高纯少壁碳纳米管的功能化及其光电应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米光电子学研究的深入,特殊功能的纳米复合光电材料已逐渐成为研究热点。由于具有大的共轭体系,碳纳米管(CNTs)在高速低耗的光电子器件、光伏电池等方面具有应用前景。通过多种功能化和分析方法研究不同结构碳纳米管的光电性质已经成为实现其应用价值的重要途径。本文以单壁CNTs (SWNT)和少壁CNTs (FWNT)为研究对象,研究其制备和室温纯化,功能化及其各项光电性质,为其进一步在纳米光电器件领域的应用提供依据。
     以液相室温氧化法对气相沉积法(CVD)法制备的FWNT粗产物进行纯化,透射电镜(TEM)显示粗产物在H_2O_2中缓慢氧化1w后可得到产率为10%高纯FWNT。拉曼光谱和热失重分析表明H_2O_2可以选择性地去除产物中的碳杂质,但不会破坏FWNT的管壁和化学结构。选择CNTs和Na2PdCl4的质量比为1:4,得到金属钯纳米粒子(平均粒径为7.3 nm)表面修饰的SWNT和FWNT。与纯CNTs相比,SWNT/Pd NPs和FWNT/Pd NPs薄膜的导电率分别提高了近5倍和2倍。分离结果显示钯纳米粒子更倾向于选择性地附着在金属态SWNT表面。通过N-取代共价键合方法制备3,4,9,10-N,N’-甲基芘-苝酰亚胺(PDI-PY),利用芘和CNTs之间的π-π共轭吸附作用,合成了高效宽谱吸收的PDI-PY/CNTs复合体。通过PDI-PY与SWNT的选择性非共价功能化,能有效地分离金属态和半导体态SWNT。
     通过HNO_3质子化获得具有一系列高导电FWNT透明薄膜,以此为电极制备结构为FWNT/P3HT:PCBM/Al的有机光伏电池。结果显示最佳光伏器件(FWNT薄膜T=70%, Rs=86Ω/□)的光电转换效率为0.61%,与以ITO为电极的相同电池的转换效率(0.68%)相近。所得到的三维网状FWNT薄膜易于导电聚合物的交叉渗入,有利于光伏性能的提高。通过共价键合法制备三种具有不同电子推拉结构的偶氮苯生色团-CNTs复合体(SWNT-AZO-NO_2、FWNT-chain-AZO、MWNT-AZO-NH_2)。偶氮苯与CNTs共轭体系的相互作用导致SWNT-AZO-NO_2和MWNT-AZO-NH_2中的偶氮苯生色团的吸收峰发生了蓝移和红移,在紫外光诱导下,与SWNT-AZO-NO_2和MWNT-AZO-NH_2相比,碳纳米管和偶氮苯之间的长烷基链导致FWNT-chain-AZO呈现出快速敏感的光响应特性,偏振光初步结果显示偶氮苯基团的光致取向作用使MWNT-AZO-NH_2薄膜呈现各向异性,碳纳米管在与入射偏振光平行的方向上有序程度提高并发生定向排列,这一结果为设计具有快速敏感的光响应的偶氮苯-CNTs各向异性薄膜提供了重要的实验基础。
The development of nano-optoelectronic strongly relies on the discovery and exploration of new functional opto-electrical nanocomposites as a vital component of active layer. Since the discovery, carbon nanotubes (CNTs) were widely regarded as an ideal candidate to the building block of a series of high-response and low-cost opto-electronics such as optical switch, photodetecotor and photovoltaic devices due to favorable electron transport along with one-dimension tube-structure arising from highπ-conjugated system. Therefore, the researches on the opto-electrical properties of functional CNTs are fundamentally significant to actualize the applicable potential. In this thesis, we systematically focused on a profitable route from materials to application, and that is the synthesis, purification, functionalization and photoconversion devices based on single-walled carbon nanotubes (SWNT) and few-walled carbon nanotubes (FWNT). Results illustrated the relationship between opto-electical properties and devices, which are experimentally and theoretically important to potential applications.
     Highly purified FWNT was processed by room temperature purification in 30 wt % H2O_2 for 1 week with the yield up to 10 %. Raman spectra and TGA characterization indicated that H_2O_2 purification selectively oxidized carbonaceous nano-particles without the damage of the structure of FWNT. A new versatile and simple way of SWNT and FWNT decorated by Palladium nanoparticles (Pd NPs) was presented. Optimal decoration was achieved with a large amount of sphere-shape Pd NPs on the sidewall when weight ratio of CNTs and Na_2PdCl_4 is 1:4. Compared with original CNTs film, the conductivity of SWNT/Pd-NPs and FWNT/Pd-NPs film were enhanced up to 2 fold and 5 fold. Raman spectra showed that Pd NPs tended to be deposited on metallic SWNT. Organic conjugated molecule of N,N’1’-methyl- pyrene-3,4,9,10-perylene diimide (PDI-PY) was synthesized by covalent N-substitution. PDI-PY/SWNT and PDI-PY/FWNT nanocomposites with high and board absorption spectra were prepared byπ-electron stacking. Raman spectra indicated that metallic and semiconducting enriched SWNT were selectively separated due to different solubility in organic solvents after the functionalization.
