0.242 vs.1.902+0.076, P<0.01) increased; the fractional shortening diminished(49+7.681 vs.55.7+9.828,P>0.05); the cardiac hypertrophy index increased (3.196+0.11 vs.1.785+0.099,P<0.01); the changes of LV internal diastolic dimension (LVIDd)、LV internal systolic dimension (LVIDs)and ejection fraction was not obvious. Conclusion Thoracic aorta constriction (TAC) induced rat cardiac hypertrophy will provide a reproducible model to study cardiac hypertrophy、myocardial dysfunction and myocardial remodeling.
     Objective To determinate the effects of Sodium TanshinoneⅡA sulfonate (STS) on cardiomyocyte hypertrophy and explored the relative effects of STS on mitogen-activated protein kinase signal transduction system in rats with cardiomyocyte hypertrophy through constricting the thoracic aorta. Methods To make the models of cardiomyocyte hypertrophy in vivo, the thoracic aorta was partially tied between the right innominate and the left common carotid arteries. The rat randomly divided in 6 groups (n= 8/group) as follows:1) sham,2) transverse aortic constriction (TAC),3) TAC+Low-dose Tan (TAC+LT) (5mg/kg),4) TAC+ medium-dose Tan (TAC+MT) (10mg/kg),5)TAC+high-dose Tan (TAC+HT) (20mg/kg) and 6)TAC+Val (10mg/kg). After 8 week medication, Echocardiography was performed to measure the changes of hypertrophy and heart function, and heart samples were cut into transverse sections and stained with hematoxylin and eosin (H&E). The MAPKs protein expression in the cardiomyocytes was measured by western blot analysis. Results The heart weight index (HWI), left ventricular mass index (LVMI) and cross-sectional diameter of cardiomyocytes (CD), left ventricular posterior wall thickness (LVWT), interventricular septal thickness (IVS) were significantly increased than sham group as soon as 2 months post-TAC. And the relative parameters of STS groups and Val group were alleviated than the TAC group. Western blot analysis shows the p-ERK and p-p38 expression was significantly decreased in the TAC group compared with the sham group (p<0.01). The p-ERK expression was significantly decreased in the STS groups and Val group compared with the TAC group (p<0.05). The TAC+HT group, TAC+MT group and Val group had significantly higher p-p38 expression than the TAC group (p<0.05). Conclusion TanshinoneⅡA could regulate the expression of protein in MAPK pathway to exert it inhibition of hypertrophy of cardiomyocyte.
     Objective:To study the effects of postconditioning on synaptic ultrastructure and synaptophysin expression in global cerebral ischemia reperfusion. Methods:To make the models of global cerebral ischemia in vivo,;the vertebral artery of rat were occluded and common their carotid arteries were transitorily cliped. The rats randomly divided in 3 groups (n= 8/group) as follows:1) control(C),2) ischemia reperfusion (I),3) ischemia+postconditioning (Post-con). Control group: beparated carotid artery and didnot blocked blood flow. Ischemia reperfusion group: bilateral carotid artery was occluded 10min then reperfusion. Ischemia+ postconditioning group:bilateral carotid artery was occluded 10min then executed postconditioning protocol (3 cycles of 15s reperfusion/15s clipping) before reperfusion. Fourty eight hours later the rat in 3 groups were killed and their brain tissues were harvested and made into slices, stained with immunohistochemical techniques, photographed under the transmission electron microscope and measured synaptophysin protein expression by western blot analysis. Results:①it was observed in the ischemia+postconditioning (Post-con) group from electric mirror that there were a relatively large number of synaptic neuropil, and the damages of mitochondria and synaptic were minor, compared with the ischemia-reperfusion (Ischemic) group,②ischemia+postconditioning (Post-con) group compared with the ischemia-reperfusion (Ischemic) group:The immunoreactivity of synaptophysin in the hippocampus increased significantly; the immune products were larger particles, dense and deeply stained; cells arranged in regular and cell swellings were less.③Western blot analysis show the synaptophysin expression was significantly increased in the Post-con group compared with the ischemic group (P<0.05). Conclusion:Postconditioning reduced reperfusion injury in neurons, regulated neuronal plasticity and promoted the recovery of nerve function.
