用户名: 密码: 验证码:
减压转油线气液两相流动特性模拟及结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减压转油线作为原油蒸馏中减压单元的重要组成部分,对于减压装置的稳定操作、减压深拔、改善油品质量和节能意义重大。本文在采集大量工业数据的基础上,针对转油线内伴随相变的气液两相流动过程,建立了相应的数学模型,对各种参数在转油线内的分布规律进行了深入系统的研究。
     基于多级闪蒸模型和压降模型建立了转油线的一维两相流模型。模型求解可以得到转油线内压力、温度、流速和汽化率沿转油线轴向的变化情况,结果表明,各参数的变化主要发生在过渡段和合流段,低速段变化不大。对七套工业转油线的计算结果表明,A型直插式转油线合流处压力陡降,压降最大;B型渐扩式转油线合流处压力缓慢下降,压降最小;C型二次扩径式结构压力出现两处陡降,压降较小。
     利用计算流体力学(CFD)方法建立了变质量可压缩三维拟单相流数学模型,用于描述可压缩气体各物理量在转油线内分布情况。模拟结果表明,合流段克服流动阻力损失的能量最多,其次是过渡段。过渡段弯管会产生二次流动现象,合流处有旋涡区存在,这些局部损失是过渡段与合流段压降较大的主要原因。对七套工业减压转油线的流场变化规律综合分析表明:过渡段中弯头、高差、管径以及合流段的连接方式对转油线的压降影响很大;在合流段采用裤形三通连接以及二次扩径均有利于减小转油线的压降。
     利用多级闪蒸模型和VOF两相流模型建立了多级闪蒸与两相流耦合三维数学模型,分段考察了转油线内气液两相流动过程中的压降和流型。研究发现,过渡段最后管段及合流段第一段管段压降最大;液相在转油线内以大液滴的形式存在,呈现出环状流与雾状流之间的一种过渡流型,而且,不同的转油线结构合流处液体分布情况不同。另外,对所建立的三种模型进行了综合对比分析。
     在以上研究的基础上,为减小转油线压降、以提高常压渣油拔出率或降低减压炉出口温度,利用单相流模型对转油线的过渡段、合流段和低速段直径分别进行了优化,并提出了改进结构。利用已建立的多级闪蒸与两相流动耦合模型对改进结构进行了准确计算,结果表明改进结构比原结构压降减小36.8%。利用一维两相流模型考察了改进结构对减压蒸馏单元的影响,研究发现可提高减压塔进料段汽化率或降低减压炉出口温度并实现节能。
The transfer line refers to a pipeline connection between the furnace and the vacuum column in the crude oil diatillation unit. A well-designed transfer line can increase the evaporation rate of the feed in the vacuum distillation tower, improve oil product quality and save energy for vacuum distillation unit. Different mathematical models have been established in this paper to improve fundamental understanding of gas-liquid two-phase flashing flow in the transfer line. Moreover, the distribution regularities of pressure, temperature and other parameters in the transfer lines with various structures have been investigated with the models on the basis of a large amount of filed data.
     Firstly, the one-dimensional, two-phase flow model is developed on the basis of pressure drop model and the multi-stage flash model. The axial pressure, temperature, velocity and evaporation rate are predicted by the model and it is found that variations of parameters principally occur in the transition section and the junction site. The analysis of the seven industrial transfer lines show that the pressure drops of Type A are bigger than others because the transition section merged to the low speed section directly, the pressure decreased gradually in the transfer lines of Type B, the pressure drop of which is the lowest; the pressure drop of Type C with two-stage enlargement structure decreased sharply twice.
     Secondly, the three-dimensional, compressible single flow model is developed by a commercial computational fluid dynamics (CFD) package. The results of the CFD simulation provided an insight into the phenomena occurring within the flow field in the pipe. It is also found that the secondary motion occurred at the transiton section and swirls existed at the junction section, which are the main reasons for the pressure drop of the two sections. The flow field analysis of the seven transfer lines shows that the bends, difference in elevation, diameter and junction structures have great influence on the pressure drop. Moreover, the suitable junction structure and two-stage enlargement is useful for decreasing the pressure drop.