     Organic photovoltaic devices (OPD) using high conductive transparent few-walled carbon nanotubes (FWNT) electrode was fabricated. Maximum efficiency of OPD up to 0.61 % with the structure of FWNT (transparency, T=70 %, sheet resistance, Rs = 86Ω/□)/ poly(3-hexylthiophene) : [6-6]phenyl-C61-butyric acid methyl ester /Al demonstrated a promising alternative of ITO (0.68 %) with almost identical operation. The performance improvement resulted from the optimal balance between sheet resistance and transparency with three-dimensional network interface between nanotubes and polymers. A series of photoresponsive azobenzene chromophore-CNTs nanocomposites with different push-pull electronic groups (SWNT-AZO-NO_2,FWNT-chain-AZO,MWNT-AZO-NH_2) were synthesized via covalent amide reaction. The electronic interaction between azobenzene moiety and CNTs resulted in the red- and blue-shifts in absorption spectra of SWNT-AZO-NO_2 and MWNT-AZO-NH_2. Compared with SWNT-AZO-NO_2 and MWNT-AZO-NH_2, FWNT-chain-AZO with the alkyl chain between azobenzene and sidewall displayed a faster photoresponse due to weakenedπ-electron stacking and enough free-space for the photoisomerizion azobenzene chromophore. Polarization results preliminarily indicated the anisopic MWNT-AZO-NH_2 film due to the photo-induced alignment of nanotubes in the direction parallel to the electric field vector of polarized light by the photo-orientation of azobenzene chromphore. Results offer a great promise to fast photosensitive AZO-CNTs anisotropic film.
引文
[1] Iijima S. Helical microtubules of graphitic carbon, Nature, 1991, 354: 56~58
    [2] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes, Nature, 1992, 358: 220~222
    [3] Bethune D S, Kiang C H, Devries M S, et al. Nature,1993, 363: 605~607
    [4] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603~605.
    [5] Henning T, Salama F. Carbon in the universe, Science, 1998, 282: 2204~2210.
    [6] Hiura H, Ebbesen T W, Fujita J, et al. Role of sp3 defect structures in graphite and carbon nanotubes, Nature, 1994, 367: 148~151.
    [7]网址: http://cnst.rice.edu/pies.html
    [8] Crespi V H. Relations between global and local topology in multiple nanotube junctions, Phys. Rev. B, 1998, 58: 12671~12761.
    [9] Olk C H, Heremans J P. Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res.,1994, 9: 259~262.
    [10] Dresselhaus M S, Dresselhaus G, Saito R. Carbon-fibers based on C-60 and their symmetry, Phys. Rev. B, 1992, 45: 6234~6242
    [11] Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic, Phys. Rev. Lett., 1992, 68: 631~634
    [12] Dresselhaus M S,Dresselhaus G, Saito R. Physics of carbon nanotubes, Carbon, 1995, 33: 883~891
    [13] White C T, Robertson D H, Mintmire J W. Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B, 1993, 47: 5485~5488
    [14] Robertson D, Brenner D, Mintmire J W. Energetics of nanosacle graphitic tubules, Phys. Rev. B, 1992, 45: 12592~12595
    [15] Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes: Imperial College Press, London, 2003
    [16] Qian C, Qi H, Gao H, et al. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property, J. Nanosci. Nanotechno., 2006, 6: 1346~1349
    [17] Thess A , Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483~487
    [18] Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method, Carbon, 2001, 39: 761~770
    [19] Ci L J, Rao Z L, Zhou Z P, et al. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett., 2002, 359: 63~67
    [20] Ren W C, Li F, Chen J A, et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane, Chem. Phys. Lett., 2002, 359: 196~202
    [21] Li W Z, Wen J G, Sennett M, et al. Clean double-walled carbon nanotubes synthesized by CVD, Chem. Phys. Lett., 2003, 368: 299~306
    [22] Saito R, Matsuo R, Kimura T, et al. Anomalous potential barrier of double-wall carbon nanotube, Chem. Phys. Lett., 2001, 348: 187~193
    [23] Moradian R, Azadi S, Refii-Tabar H. When double-wall carbon nanotubes can become metallic or semiconducting, J. Phy. Conden. Matter., 2007, 19: 176209
    [24] Qi H, Qian C, Liu J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture, Chem. Mater., 2006, 18: 5691~5695
    [25] Qian C, Qi H, Liu J. Effect of tungsten on the purification of few-walled carbon nanotubes synthesized by thermal chemical vapor deposition methods, J. Phys. Chem. C, 2007, 111: 131~133
    [26] Feng Y Y, Zhang H B, Hou Y, et al. Room temperature purification of few-walled carbon nanotubes with high yield, ACS Nano, 2008, 2: 1634~1638
    [27] Sun L F, Xie S S, Liu W, et al. Materials– Creating the narrowest carbon nanotubes, Nature, 2000, 403: 384~384
    [28] Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes, Nature, 1998, 394: 631~632
    [29] Colbert D T, Zhang J, Mcclure S M, et al. Growth and sintering of fullerene nanotubes, Science, 1994, 266: 1218~1222
    [30] Zhang X F, Zhang X B, Vantendeloo G, et al. Carbon nano-tubes– their formation process and observation by electron microscopy, J. Crys. Growth, 1993, 130: 368~382
    [31] Kiang C H, Endo M, Ajayan P M, et al. Size effects in carbon nanotubes, Phys. Rev. Lett., 1998, 81: 1869~1872
    [32] Ajayan P M, Ichihashi T, Iijima S. Distribution of pentagons and shapes in carbon nanotubes and nanoparticles, Chem. Phys. Lett., 1993, 202: 384~388
    [33] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature,1992, 356: 776~778
    [34].Iijima S, Ajayan P M, Ichihashi T. Growth-model for carbon nanotubes, Phys. Rev. Lett., 1992, 69: 3100~3103
    [35] Odom T W, Huang J L, Kim P, et al. Structure and electronic properties of carbon nanotubes, J. Phys. Chem.B, 2000, 104: 2794~2809.
    [36] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors– Graphitic microtubules, Phys. Rev. Lett., 1992, 68: 1579~1581.
    [37] Crespi V H, Cohen M L, Rubio A. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett., 1997, 79: 2093~2096.