     Although current cardiopulmonary resuscitation (CPR) performance can increase the rates of restoration of spontaneous circulation (ROSC) and survival to hospital admission, the discharge rates of patients remain disappointing. The high mortality rate is attributed to post-cardiac arrest brain injury. The discovery of the postconditioning phenomenon opens a door to endogenous neuroprotection. The protection mechanisms of postconditioning include attenuating mitochondrial calcium overload and reducing oxidative stress, recruiting the reperfusion injury salvage kinase (RISK) pathway, and preventing from the mitochondrial permeability transition pore (mPTP) opening at the time of reperfusion. An advantage of postconditioning lies in the potentially clinical application in the unexpected ischemic situation. Prior laboratory researches indicate that postconditioning may lessen the reperfusion/ischemia-induced injury in unexpected coronary occlusion, acute myocardial infarction and stroke. Because cardiac arrest, stroke and acute myocardial infarction have a similar pathophysiological process, we hypothesize that postconditioning could be used in the clinical practice of CPR to treat patients with post-cardiac arrest brain injury. We propose a novel protocol of 'Postconditioning cardiocerebral resuscitation (Post-CCR)'. The Post-CCR includes applying three cycles of 18 seconds chest compression and 10 seconds interruption for ventilation first, and then executing chest compression only CPR until the patients return spontaneous circulation. Post-CCR can not only provide vital blood flow to the heart and brain but also activate endogenous protective mechanism to lessen post-cardiac arrest brain injury. We consider that it would become a feasible, safe and efficient cerebralprotective intervention in the prevention and alleviation of post-cardiac arrest brain injury, which would also improve the outcome after cardiac arrest.
引文
[1]顾东风,黄广勇,何江,等.中国心力衰竭流行病学调查及其患病率[J].中华心血管病杂志,2003,31(1):3-6
    [2]Opie LH, Commerford PJ, Gersh BJ, et al. Controversies in ventricular remodeling[J]. Lancet,2006,367 (9507):356-367
    [3]Hill JA, Olson EN. Cardiac plasticity[J]. N Engl J Med,2008,358 (13): 1370-1380
    [4]Berry JM, Naseem RH, Beverly A, et al. Models of cardiac hypertrophy and transition to heart failure[J]. Drug Discovery Today:Disease Models(2007), doi:10.1016/j.ddmod.2007.06.003
    [5]倪量,王硕仁,赵明镜,等.腹主动脉部分缩窄大鼠模型的心肌肥厚特点[J].中国比较医学杂志,2007,17(4):214-218.
    [6]徐峰,许元鸿,邸箐,等.大鼠升主动脉缩窄术及其意义[J].中华老年心血管病杂志,2001,3(1):68-69
    1. SELVETELLA G, HIRSCH E, NOTTE A et al. Adaptive and maladaptive hypertrophic pathways:points of convergence and divergence [J]. Cardiovasc Res, 2004,63 (3):373-380
    2. ROCKMAN H A, ROSS R S, HARRIS A N et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy [J]. Proc Natl Acad Sci,1991, 88(18):8277-8281
    3. ZHOU G, JIANG W, ZHAO Y et al. Sodium tanshinone ⅡA sulfonate mediates electron transfer reaction in rat heart mitochondria [J]. Biochem Pharmacol,2003, 65(1):51-57.
    4. YANG R, LIU A, MA X et al. Sodium tanshinone ⅡA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation [J]. J Cardiovasc Pharmacol,2008,51(4):396-401.
    5. CHEN T H, HSU Y T, CHEN C H et al. Tanshinone ⅡA from Salvia miltiorrhiza induces heme oxygenase-1 expression and inhibits lipopolysaccharide-induced nitric oxide expression in RAW 264.7 cells [J]. Mitochondrion,2007,7 (2):101-105.
    6. Zhang H S, Wang S Q. Nrf2 is involved in the effect of tanshinone ⅡA on intracellular redox status in human aortic smooth muscle cells. Biochem Pharmacol,2007,73(9):1358-1366.
    7.李永胜,王照华,王进,等.丹参酮 ⅡA对压力超负荷大鼠肥厚心肌一氧化氮合酶基因表达及细胞内游离钙离子浓度的影响[J].华中科技大学学报(医学版),2008,37(3):286-289.
    8. Wang H, Gao X, Zhang B. Tanshinone:An inhibitor of proliferation of vascular smooth muscle cells. J. Ethnopharmacol,2005,99(1):93-98.
    9. Tang F, Wu X, Wang T et al. Tanshinone ⅡA attenuates atherosclerotic calcification in rat model by inhibition of oxidative stress. Vascular Pharmacology,2007,46(6):427-438.