     Thirdly, the three-dimensional multi-stage flash & VOF two-phase flow coupling model is developed to simulate the true situation in the transfer line. The results show that the pressure drop mainly occurred in the last segment of the transition section and the first segment of the junction. In addition, the flow regime shows a transition situation between annular flow and mist flow, and liquid are large droplets. The analysis and comparison of the three models developed in this thesis are also studied.
     Last, the structure optimization of the transition section, junction and low-speed section are studied by single flow model and a retrofitted structure is developed. The retrofitted structure is simulated by three-dimensional multi-stage flash & two-phase flow coupling model and it is found that the pressure drop of the new structure compared with the original one can be decreased by 36.8%. The decrease of pressure drop has a great influence on the vacuum distillation unit. On the one hand, the evaporation rate can be improved at a certain vacuum furnace outlet temperature. On the other hand, the outlet temperature of the vacuum furnace can be lowered at a certain transfer line outlet pressure, which can improve product quality and also has the advantage of energy conservation.
引文
[1]林世雄,石油炼制工程,北京:石油工业出版社,1988
    [2] Golden S W,Lieberman N P,Lieberman E T,Troubleshoot vacuum columns with low-capital methods,Hydrocarbon Processing,1993,(7):81~89
    [3] Banta F,Peter S,Schneider D F, et al.,Deep cut vacuum tower processing provides major incentives,Hydrocarbon Processing,1997,76(11):83~89
    [4] Golden S W,Simple methods solve vacuum column problems using plant data,Oil and Gas Journal,1992,(9):74
    [5] Nangia K,Schulte D,Goelzer A,Design and revamp vacuum units for maximum return,Hydrocarbon Engineering,2000,5(6):45~464850
    [6]杨伯极,试论减压蒸馏的深拔,炼油设计,1996,26(2):10~14
    [7] Rechsteiner C E,Iwamoto J D,Deep-cut assay reveals additional yields of high value VGO,Oil and Gas Journal,1995,93(37):39~45
    [8] Zeidan A,Consider a practical approach to vacuum unit revamps,Hydrocarbon Processing,2006,85(1):73~78
    [9]侯芙生,炼油工程师手册,北京:石油工业出版社,2001
    [10]王琳,新型常减压流程改进效果研究,硕士学位论文,清华大学,1999
    [11]候芙生,加工劣质原油对策讨论,当代石油石化,2007,15(2):1~6
    [12]李凭力,李秀芝,白跃华,等,常减压蒸馏装置的减压深拔,化工进展,2003,22(12):1290~1295
    [13] Martin G R,Understand vacuum system fundamentals,Hydrocarbon Processing,1994,73(10):91~98
    [14]张韬,渣油的深拔研究,石油学报(石油加工),2002,18(4):53~58
    [15]《中国石油化工集团公司年鉴》编委会,中国石油化工集团公司年鉴,北京:中国石化出版社,2005
    [16] Hamer J A,Heijden P,Vacuum distillation process,United States Patent, 5032231,1989-2-10
    [17] Lee C,Enhance gas oil from crude,Hydrocarbon Processing,1990,69(5):69~71
    [18] Golden S W,Improve HVGO quality and cutpoint,Hydrocarbon Processing,1991,70(11):69~74