    [38] Jorio A, Saito R, Hertel T, et al. Carbon nanotube photophysics, Mrs Bulletin, 2004, 29: 276~280
    [39] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes, Syn. Met., 1999, 103: 2555~2558
    [40] Dresselhaus M S, Dresselhaus G, Jorio A, et al. Single nanotube Raman spectroscopy, Accounts Chem. Res., 2002, 35: 1070~1078.
    [41] Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes, Phys. Rep., 2005, 409: 47~99.
    [42] Yacaman M J, Yoshida M M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 1993, 62: 202~204
    [43] Endo M, Takeuchi K, Kobori K, et al. Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon-Fibers, Carbon, 1995, 33: 873~881
    [44] Dai H J, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 1996, 260: 471~475
    [45] Gruneis A, Saito R, Kimura T, et al. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy, Phys. Rev. B, 2002, 65: 155405
    [46] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge, J. Phys. D -Appl. Phys., 2007, 40: 2388~2393
    [47] Landi B J, Raffaelle R P. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis, J. Nanosci. Nanotech., 2007, 7: 883~890
    [48] Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures, Chem. Phys. Lett., 1996, 262: 161~166
    [49] Chen G Z, Fan X D, Luget A, et al. Electrolytic conversion of graphite to carbon nanotubes in fused salts, J. of Electroanal. Chem., 1998, 446: 1~6
    [50] Hill J P, Jin W S, Kosaka A, et a1. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube, Science, 2004, 304: 1481~1483
    [51] Jiang Y, Wu Y, Zhang S Y, et a1. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature, J. Am. Chem. Soc., 2000, 122: 12383~12384
    [52] Bachilo S M, Balzano L, Herrera J E, et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., 2003, 125: 11186~11187.
    [53] Li Y M, Mann D, Rolandi M, et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method, Nano Lett., 2004, 4: 317~321.
    [54] An L, Fu Q, Lu C G, et al. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices, J. Am. Chem. Soc. 2004, 126: 10520~10521.
    [55] Banerjee S, Wong S S. Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes, J. Am. Chem. Soc., 2004, 126: 2073~2081.
    [56] Chattopadhyay D, Galeska L, Papadimitrakopoulos F. A route for bulk separation of from metallic single-wall carbon nanotubes, J. Am. Chem. Soc., 2003, 125: 3370~3375.
    [57] Chen Z H, Du X, Du M H, et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes, Nano Lett., 2003, 3: 1245~1249
    [58] Kamaras K, Itkis M E, Hu H, et al. Covalent bond formation to a carbon nanotube metal, Science, 2003, 301: 1501~1501.
    [59] Krupke R, Hennrich F, von Lohneysen H, et al. Separation of metallic from semiconducting single-walled carbon nanotubes, Science, 2003, 301: 344~347.
    [60] Balasubramanian K, Sordan R, Burghard M, et al. A selective electrochemical approach to carbon nanotube field-effect transistors, Nano Lett., 2004, 4: 827~830.
    [61] Strano M S, Dyke C A, Usrey M L, et al. Electronic structure control of single-walled carbon nanotube functionalization, Science, 2003, 301: 1519~1522.
    [62] Collins P C, Arnold M. S, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292: 706~709.
    [63] Kim W J, Usrey M L, Strano M S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT, Chem. Mater., 2007, 19: 1571~1576
    [64] Maeda Y, Kimura S, Kanda M, et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes, J. Am. Chem. Soc., 2005, 127: 10287~12790
    [65] Wang W, Fernando K A S, Lin Y, et al. Metallic single-walled carbon nanotubes for conductive nanocomposites, J. Am. Chem. Soc. 2008, 130: 1415~1419
    [66] Yang C M, Park J S, An K H, et al. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids, J. Phys. Chem. B, 2005, 109: 19242~19248
    [67] Wunderlich D, Hauke F, Hirsch A. Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation, J. Mater. Chem., 2008, 18: 1493~1497
    [68] Huang H J, Maruyama R, Noda K, et al. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation, J. Phys. Chem. B, 2006, 110: 7316~7320
    [69] Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groups of multiwall carbon nanotubes, J. Phys. Chem B, 1999, 103: 8116~8121
    [70] Bandow S, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes, Appl. Phys. A-Mater., 1998, 67: 23~27
    [71] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chem. Phys. Lett., 1998, 282: 5~6
    [72] Nepal D, Kurt D S, Geckeler E. A facile and rapid purification method for single-walled carbon nanotubes, Carbon, 2005, 43: 660~662
    [73] Gajewski S, Maneck H E, Knoll U, et al. Purification of single walled carbon nanotubes by thermal gas phase oxidation, Diam. Relat. Mater., 2003, 12: 816~820
    [74] Shi Z J, Lian Y F, Liao F H, et al. Purification of single-wall carbon nanotubes, Solid State Commun.,1999, 112: 35~37
    [75] Park Y S, Choi Y C, Kim K S, et al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing, Carbon, 2001, 39: 655~661
    [76] Smith M R, Hedges S W, LaCount R, et al. Selective oxidation of single-walled carbon nanotubes using carbon dioxide, Carbon, 2003, 41: 1221~1230
    [77] Umek P, Hassanien A, Tokumoto M, et al. Microcrystalline SWNT material, Carbon, 2000, 38: 1723~1727
    [78] Vaccarini L, Goze C, Aznar R, et al. Purification procedure of carbon naotubes, Syn. Met., 1999, 103: 2492~2493
    [79] Hernadi K, Siska A, Thie-Nga L, et al. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes, Solid States Sonics, 2001, 141: 203~209
    [80] Hou P X, Bai S, Yang Q H, et al. Multi-step purification of carbon nanotubes, Carbon, 2002, 40: 81~85
    [81] Peng Y, Liu H W, Effect of oxidation by hydrogen peroxide on the structure of multiwalled carbon nanotubes, Ind. Eng. Res., 2006, 45: 6483~6488
    [82] Chen Y J, Green M L H, Griffin J L, et al. Purification and opening of carbon nanotubes via bromination, Adv. Mater., 1996, 8: 1012~1015