    10. Fang Z Y, Lin R, Yuan B X et al. Tanshinone ⅡA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J. Ethnopharmacol.2008,115(2):217-222.
    11. Lam BY, Lo AC, Sun X, et al. Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine.2003,10(4):286-291,
    12. TAKAHASHI K, OUYANG X, KOMATSU K et al. Sodium tanshinone ⅡA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells [J]. Biochem Pharmacol,2002,64(4):745-750.
    13. YANG L, ZOU X, LIANG Q et al. Sodium tanshinone ⅡA sulfonate depresses angiotensin Ⅱ-induced cardiomyocyte hypertrophy through MEK/ERK pathway [J]. Exp Mol Med,2007,39(1):65-73.
    14.冯俊,江凤林,梁黔生,等.丹参酮ⅡA磺酸钠对AngⅡ诱导的心肌细胞肥 大反应中磷酸化MAPK的作用[J].中国急救医学,2006,26(12):917-919.
    15. Wang Y. Mitogen-activated protein kinases in heart development and diseases. Circulation.2007,116(12):1413-1423.
    1 Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285:H579-88.
    2 Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanaesthetized rat. Stroke.1979; 10:267-272.
    3 陈燕.神经元的突触可塑性与学习和记忆[J].2008,35(6):610-619
    4 Sarnat HB, Born DE. Synaptophysin immunocytochemistrywith thermal intensific-ation:a marker of terminal axonalmaturation in the human fetal nervous system. Brain Dev,1999,21:41-50.
    5 Yellon DM, Opie LH. Postconditioning for protection of the infarcting heart [J].Lancet.2006 Feb 11;367(9509):456-8
    6 Zhao H,Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy: ischemic posteonditioning reduces infarct size after focal ischemia in rats[J]. J Cereb Blood Flow Metab,2006,26(9):1 114-1121.
    [1]Laver S, Farrow C, Turner D, et al. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 2004; 30:2126-28.
    [2]Schurr A, Reid KH, Tseng MT, et al. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 1986; 374:244-48.
    [3]Kitagawa K, Matsumoto M, Kuwabara K, et al.'Ischemic tolerance' phenomenon detected in various brain regions. Brain Res 1991; 561:203-11.
    [4]Ulrich Dirnagl, Andreas Meisel. Endogenous neuroprotection:Mitochondria as gateways to cerebral preconditioning? Neuropharmacology 2008; 55:334-44.
    [5]Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285:H579-88.
    [6]Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation 2005; 112:2143-48.
    [7]Bohm K, Rosenqvist M, Herlitz J, et,al. Survival is similar after standard treatment and chest compression only in out-of-hospital bystander cardiopulmonary resuscitation. Circulation 2007; 116:2908-12.
    [8]SOS-KANTO study group. Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO):an observational study. Lancet 2007; 369: 920-26.
    [9]Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Circulation 2008; 118:2452-83.
    [10]Hausenloy DJ, Wynne AM. Preconditioning and postconditioning:United at reperfusion. Pharmacology& Therapeutics 2007; 116:173-91
    [11]Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction:a pilot study. Catheter Cardiovas Interv 2005; 65:361-67.
    [12]Jing-ye Wang, Jia Shen, Qin Gao, et al. Ischemic Postconditioning Protects Against Global Cerebral Ischemia/Reperfusion-Induced Injury in Rats. Stroke 2008; 39:983-90
    [13]Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 2006; 26:1114-21
    [14]Higdon TA, Heidenreich JW, Kern KB, et, al. Single rescuer cardiopulmonary resuscitation:can anyone perform to the guidelines 2000 recommendations? Resuscitation 2006; 71:34-9.
    [15]Iwami T, Kawamura T, Hiraide A, et, al. Effectiveness of bystander-initiated cardiac-only resuscitation for patients with out-of-hospital cardiac arrest. Circulation 2007; 116:2900-07.
    1. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome [J]. Science,2002,298:1912-1934.
    2. Johnson SA, Hunter T. Kinomics:methods for deciphering the kinome. Nat Methods [J].2005,2:17-25.
    3. Caenepeel S, Charydczak G, Sudarsanam S, et al. The mouse kinome:discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci [J]. 2004,101:11707-11712.
    4. Lee RE, Megeney LA. The yeast kinome displays scale free topology with functional hub clusters [J]. BMC Bioinformatics.2005,6:271.