    [19]李秀芝,常减压蒸馏装置减压深拔的研究,硕士学位论文,天津大学,2004
    [20]兰州石油机械研究所,现代塔器技术,北京:中国石化出版社,2005
    [21]武劲松,陈建民,李和杰,等,四级蒸馏技术在常减压蒸馏装置搞通改造的应用,炼油技术与工程,2003,33(6):35~38
    [22]陈士军,黄费喜,常减压蒸馏装置扩能改造新途径,石油炼制与化工,2004,35(7):27~30
    [23]段占庭,周荣琪,彭建军,一种新的原油常压蒸馏过程,炼油设计,1997,27(6):14~17
    [24]王琳,段占庭,周荣琪,常减压新型流程的节能效果,化工学报,2000,51(3):383~389
    [25]何峻,原油常压蒸馏过程的改进和优化,硕士学位论文,清华大学,1996
    [26]韩艳萍,转油线内两相流流型的研究与分体式转油线的开发,硕士学位论文,中国石油大学(华东),2006
    [27]郑陵,波纹板填料原油脱水的研究及石油炼制新工艺的模拟,硕士学位论文,天津大学,1990
    [28]杜英生,李鑫钢,赵汝文,多级闪蒸与精馏偶合新工艺,中国,91101456.X,1991
    [29]王颖华,胡永军,岳淑丽等,原油常减压装置节能技术,石化技术,2005,12(4):51~55
    [30]王进刚,液体喷射器在常减压蒸馏装置抽真空系统的应用,炼油技术与工程,2006,36(8):35~37
    [31]李哲,减压转油线的设计,当代化工,2005,34(6):389~391
    [32]冯武文,孟令岩,赵军,减压转油线的应力分析,北京化工大学学报,2004,31(3):90~93
    [33]冯武文,郭宏伟,赵军,减压转油线结构振动及稳定性分析,化工设备与管道,2005,42(2):29
    [34]郭先柱,减压塔转油线的技术改造,胜炼科技,1994,25(1):25~29
    [35]张立军,减压转油线的技术改造,石油炼制,1992,(7):8~13
    [36]张立军,用减压炉管吸收转油线热膨胀,炼油设计,1989,(3):39~40
    [37] Golden S W,Villalanti D C,Martin G R,Feed characterization and deepcut vacuum columns: simulation and design,AIChE Spring National Meeting,Atlanta, Georgia, USA1994,1~14
    [38]苑世明,浅谈低速减压转油线,石油与天然气化工,2000,29(3):122
    [39]肖家治,李发永,王万里等,转油线工艺设计方法的研究,石油大学学报(自然科学版),1996,20(2):90
    [40] Kohoutek J,Zachoval J,Odstrcil M,et al.,Solving practical industrial problems in two-phase multicomponent mixture flow-critical velocity, Heat Transfer Engineering,2001,22:32-24
    [41] Jegla Z,Stehlik P,Kohoutek J,Combined approach supporting integrated furnace design and retrofit,Heat Transfer Engineering,2005,26(7):58~64
    [42]郭烈锦,两相与多相流动力学,西安:西安交通大学出版社,2002
    [43]大卫阿兹贝尔,化学工程中的两相流(沈庆阳,戴擎镰,单寅生,孙光林译):化学工业出版社,1987
    [44]林宗虎,变幻流动的科学-多相流体力学,北京:清华大学出版社,广州:暨南大学出版社,2000
    [45]李俊红,人工海水雾化室气粒两相流场特性研究,硕士学位论文,哈尔滨工程大学,2006
    [46]徐济鋆,沸腾传热的气液两相流,北京:原子能出版社,1993
    [47]韩炜,管道汽液两相流动技术研究,博士学位论文,西南石油学院,2004
    [48] Minamit K,Shoham O,Transient two-phase flow behavior in pipelines - experiment and modeling,International Journal of Multiphase Flow,1994,20(4):739~752
    [49] Fuchs P,The pressure limit for the terrain slugging,3rd International Conference on Multi-phase Flow,The Hague, Netherlands,1987
    [50] King M J S,Hale C P,Lawrence C J, et al.,Characteristics of flowrate transients in slug flow,International Journal of Multiphase Flow,1998,24(5):825~854
    [51] Ouyang L,Aziz K,A homogeneous model for gas-liquid flow in horizontal wells,Journal of Petroleum Science and Engineering,2000,27:119~128
    [52] Barnea D,A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations.,International Journal of Multiphase Flow,1987,13(1):1~12
    [53] Petalas N,Aziz K,Development and testing of a new mechanistic model for multiphase flow in pipes,2nd ASME International Symposium on Numerical Methods for Multiphase Flow,San Diego, CA1996,