    [83] Yumura M, Ohshima S, Uchida K, et al. Synthesis and purification of multi-walled carbon nanotubes for field emitter applications, Diam. Relat. Mater., 1999, 8: 785~791
    [84] Huang J E, Li X H, Xu J C, et al. Well-dispersed single-walled carbon nanotube/polyaniline composite films, Carbon, 2003, 41: 2731~2736
    [85] Feng W, Bai X D, Liang J, et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, 2003, 41: 1551~1557
    [86] O’Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342: 265~271
    [87] Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-walled carbon naonotubes in water, Nano Lett., 2003, 3: 269~273
    [88] Curran S A, Ajayan P M, Blau W J, et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics, Adv. Mater., 1998, 10: 1091~+
    [89] Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotubes and burbostratic graphite using a functional organic polymer, Adv. Mater., 2000, 12: 213~+
    [90] Simmons T J, Bult J, Hashim D P, et al. Noncocvalent functionalization as a alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites, ACS Nano, 2009, 3: 865~870
    [91] Geng J X, Ko Y K, Youn S C, et al. Synthesis of SWNT rings by noncovalent hybridization of porphyrin and single-walled carbon nanotuebs, J. Phys. Chem. C, 2008, 112: 12264~12271
    [92] Feng W, Li Y, Feng Y, et al. Enhanced photoresponse from the ordered microstructure of naphthalocyanine-carbon nanotube composite film, Nanotechology, 2006, 17: 3274~3279
    [93] Feng W, Fujii A, Ozaki M, et al. Perylen derivative sensitized multi-walled carbon nanotube thin film, Carbon, 2005, 43: 2501~2507
    [94] Zhao L P, Gao L. Coating multi-walled carbon nanotubes with zinc sulfide, J. Mater. Chem., 2004, 14: 1001~1004
    [95] Sun J, Iwasa M, Gao L, et al. Single-walled carbon nanotubes coated with titania nanoparticles, Carbon, 2004, 42: 895~899
    [96] Jiang L Q, Gao L. CdS nanowire-encapsulated, CdS nanocrystals-enrobed carbon nanotubes composites and their UV-vis properties, Chem. Lett., 2004, 33: 1114~1115
    [97] Yang W, Wang X L, Yang F, et al. Carbon nanotubes decorated with Pt Nanocubes by a noncovalent functionalization method and their role in oxygen reduction, Adv. Mater., 2008, 20: 2579~2587
    [98] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem, Soc., 2001, 123: 3838~3839
    [99] Suri A, Chakraborty A K, Coleman K S. A facile, solvent-free, noncovalent, and nondisruptive route to functionalize single-wall carbon nanotubes using terriary phosphines, Chem. Mater., 2008, 20: 1705~1709
    [100] Ajayan P M, Tour J M. Materials Science: Nanotube composites, Nature, 2007, 447: 1066~1068
    [101] Del Valle M, Gutierrez R, Tejedor C, et al. Tuning the conductance of a molecular switch, Nature Nanotechnology, 2007, 2: 176~179
    [102] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes, Nature, 1994, 372: 159~162
    [103] Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes, Science, 1998, 280: 1253~1256
    [104] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes, Adv. Mater., 1999, 11: 834-+
    [105] Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc., 2002, 124: 12664~12665
    [106] Lin Y, Hill D E, Bentley J, et al. Characterization of functionalized single-walled carbon nanotubes at individual nanotube-thin bundle level, J. Phys. Chem. B, 2003, 107: 10453~10457
    [107] Ellis A V, Vjayamohanan K, Goswaimi R, et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes, Nano Lett., 2003, 3: 279~282
    [108] Liu Z F, Shen Z Y, Zhu T, et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique, Langmuir, 2000, 16: 3569~3573
    [109] Wu B, Zhang J, Wei Z, et al. Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface, J. Phys. Chem. B, 2001, 105: 5075~5078
    [110] Banerjee S, Wong S S. Synthesis and characterization of carbon nanotube- nanocrystal heterostructures, Nano Lett., 2002, 2: 195~200
    [111] Banerjee S, Wong S S. Functionalization of carbon nanotubes with a metal- containing molecular complex, Nano Lett., 2002, 2: 49~53
    [112] Huang W J, Taylor S, Fu K F, et al. Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett., 2002, 2: 311~314
    [113] Hazani M, Naaman R, Hennrich F, et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes, Nano Lett., 2003, 3: 153~155
    [114] Fu Q, Lu C G, Liu J. Selective coating of single wall carbon nanotubes with thin SiO2 layer, Nano Lett., 2002, 2: 329~332
    [115] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 2002, 35: 1105~1113
    [116] Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes, Adv. Mater., 2005, 17: 17~29
    [117] Hamwi A, Alvergnat H, Bonnamy S, et al. Fluorination of carbon nanotubes, Carbon, 1997, 35: 723~728
    [118] Boul P J, Liu J, Mickelson E T, et al. Reversible sidewall functionalization of buckytubes, Chem. Phys. Lett., 1999, 310: 367~372
    [119] Mickelson E T, Chiang I W, Zimmerman J L, et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B, 1999, 103: 4318~4322
    [120] Huang W J, Fernando S, Allard L F, et al. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions, Nano Lett., 2003, 3: 565~568
    [121] Dyke C A, Tour J M. Solvent-free functionalization of carbon nanotubes, J. Am. Chem. Soc., 2003, 125: 1156~1157
    [122] Stevens J L, Huang A Y, Peng H Q, et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines, Nano Lett., 2003, 3: 331~336
    [123] Burghard M. Asymmetric end-functionalization of carbon nanotubes, Small, 2005, 1: 1148~1150
    [124] Lee K M, Li L, Dai L. Asymmetric end-functionalizaton of multi-walled carbon nanotubes, J. Am. Chem. Soc., 2005, 127: 4122~4123
    [125] Chopra N, Majumder M, Hinds B J. Bifunctional carbon nanotubes by sidewall protection, Adv. Func. Mater., 2005, 15: 858~864
    [126] Chu A, Cook J, Heesom J R, et al. Filling of carbon nanotubes with silver, gold and gold chloride, Chem. Mater., 1996, 8: 2751~2754