    5. Milanesi L, Petrillo M, Sepe L, et al. Systematic analysis of human kinase genes:a large number of genes and alternative splicing events result in functional and structural diversity [J]. BMC Bioinformatics.2005,6(suppl 4):S20.
    6. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases [J]. Science.2002,298:1911-1912.
    7. Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases:conclusions from knock-in and knock-out mice [J]. Transgenic Res. 2007,16:281-314.
    8. Coulombe P, Meloche S. Atypical mitogen-activated protein kinases:structure, regulation and functions. Biochim Biophys Acta [J].2007,1773:3766-3787.
    9. Rubinfeld H, Seger R. The ERK cascade:a prototype of MAPK signaling [J]. Mol Biotechnol.2005,31:151-174.
    10. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiol Rev. 2001,81:807-869.
    11. Kerkela R, Force T. p38 mitogen-activated protein kinase:a future target for heart failure therapy [J]? J Am Coll Cardiol.2006,48:556-558.
    12. Sugden PH, Clerk A. Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes [J]. Antioxid Redox Signal.2006,8:2111-2124.
    13. Muslin AJ. Role of Raf proteins in cardiac hypertrophy and cardiomyocyte survival [J]. Trends Cardiovasc Med.2005,15:225-229.
    14. Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis [J]. J Mol Cell Cardiol.2005,38:47-62.
    15. Petrich BG, Wang Y. Stress-activated MAP kinases in cardiac remodeling and heart failure:new insights from transgenic studies [J]. Trends Cardiovasc Med. 2004,14:50-55.
    16. Clerk A, Sugden PH. Signaling through the extracellular signalregulated kinase 1/2 cascade in cardiac myocytes [J]. Biochem Cell Biol.2004,82:603-609.
    17. Clerk A, Kemp TJ, Harrison JG, et al. Integration of protein kinase signaling pathways in cardiac myocytes:signaling to and from the extracellular signal-regulated kinases [J]. Adv Enzyme Regul.2004,44:233-248.
    18. Sugden PH. Signalling pathways in cardiac myocyte hypertrophy [J]. Ann Med. 2001,33:611-622.
    19. Bueno OF, Molkentin JD. Involvement of extracellular signal regulated kinases 1/2 in cardiac hypertrophy and cell death [J]. Circ Res.2002,91:776-781.
    20. Izzo JL JR, Grad man A H. Mechanisms and managemeut of hypertensive heart disease:from left ventricular hypertrophy to heart failure[J]. Med Clin North Am. 2004,88(5):1257-1271.
    21. Ravingerova T, Barancik M, Strniskova M. Mitogen-activated protein kinases:a new therapeutic target incardiac pathology[J]. Mol Cell Biochem.2003, 247(1-2):127-138.
    22. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and βγ subunits of heterotrimericG proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells [J]. J Biol Chem.1994,269:7851-7854.
    23. Laroche-Joubert N, Marsy S, Michelet S, et al.Protein kinase A-independent activation of ERK and H+ K+-ATPase by cAMP in native kidney cells:role of EpacI [J]. J Biol Chem.2002,277:18598-18604.
    24. Wan Y, Huang XY. Analysis of the Gs/mitogenactivated protein kinase pathway in mutant S49 cells [J]. J Biol Chem.1998,273:14533-14537.
    25. Wang Z, Dillon TJ, Pokala V, et al. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation [J]. Mol Cell Biol.2006,26:2130-2145.
    26. Schmitt JM, Stork PJ. β2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rapl and the serine/threonine kinase B-Raf [J]. J Biol Chem.2000,275:25342-25350.
    27. Schmitt JM, Stork PJ. Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1 [J]. Mol Cell Biol.2001,21:3671-3683.
    28. Schmitt JM, Stork PJ. PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1 [J]. Mol Cell.2002,9:85-94.
    29. Camps M, Carozzi A, Schnabel P, et al. Isozyme-selective stimulation of phospholipase C-β2 by G protein bg-subunits [J]. Nature.1992,360:684-686.
    30. Della Rocca GJ, van Biesen T, Daaka Y, et al. Ras-dependent mitogenactivated protein kinase activation by G protein-coupled receptors. Convergence of Gi-and Gq-mediated pathwayson calcium/calmodulin, Pyk2, and Src kinase [J]. J Biol Chem.1997,272:19125-19132.
    31. DikicI, Tokiwa G, Lev S, et al. A role for Pyk2 and Srcin linking G-protein-coupled receptors with MAP kinase activation [J]. Nature.1996,383:547-550.
    32. Schonwasser DC, Marais RM, Marshall CJ, et al. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes [J]. Mol Cell Biol. 1998,18:790-798.
    33. Zhong M, Yang M, Sanborn BM. Extracellular signalregulated kinase 1/2 activation by myometrial oxytocin receptor involves Gαq Gβγ and epidermal growth factor receptor tyrosine kinase activation [J]. Endocrinology.2003, 144:2947-2956.
    34. Blaukat A, Barac A, Cross MJ, et al. G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Gaq and Gai signals [J]. Mol Cell Biol.2000,20:6837-6848.
    35. Y. Zhang, C. Dong. Regulatory mechanisms of mitogen-activated kinase signaling [J]. Cell Mol. Life Sci.2007,64:2771-2789
    36. Diwan A, Dorn GW 2nd. Decompensation of cardiac hypertrophy:cellular mechanisms and novel therapeutic targets [J]. Physiology (Bethesda).2007, 22:56-64.
    37. Selvetella G, Hirsch E, Notte A, et al. Adaptive and maladaptive hypertrophic pathways:points of convergence and divergence [J]. Cardiovasc Res.2004, 63:373-380.
    38. Force T, Hajjar R, Del Monte F, et al. Signaling pathways mediating the response to hypertrophic stress in the heart [J]. Gene Expr.1999,7:337-348.
    39. Kai H, Muraishi A, Sugiu Y, et al. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy [J]. Circ Res.1998,83:594-601.
    40. Takeishi Y, Huang Q, Abe J, et al. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy [J]. Cardiovasc Res.2002,53:131-137.
    41. Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury [J]. Cardiovasc Res.2004,61:427-436.
    42. Huebert RC, Li Q, Adhikari N, et al. Identification and regulation of Sproutyl, a negative inhibitor of the ERK cascade, in the human heart [J]. Physiol Genomics. 2004,18:284-289.
    43. Kennedy RA, Kemp TJ, Sugden PH, et al. Using U0126 to dissect the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade in the regulation of gene expression by endothelin-1 in cardiac myocytes [J]. J Mol Cell Cardiol.2006, 41:236-247.
    44. Clerk A, Aggeli IK, Stathopoulou K, et al. Peptide growth factors signal differentially through protein kinase C to extracellular signalregulated kinases in neonatal cardiomyocytes [J]. Cell Signal.2006,18:225-235.
    45. Dorn GW 2nd, Brown JH. Gq signaling in cardiac adaptation and maladaptation [J]. Trends Cardiovasc Med.1999,9:26-34.
    46. Xiao L, Pimental DR, Amin JK, et al. MEK1/2-ERK1/2 mediates alphal-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes [J] J Mol Cell Cardiol.2001,33:779-787.
    47. Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy [J]. Cardiovasc Res.2004,63:391-402.
    48. Salazar NC, Chen J, Rockman HA. Cardiac GPCRs:GPCR signaling in healthy and failing hearts [J]. Biochim Biophys Acta.2007,1768:1006-1018.
    49. Kuster GM, Pimentel DR, Adachi T,et al. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras [J]. Circulation. 2005,111:1192-1198.
    50. Yamamoto M, Yang G, Hong C, et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy [J]. J Clin Invest.2003, 112:1395-1406.
    51.Bueno OF, De Windt LJ, Tymitz KM, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J [J].2000,19:6341-6350.
    52. Zheng M, Dilly K, Dos Santos Cruz J, et al. Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart [J]. Am J Physiol Heart Circ Physiol.2004,286:H424-H433.
    53. Sohal DS, Nghiem M, Crackower MA, et al. Temporally regulated and tissuespecific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein [J]. Circ Res.2001,89:20-25.
    54. Petrich BG, Liao P, Wang Y. Using a gene-switch transgenic approach to dissect distinct roles of MAP kinases in heart failure [J]. Cold Spring Harb Symp Quant Biol.2002,67:429-437.
    55. Sanbe A, Gulick J, Hanks MC,et al. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter [J]. Circ Res.2003, 92(6):609-616.
    56. Harris IS, Zhang S, Treskov I, et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload [J]. Circulation.2004,110:718-723.
    57. Yamaguchi O, Watanabe T, Nishida K, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest [J].2004, 114:937-943.
    58. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells [J]. Science.1994,265:808-811.