    [127] Cao L, Chen H Z, Li H Y, et al. Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method, Chem. Mater., 2003, 15: 3247~3249
    [128] Keller N, Pham-Huu C, Estournes C, et al. Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires, Carbon, 2004, 42: 1395~1399
    [129] Britz D A, Khlobystov A N, Wang J, et al. Selecive host-guest interaction of single-walled carbon nanotubes with functionalized fullerenes, Chem. Commun., 2004, 2: 176~177
    [130] Endo M, Muramastu H, Hayashi T, et al. Dresselhaus N S.“Buckpaper”from coaxial nanotubes, Nature, 2005, 433: 476
    [131] White C T, Todorov T N. Carbon nanotubes as long balistic conductors, Nature, 1998, 393: 240~242
    [132] White C T, Todorov T N. Quantum electrons– Nanotuebs go ballistic, Nature, 2001, 411: 649~651
    [133] Liang W Z, Yang J L, Sun J. Controllable p and n doping of single-walled carbon nanotubes by encapsulation of organic molecules and fullerene: A theoretical investigation, Appl. Phys. Lett., 2005, 86: 223113
    [134] Yao Z, Dekker C, Avouris P. Electrical transport through single-wall carbon nanotubes, Top. Appl. Phys., 2001, 80: 147~171
    [135] Heinze S, Tersoff J, Martel R, et al. Carbon nanotubes as Schottky barrier transistor, Phys. Rev. Lett., 2002, 89: 106801
    [136] Appenzeller J, Knoch J, Derycke V, et al. Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett., 2002, 89: 126801
    [137] Bonard J M, Salvetat J P, Stockli T, et al. Field emission from carbon nanotube film, Appl. Phys. Lett., 1998, 73: 918~920
    [138] Rinzler A G, Hafner J H, Nikolaev P, et al. Unraveling nanotubes– Field emission from an atomic wire, Science, 1995, 269: 1550~1553
    [139] De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source, Science, 1995, 270: 1179~1180
    [140] Bonard J M, Salvetat J P, Stockli T, et al. Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism, Appl. Phys. A, 1999, 69: 245~254
    [141] Chen Z H, Appenzeller J, Lin Y M, et al. An Integrated logic circuit assembled on a single carbon nanotube, Science, 2006, 311: 1735~1735
    [142] Jarillo-Herrero P, van Dam J A, Kouwenhoven L P, Quantum supercurrent transistors in carbon nanotubes, Nature, 2006, 439: 963~956
    [143] Kociak M, Suenaga K, Hirahara K, et al. Linking chiral indices and transport properties of double-walled carbon nanotubes, Phys. Rev. Lett., 2002, 89: 155501
    [144] Robel I, Bunker B A, Kamat P V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge transfer interactions, Adv. Mater., 2005, 17: 2458~2463
    [145] Hatton R A, Blanchard N P, Stolojan V, et al. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films, Lagmuir, 2007, 23: 6424~6430
    [146] Khatri I, Adhikari S, Aryal H R, et al. Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes, Appl. Phys. Lett., 2009, 94: 093509
    [147] Chaudhary S, Lu H W, Muller A M, et al. Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells, Nano Lett., 2007, 7: 1973~1979
    [148] van de Lagemaat J, Barnes T M, Rumbles, et al. Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode, Appl. Phys. Lett., 2006, 88: 233503
    [149] Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes, Appl. Phys. Lett., 2006, 88: 233506
    [150] Pasquier A D, Unalan H E, Kanwal A, et al.Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells, Appl. Phys. Lett., 2005, 87: 203511
    [151] Ichida M, Mizuno S. Nakamura A Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer, Appl. Phys. A, 2004, 78: 1117~1120
    [152] Murakami Y, Einarsson E, Edamura T, et al. Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology, Carbon, 2005, 43: 2664~2676
    [153] O’Connell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes, Science, 2002, 297: 593~596
    [154] Chen J, Perebeinos V, Freitag M, et al. Bright infrared emission from electrically induced excitons in carbon nanotubes, Science, 2005, 310: 1171~1174
    [155] Barone P W, Baik S, Heller D A, et al. Near-infrared optical sensors based on single-walled carbon nanotubes, Nature Mater., 2005, 4: 86~U16
    [156] Riggs J E, Guo Z X, Carroll D L, et al. Strong luminescence of solubilized carbon nanotubes, J. Am. Chem. Soc., 2000, 122: 5879~5880
    [157] Lauret J S, Voisin C, Cassabois G, et al., Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime, Appl. Phys. Lett., 2004, 85: 3572~3574
    [158] Feng W, Yi W H, Wu H C, et al. Enhancement of third-order optical nonlinearities by conjugated polymer-bonded carbon nanotubes, J. Appl. Phys., 2005, 98: 034301
    [159] Yi W H, Feng W, Zhang C Y, et al. The third-order optical nonlinearities of carbon nanotube modified conjugated polymer in the femtosecond and nanosecond regimes, J. Appl. Phys., 2006, 100: 094301
    [160] Wang Q, Wen Z H, Li J H. Carbon nanotubes/TiO2 nanotubes hybrid supercapacitor, J. Nanosci. Nanotech., 2007, 7: 3328~3331
    [161] Gao B, Yuan C Z, Su L H, et al. Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor, J. Solid State Electrochem. 2009, 13: 1251~1257
    [162] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors, Science, 2000, 287: 622~625
    [163] Cohen-Karni T, Segev L, Srur-Lavi O, et al. Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotech., 2006, 1: 36~41
    [164] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanotechnology– A chemical strategy for the synthesis of nanostructures, Science, 1991, 254: 1312~1319
    [165] Lu T, Goldfield E M, Gray S K. Quantum states of hydrogen and its isotopes confined in single-walled carbon nanotubes: Dependence on interaction potential and extreme two-dimensional confinement, J. Phys. Chem. B, 2006, 110: 1742~1751
    [166] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors, Fuel Processing Technology, 2002, 77: 213~219
    [167] Zhu Y W, Elim H I, Foo Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater., 2006, 18: 587~+
    [168] Ebbesen T W, Ajayan P M, Hiura H, et al. Purification of nanotubes, Nature, 1994, 367: 519.
    [169] Tohji K, Takahashi H, Shinoda Y, et al. Purification procedure for single-walled nanotubes, J. Phys. Chem. B, 1997, 101: 1974~1978.
    [170] Zimmerman J L, Bradley R K, Huffman C B, et al. Gas-phase purification of single-wall carbon nanotubes, Chem. Mater., 2000, 12: 1361~1366
    [171] Miyata Y, Maniwa Y, Kataura H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide, J. Phys. Chem. B, 2006, 110: 25~29.
    [172] Feng Y C, Zhou G M, Wang G P, et al. Removal of some impurities from carbon nanotubes, Chem. Phys. Lett., 2003, 375: 645~648.
    [173] Pimenta M A, Marucci A, Empedocles S A, et al. Raman modes of metallic carbon nanotubes, Phys. Rev. B, 1998, 58: 16016~16019
    [174] Jorio A, Dresselhaus G, Dresselhaus M S, et al. Polarized Raman study of single-wall semiconducting carbon nanotubes, Phys. Rev. Lett., 2000, 85: 2617~2620
    [175] Fantini C, Jorio A, Souza M, et al. Steplike dispersion of the intermediate-frequnecy Raman modes of semicoducting and metallic carbon nanotubes, Phys. Rev. B, 2005, 72: 085446
    [176] Dillon A C, Gennett T, Jones K M, et al. A simple and complete purification of single-walled carbon nanotube materials, Adv. Mater., 1999, 11: 1354~1358
    [177] Shim M, Gaur A, Nguyen K T, et al. Spectral diversity in Raman G-band modes of metallic carbon nanotubes within a single chirality, J. Phys. Chem. C, 2008, 112: 13017~13023
    [178] Saito R, Jorio A, Hafner J H, et al. Chirality-dependent G-band Raman intensity of carbon nanotubes, Phys. Rev. B, 2001, 64:
    [179] Hiura H, Ebbesen T W, Tanigaki K, et al. Raman studies of carbon nanotubes, Chem. Phys. Lett., 1993, 202: 509~512.
    [180] Chen Y, Wei L, Wang B, et al. Low-defect, purified, narrowly (n,m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41, ACS Nano, 2007, 1: 327~336.
    [181] Ramesh P, Okazaki T, Sugai T, et al. Purification and characterization of double-wall carbon nanotubes synthesized by catalytic chemical vapor deposition on mesoporous silica, Chem. Phys. Lett., 2006, 418: 408~412.
    [182] Osswald S, Flahaut E, Gogotsi Y. In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes, Chem. Mater., 2006, 18: 1525~1533.
    [183] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382: 54~56
    [184] Dai H J, Wong E W, Liber C M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes, Science, 1996, 272: 523~526
    [185] Kanungo M, Lu H, Malliaras G G, et al. Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions, Science, 2009, 323: 234~237
    [186] Blackburn J L, Barnes T M, Beard M C, et al. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes, ACS Nano, 2008, 2: 1266~1274.
    [187] Shim B S, Tang Z Y, Morabito M P, et al. Integration of conductivity transparency, and mechanical strength into highly homogeneous layer-by-layer composites of single-walled carbon nanotubes for optoelectronics, Chem. Mater., 2007, 19: 5467~5474
    [188] Fuhrer M S, Nygard J, Shih L, et al. Corssed nanotube junctions, Science, 2000, 288: 494~497
    [189] Geng H Z, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transport conducting films, J. Am. Chem. Soc., 2007, 129: 7758~7759
    [190] Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes, J. Phys. Chem. B, 2005, 109: 7174~7181
    [191] Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films, Science, 2004, 305: 1273~1276
    [192] Pint C L, Xu Y Q, Pasquali M, et al. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets, ACS Nano, 2008, 2: 1871~1878
    [193] Kordas K, Mustonen T, Toth G, et al. Inkjet printing of electrically conductive patterns of carbon nanotubes, Small 2006, 2: 1021~1025
    [194] Ding L, Yuan D N, Liu J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates, J. Am. Chem. Soc., 2008, 130: 5428~5429
    [195] Yuan D N. Single-walled carbon nanotube property control and its devices, Thesis (Duke University)
    [196] Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes, J. Am. Chem. Soc., 2002, 124: 9058~9059
    [197] Kong B S, Jung D H, Oh S K, et al. Single-walled carbon nanotube gold nanohybrids: Application in highly effective transparent and conductive films, J. Phys. Chem. C, 2007, 111: 8377~8382
    [198] Voggu R, Pal S, Pati S K, et al. Semiconductor to metal transition in SWNTs caused by interaction with gold and platinum nanoparticles, J. Phys. Condens. Matter., 2008, 20: 215211
    [199] Eklund P C, Subbaswamy K R. Analysis of berit-wigner line-shapes in the Raman-spectra of graphite-intercalation compounds, Phys. Rev. B, 1979, 20: 5157~5161
    [200] Dresselhaus M S, Dresselhaus G, Jorio A, et al. Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 2002, 40: 2043~2061
    [201] Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single walled carbon nanotubes, J. Phys. Chem. B, 2005, 109: 7174~7181.