    59. Eyers, PA, Van, DI, Quinlan, RA, et al. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580 [J]. FEBS Lett.1999,451(2),191-196.
    60. Allen, M, Svensson, L, Roach, M, et al. Deficiency of the stress kinase p38(alpha) results in embryonic lethality:characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells [J]. J Exp Med.2000,191(5), 859-870.
    61. Kim, HP, Wang, X, Zhang, J, et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide:involvement of p38{beta} MAPK and heat shock factor-1 [J]. J Immunol.2005,175(4),2622-2629.
    62. Ono K, Han J. The p38 signal transduction pathway: activation and function [J]. Cell Signal.2000,12:1-13.
    63. Ge B, Gram H, Di Padova F, et al. MAPKK-independent activation of p38 alpha mediated by TAB1-dependent autophosphorylation of p38alpha [J]. Science. 2002;295:1291-1294.
    64. Tanno M, Bassi R, Gorog DA, et al. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation:evidence for MKKindependent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia [J]. Circ Res.2003,93:254-261.
    65. Salvador JM, Mittelstadt PR, Guszczynski T, et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases [J]. Nat Immunol. 2005,6:390-395.
    66. Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy:dichotomy between cultured myocytes and animal models [J]. J Mol Cell Cardiol.2003,35:1385-1394.
    67. Engel FB. Cardiomyocyte proliferation:a platform for mammalian cardiac repair [J]. Cell Cycle.2005,4:1360-1363.
    68. Clerk A, Sugden PH. Inflame my heart (by p38-MAPK) [J]. Circ Res.2006, 99:455-458.
    69. Vahebi S, Solaro RJ. Cardiac sarcomeric function, small G-protein signaling, and heart failure [J]. Panminerva Med.2005,47:133-142.
    70. Zechner D, Thuerauf DJ, Hanford DJ, et al. A role for the p38 mi togen-activated protein kinase pathway in myocardial cell growth, sareomenc organization, and cardiacspecific gene expression [J]. J Cell Biol.1997,139:115-127.
    71. Liang QR, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy [J]. J Mol Cell Cardio.2003,35(12):1385-1394.
    72. Liao P, Georgakopoulos D, Kovacs A, et al. The in vivo role of p38 MAP kinases in cardiac remodehng an d restrictive eardiomyopathy. Proe Nail Acad Sci [J]. 2001,98(21):12283-12288.
    73. Braz JC, Bueno OF, Liang Q, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling [J]. J Clin Invest.2003,111:1475-1486.
    74. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs [J]. Cardiovasc Res.2004,63:467-475.
    75. Hirotani S, Otsu K, Nishida K, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy [J]. Circulation.2002,105(4):509.
    76. Han J, Molkentin JD. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology [J]. Trends Cardiovasc Med.2000; 10:19-22.
    77. Mitchell S, Ota A, Foster W, et al. Distinct gene expression profiles in adult mouse heart following targeted MAP kinase activation [J]. Physiol Genomics. 2006,25:50-59.
    78. Tenhunen O, Rysa J, Ilves M, et al. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart [J]. Circ Res.2006,99:485-493.
    79. Li M, Georgakopoulos D, Lu G, et al. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart [J]. Circulation.2005,111:2494-2502.
    80. Court NW, Remedios CG, Cordell, J, et al. Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3) [J]. J Mol Cell Cardiol.2002.34(4),413-426.
    81. Parker CG, Hunt J, Diener K, et al. Identification of stathmin as a novel substrate for p38 delta [J]. Biochem Biophys Res Commun.1998,249(3),791-796.
    82. Davis RJ. Signal transduction by the JNK group of MAP kinases [J]. Cell. 2000,103:239-252.
    83. Whitmarsh AJ. The JIP family of MAPK scaffold proteins [J]. Biochem Soc Trans.2006,34(pt 5):828-832.
    84. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, et al. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion [J]. Circ Res.1996,79:162-173.
    85. Ramirez MT, Sah VP, Zhao XL, et al. The MEKK-JNK pathway is stimulated by alphal-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem.1997,272:14057-14061.
    86. Wang Y, Su B, Sah VP, et al. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells [J]. J Biol Chem.1998,273:5423-5426.
    87. Sadoshima J, Montagne O, Wang Q, et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy [J]. J Clin Invest.2002,110:271-279.
    88. Liang Q, Bueno OF, Wilkins BJ, et al. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling [J]. EMBO J. 2003,22:5079-5089.
    89. Shao Z, Bhattacharya K, Hsich E, et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo [J]. Circ Res.2006,98:111-118.
    [1]Murry, CE, Jennings, RB, Reimer, KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74:1124-1136.
    [2]Zhao ZQ,Corvera JS, Halkos ME. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol,2003,285 (2):579-588.
    [3]Zhao ZQ, Vinten JJ. Postconditioning:reduction of reperfusion-induced injury. Cardiovasc Res,2006,70 (2):200-211.
    [4]Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res,2004,62 (1):74-85.
    [5]Rezkalla SH, Kloner RA. Preconditioning in humans. Heart Fail Rev,2007, 12:201-206.
    [6]Serviddio G, Venosa N, Federici A, et al. Brief hypoxia before normoxic reperfusion (postconditioning) protects the heart against ischemia-reperfusion injury by preventing mitochondria peroxide production and glutathione depletion. FASEB J, 2005,19 (3):354-361.
    [7]Penna C, Rastaldo R, Mancardi D, et al. Postconditioning induced cardioprotection requires signaling through a redox-sensitive mechanism mitochondrial ATP sensitive K+ channel and protein kinase C activation [J]. Bas Res Cardiol,2006,101(2):180-189.
    [8]Pasdois, P, Labrousse, L, Beauvoit, B, et al. (2006). Implication of mitochondrial ATP-sensitive potassium channel during ischemic postconditioning in pigs. Circulation 114(18),Ⅱ-243.
    [9]Krenz M, Oldenburg O, Wimpee H, et al. Opening of ATP-sensitive potassium channels causes generation of free radicals in
    vascular smooth muscle cells[J]. Basic Res Cardiol,2002,97 (5):365-373.
    [10]Sevastos J, Kennedy SE, Davis DR, et al. Tissue factor of deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood, 2007,109 (2):577-583.
    [11]L.M. Schwartz, C.J. Lagranha, Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs, Am. J. Physiol, Heart Circ. Physiol.290 (2006) H1011-H1018.
    [12]E.K. Iliodromitis, M. Georgiadis, M.V. Cohen, et al, Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs, Basic Res. Cardiol.101 (2006) 502-507.
    [13]M.E. Halkos, F. Kerendi, J.S. Corvera, et al, Myocardial protection with postconditioning is not enhanced by ischemic preconditioning, Ann. Thorac. Surg.78 (2004) 961-969.
    [14]C. Penna, R. Rastaldo, D. Mancardi, et al, Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation, Basic Res. Cardiol.101 (2006) 180-189.
    [15]C. Penna, F. Tullio, A. Merlino, F. et al, Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender, Basic Res. Cardiol.104(2009):390-402
    [16]C. Penna, D. Mancardi, R. Rastaldo, et al, Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling, Cardiovasc. Res.2007,75:168-177.
    [17]C. Penna, D. Mancardi, F. Tullio, P. Pagliaro, Intermittent adenosine at the beginning of reperfusion does not trigger cardioprotection, J. Surg. Res. 2008,153:231-8
    [18]V. Sivaraman, N.R. Mudalgiri, C. Di Salvo, et al. Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res. Cardiol. 2007,102:453.
    [19]H.Y. Sun, N.P.Wang, F. Kerendi, et al, Hypoxic postconditioning reduces cardiomyocyte loss by inhibitin ROS generation and intracellular Ca2+ overload, Am. J. Physiol, Heart Circ. Physiol.2005,288:H1900-H1908.
    [20]X.M. Yang, S. Philipp, J.M. Downey, et al, Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation, Basic Res.Cardiol.100 (2005) 57.
    [21]Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res.2005,67 (1):124-133.
    [22]Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning:brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Bas Res Cardiol,2005,100 (5):404-412.
    [23]Yang XM, Philipp S, Downey JM, et al. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Bas Res Cardiol,2005,100 (1):57-63.
    [24]Argaud, L, Gateau-Roesch, O, Raisky, O, et al. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005. 111:194-197.
    [25]DJ. Hausenloy, DM. Yellon. Preconditioning and postconditioning:United at reperfusion Pharmacology& Therapeutics.2007,116:173-191
    [26]Gomez L, Thibault H, Gharib A, et al. Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol.2007, 293:H1654-H1661
    [27]Lim SY, Davidson SM, Hausenloy DJ, et al. Preconditioning and postconditioning:the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 2007,75:530-535
    [28]Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med.2008,359:473-481
    [29]Iliodromitis EK, Georgiadis M, Cohen MV, et al. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol.2006,101:502-507
    [30]Chiari PC, Bienengraeber MW, Pagel PS, et al. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction:evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology.2005,102:102-109
    [31]Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion p rotect rabbit hearts by targeting cell signaling pathways. Am Coll Cardiol.2004,44:1103-1110.