    [202] Kaufman J H, Metin S, Saperstein D D. Symmetry-breaking in nitrogen-doped amorphous-carbon-infrared observation of the Raman-active G-bands and D-bands, Phys. Rev. B, 1989, 39: 13053~13060
    [203] Vijayaraghavan A, Kanzaki K, Suzuki S, et al. Metal-semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation, Nano Lett., 2005, 5: 1575~1579
    [204] Frackowiak E, Metenier K, Bertagna V, et al. Sipercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77: 2421~2423
    [205] Lee J Y, An KH, Heo J K, et al. Fabrication of supercapacitor electrodes using fluorinated single-walled carbon nanotubes, J. Phys. Chem. B, 2003, 107: 8812~8815
    [206] Sherigara B S, Kutner W, D’Souza F. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 2003, 15: 753~772
    [207] Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater., 1999, 11: 1281
    [208] Pradhan B, Batabyal S K, Pal A J. Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices, Appl. Phys. Lett., 2006, 88: 093106
    [209] Nakayama Y, Akita S. Field-emission device with carbon nanotubes for a flat panel display, Syn. Met., 2001, 117: 207~210
    [210] Ehli C, Rahman G M A, Jux N, et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids, J. Am. Chem. Soc., 2006, 128: 11222~11231
    [211] Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites, Chem. Phys. Lett., 2003, 378: 481~485
    [212] Wurthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Communn., 2004, 14: 1564~1579
    [213] Struijk C W, Sieval A B, Dakhorst J E J, et al. Liquid crystalline perylene diimides: Architecture and charge carrier mobilities, J. Am. Chem. Soc., 2000, 122, 11057~11066
    [214] Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, et al. N-type organic thin-film transistor with high field-effect mobility based on a N,N-'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative, Appl. Phys. Lett., 2002, 80: 2517~2519
    [215] Rademacher A, Markle S, Langhals H Soluble perylene florescent dyes with Photostability, Chem. Ber., 1982, 115: 2927~2934
    [216] Seybold G, Wagenblast G. New Perylene and Violantrone Dyestuffs or Fluorescent Collentors, Dyes Pigments, 1989, 11: 303~317
    [217] Lee J H, Yoon S M, Kim K K, et al. Exfoliation of single-walled carbon nanotubes induced by the structural effect of perylene derivatives and their optoelectronic properties, J. Phys. Chem. C, 2008, 112: 15267~15273
    [218] Tasis D, Mikroyannidis J, Karoutsos V, et al. Single-walled carbon nanotubes decorated with a pyrene-fluorenevinylene conjugate, Nanotechnology, 2002, 20: 135606
    [219] Petrov P, Stassin F, Pagnoulle C, et al. Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers, Chem. Commun., 2003, 23: 2904~2905
    [220] Yuan W Z, Sun J Z, Dong Y Q, et al. Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: Solubility, stability, light emission, and surface photovoltaic properties, Macromolecules, 2006, 39: 8011~8020
    [221] Schouwink P, Schafer A H, Seidel C, et al. The influence of molecular aggregation on the device properties of organic light emitting diodes, Thin Solid Films, 2000, 372: 163~168.
    [222] Balakrishnan K, Datar A, Naddo T, et al. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control, J. Am. Chem. Soc., 2006, 128: 7390~7398
    [223] Lukas A S, Zhao Y Y, Miller S E, et al. Biomimetic electron transfer using low energy excited states: A green perylene-based analogue of chlorophyll a, J. Phys. Chem. B, 2002, 106: 1299~1306
    [224] Feng W, Xu Y L, Yi W H, et al. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films, Chin. Phys., 2003, 12: 426~432
    [225] Gregg B A. Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing, J. Phys. Chem., 1996, 100: 852~859.
    [226] Lifshitz E, Kaplan A, Ehrenfreund E, et al. Optically detected magnetic resonance as a tool to study the morphology of perylene-derivative thin film, Chem. Phys. Lett., 1999, 300: 626~632
    [227] Cormier R A, Gregg B A. Self-organization in thin films of liquid crystalline perylene diimides, J. Phys. Chem. B, 1997, 101: 11004~11006.
    [228] Fu K F, Martin R B, Rao A M, et al. Spectroscopic probing of organic molecules encapsulated in functionalized carbon nanotubes in solution, J. Nanosci. Nanotechnol., 2003, 3: 127~131.
    [229] Sotero P, Arce R. J. Surface and adsorbates effects on the photochemistry and photophysics of adsorbed perylene on unactivated silica gel and alumina, Photochem. Photobiol. A: Chem., 2004, 167: 191~199.
    [230] Feng Y Y, Feng W. Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly, Opt. Mater., 2008, 30: 876~880
    [231] Shao Y, Bazan G C, Heeger A J. LED to LEC transition behavior in polymer ligh-emitting devices, Adv. Mater., 2008, 20: 1191-+
    [232] Xiao R, II Cho S, Liu R, Lee S B. Controlled electrochemical synthesis of conductive polymer nanotube structure, Adv. Mater., 2007, 129: 4483~4489
    [233] Paumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 2003, 425: 158~162
    [234] Lee M R, Eckert R D, Forberich K, et al. Solar Power Wires Based on Organic Photovoltaic Materials, Science, 2009, 324: 232~235
    [235] Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Mater., 2007, 6: 497~500
    [236] O’Brien G A, Quinn A J, Tanner D A, et al. Single polymer nanowire photodetector, Adv. Mater., 2006, 18: 2379-+
    [237] Abdula D, Shim M. Performance and Photovoltaic Response of Polymer-Doped Carbon Nanotube p-n Diodes, ACS Nano, 2008, 2: 2154~2159
    [238] Wei J Q, Jia Y, Shu Q K, et al. Double-walled carbon nanotube solar cells, Nano Lett., 2007, 7: 2317~2321
    [239] Ross R B, Cardona C M, Guldi D M, et al. Endohedral fullerenes for organic photovoltaic devices, Nature Mater., 2009, 8: 208~212
    [240] Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells, Nature Mater., 2006, 5: 197~203
    [241] Kim Y, Choulis S A, Nelson J, et al. Deviceannealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Appl. Phys. Lett., 2005, 86: 063502
    [242] Erb T, Zhakhavets U, Gobsch G, et al. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Ad. Fun. Mater., 2005, 15: 1193~1196
    [243] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 2007, 317: 222~225
    [244] Kymakis E, Stratakis E, Koudoumas E. Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells, Thin Solid Films, 2007, 515: 8598~8600
    [245] Hatton R A, Blanchard N P, Tan LW, et al. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells, Organic Electronics, 2009, 10: 388~395
    [246] Shiraishi M, Ata M. Work function of carbon naotubes, Carbon, 2001, 39: 1913~1917
    [247] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science, 258: 1474~1476
    [248] Geng H Z, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films, J. Am. Chem. Soc., 2007, 129: 7758~7759
    [249] Hennrich F, Wellmann R, Malik S, et al. Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure, Phys. Chem. Chem. Phys., 2003, 5: 178~183
    [250] Lioudakis E, Othonos A, Alexandrou I, et al. Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC(61)-butyric acid methyl ester composites, J. Appl. Phys., 2007, 102: 083104
    [251] Ju X H, Feng W, Varutt K, et al. Ozaki M. Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices, Nanotechnology, 2008, 19: 435706
    [252] Goetzberger A K, Knobloch J, Voss B. Crystalline Silicon Solar Cells (Wiley, West Sussex, 1998), p. 100
    [253] Irie M, Ikeda T. Photoresponsive polymers. (in): Takemoto K, Ottenbrite R M, Kamachi M. (eds). Functional Monomers and Polymers, New York: 1994. 66~116
    [254] Ho M S, Natansohn A, Barrett C, et al. Azo polymers for reversible optical storage. 8. The effect of polarity of the azobenzene groups, Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1995, 73: 1773~1778
    [255] Brown G H. In Photochoromism. Wiley-Interscience, New York, 1971
    [256] Tsutsumi O, Kitsunai T, Kanazawa A, et al. Photochemical phase transition behavior of polymer azobenzene liquid crystals with electron-donating and -accepting substituents at the 4,4'-positions, Macromolecules, 1998, 31: 355~359
    [257] Berg R H, Hvilsted S, Ramanujam P S. Peptide oligomers for holographic data storage, Nature, 1996, 383: 505~508.
    [258] Ikeda T, Tsutsumi O, Optical switching and image storage by means of azobenzene liquid-crystal films, Science, 1995, 268: 1873~1875
    [259] Cimrova V, Neher D, Kostromine S, et al. Optical anisotropy in films of photoaddressable polymers, Macromolecules, 1999, 32: 8496~8503
    [260] Rosenhauer R, Fisher T, Stumpe J, et al. Light-induced orientation of liquid crystalline terpolymers containing azobenzene and dye moieties, Macromolecules, 2005, 38: 2213~2222
    [261] Kawatsuki N, Furuso N, Uchida E, et al. Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid-crystal films by irradiation with linearly polarized ultraviolet light and annealing, Macromol. Chem. Phys., 2002, 203: 2438~2445
    [262] Welland M E, Durkan C, Saifullah M S M, et al. Response to comment on“Single crystals of single-walled carbon nanotubes formed by self-assembly”, Science, 2003, 300, 5623
    [263] Del Valle M, Gutierrez R, Tejedor C, et al. Tuning the conductance of a molecular switch, Nature Nanotechnology, 2007, 2: 176~179
    [264] Feng W, Zhou F, Wang X G, et al. Water-soluble multi-walled nanotube and its film characteristics, Chin. Phys. Lett., 2003, 20: 752~755
    [265] Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl- functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Appl. Surf. Sci., 2008, 255: 2485~2489
    [266] Feng W, Huang K, Wan M X. Photophysical characteristic of polyaniline with photochromic azobenzene side groups, Chinese Phys., 2005, 14: 306~310
    [267] Feng W, Xu Y L, Yi W H, et al. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films, Chin. Phys., 2003, 12: 426~432
    [268] Blevins A A, Blanchard G J. Effect of positional substitution on the optical response of symmetrically disubstituted azobenzene derivatives, J. Phys. Chem. B, 2004, 108: 4962–4968.
    [269] Feng W, Kamide K, Zhou F, et al. Optical and field emission investigations for multiwalled carbon nanotubes with different functionalized groups, Jpn. J. Appl. Phys., 2004, 43: L36~L39.
    [270] Ikeda T, Tsutsumi O. Optical switching and image storage by means of azobenzene liquid-crystal films, Science, 1995, 268: 1873~1875.
    [271] Ruslim C, Ichimura K. Z-isomers of 3,3 '-disubstituted azobenzenes highly compatible with liquid crystals, J. Mater. Chem., 1999, 9: 673~681.
    [272] Bobrovsky A, Ponomarenko S, Boiko N, et al. Photochemistry and photoorientational phenomena in carbosilane dendrimers with terminal azobenzene groups, Macromol. Chem. Phys., 2002, 203: 1539~1546
    [273] Rau H. Photochemistry and Photophysics, Vol. 2, Boca Raton FL: CRC Press, 1990, 119~123
    [274] Paik C S, Morawetz H. Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk, Macromolecules, 1972, 5: 171~177
    [275] Hao M, Morino S, Ichimura K. Factors affecting in-plane and out-of-plane photoorientation of azobenzene side chains attached to liquid crystalline Polymers induced by irradiation with linearly polarized light, Macromolecules, 2000, 33: 6360~6371