    [32]HalkosME, Kerendi F, Corvera JS, et al. Myocardial p rotection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg, 2004,78:961-969.
    [33]Darling C, Maynard M, Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit heart. Physiol (Heart Circ Physiol). 2005,289:1618-1626.
    [34]Patrick S, Gilles R, Christophe P, et al. Postconditioning the human heart. Circulation,2005,112:2077-2078.
    [35]Vinten-Johansen J, Yellon DM, Opie LH. Postconditioning. A simple, clinically applicable procedure to improve revascularization in acute myocardial infarction. Circulation.2005,112:2085-2088
    [36]Gross ER, Gross GJ. Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res.2006,70:212-221.
    [37]Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury:targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res.2004,61:448-460.
    [38]Lefer AM, Lefer DJ. Pharmacology of the endothelium in ischemia- reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol.1993,33:71-90.
    [39]Bolli R, Becker L, Gross G, et al. Myocardial protection at a crossroads:the need for translation into clinical therapy. Circ Res.2004,95:125-134.
    [40]Krolikowski JG, Bienengraeber M, Kersten JR. Morphine enhances isoflurane-induced postconditioning against myocardial infarction:the role of phosphatidylinositol-3-kinase and op ioid recep tors in rabbits. Anesth Analg.2005, 101:942-949.
    [41]Olafsson B, Forman MB, Puett DW, et al. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine:importance of the endothelium and the no-reflow phenomenon. Circulation.1987,76:1135-1145.
    [42]Velasco CE, Turner M, Cobb MA, et al. Myocardial reperfusion injury in the canine model after 40 minutes of ischemia:effect of intracoronary adenosine. Am Heart J.1991,122:1561-1570.
    [43]Pitarys CJ, Virmani R, Vildibill HD et al.. Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation.1991,83:237-247.
    [44]Todd JC, Zhao Z-Q, Williams MW, et al. Intravascular adenosine at reperfusion reduces infarct size and neutrophil adherence. Ann Thorac Surg.1996,62: 1364-1372.
    [45]Zhao Z-Q, Nakamura M, Wang N-P, et al. Administration of adenosine during reperfusion reduces injury of vascular endothelium and death of myocytes. Cor Art Dis.1999,10:617-628.
    [46]Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol.2005,100:404-412.
    [47]Andreka G, Vertesaljai M, Szantho G, et al.Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart. 2007,93:749-752.
    [48]Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction:a pilot study. Catheter Cardiovasc Interv.2005,65:361-367.
    [49]Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation.2005,112:2143-2148.
    [50]Ma XJ, Zhang XH, Li CM, et al. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand Cardiovasc J.2006,40:327-333.
    [51]Yang XC, Liu Y, Wang LF, et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol.2007,19:424-430.
    [52]Thibault H, Piot C, Ovize M. Postconditioning in man. Heart Fail Rev.2007, 12:245-248.
    [53]Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction:a benefit of postconditioning. Catheter Cardiovasc Interv.2008,72:212-220.
    [54]Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008,359:473-481.
    [55]Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res.2003,60:617-625.
    [56]Luo W, Li B, Lin G, Huang R. Postconditioning in cardiac surgery for tetralogy of Fallot. J Thorac Cardiovasc Surg.2007,133:1373-1374.
    [57]Djalali AG, Sadovnikoff N, Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology.2005,102(3):699-700
    [58]Zhen-Xiao Jin, Jing-Jun Zhou, Mei Xin, et al. Postconditioning the Human Heart with Adenosine in Heart Valve Replacement Surgery. Ann Thorac Surg.2007, 83:2066-2072
    [59]Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischaemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab.2006,26:1114-1121.
    [60]Danielisova V, Nemethova M, Gottlieb M, et al. The changes in endogenous antioxidant enzyme activity after postconditioning. Cell Mol Neurobiol.2006, 26:1181-1191.
    [61]Yaguang Zhou, Di Chen, Xiao peng Ma, et al. Postconditioning in cardiopulmonary resuscitation:A better protocol for cardiopulmonary resuscita-tion.Medical Hypotheeses.2009,73:321-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700