    [54]阎昌琪,气液两相流,哈尔滨:哈尔滨工程大学出版社,2007
    [55] J.m. Masella, Q.h. Tran, D. Ferre C P,Transient simulation of two-phase fows in pipes,International Journal of Multiphase Flow,1998,24:739~755
    [56]劳力云,汽液两相管流流态判别方法的研究,博士后出站报告,中国科学院力学研究所,2001
    [57]劳力云,关于汽液两相流流型及其判别的若干问题,力学进展,2002,32(2):235~249
    [58] Koji I,Mitsuru I,Mamoru O,et al.,A simplified model of gas-liquid two-phase flow pattern,Heat Transfer-Asian Research,2004,33(7):445-461
    [59] Omebere-iyari N K,Azzopardi B J,A study of flow patterns for gas/liquid flow in small diameter tubes,Chemical Engineering Research and Design,2007,85(A2):180~192
    [60] Manera A,Prasser H M,Lucas D,et al.,Three-dimensional flow pattern visualization and bubble size distributions in stationary and transient upward flashing flow,International Journal of multiphase Flow,2006,32:996~1016
    [61] Cheng L,Ribatski G,Thome J R,Two-phase flow patterns and flow-pattern maps: fundamentals and applications,Applied Mechanics Reviews,2008,61(9):1~28
    [62]冯叔初,油气集输,东营:石油大学出版社,1988
    [63]钱加麟,管式加热炉,北京:中国石化出版社,2005
    [64] Werven M,Maanen H R E,Modeling wet-gas annular/dispersed flow through a venturi,AIChE Journal,2003,49(6):1383~1391
    [65] Liu D,Li X,Xu S, et al.,CFD simulation of gas-liquid performance in two direction vapour horn,Chemical Engineering Research and Design,2007,85(10):1375~1383
    [66] Adechy D,Issa R I,Modelling of annular flow through pipes and T-junctions,Computers & Fluids,2004,33:289~313
    [67] Ghorai S,Nigam K D P,CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes,Chemical Engineering and Processing,2006,45:55~65
    [68] Taha T,Cui Z F,CFD modeling of slug flow in vertical tubes,Chemical Engineering Science,2006,61:676~687
    [69] Simon L,Roberto B,Maurizio M,The development of a CFD analysis and design tool for air-lift reactors,SAIChE, 2000, 9th National Meeting,Secunda,South Africa,2000,
    [70]希特斯洛尼盖德,多相流动和传热手册(鲁钟琪等),北京:机械工业出版社,1993
    [71]王新月,气体动力学基础,西安:西北工业大学出版社,2006
    [72]甘丽琳,减压转油线及减压塔汽化段内介质的流态分析,常减压蒸馏,1995,(14):2~37
    [73]濮芸辉,刘艳升,沈复,等,全馏程实沸点蒸馏曲线数学模型,炼油设计,1999,29(6):53~55
    [74] Twu C H,An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids,Fluid Phase Equilibria,1984,16:137~150
    [75] Institute A P,API technical data book-petroleum refining,Washington D.C.,1983
    [76] Letsou A,Stiel L I,Viscosity of saturated nonpolar liquids at elevated pressures,AIChE Journal,1973,19:409~411
    [77] Dean D G,Stiel L S,The viscosity of nonpolar gas mixtures at moderate and high pressures,AIChE Journal,1965,11:526~532
    [78] Roy D,Thodos G,Thermal conductivity of gases,Industrial and Engineering Chemistry Research Fundamentals,1979,9:71~79
    [79]黄祖祺等,石油化工管式炉的模拟与计算机计算,北京:化学工业出版社,1993
    [80] Beggs H D,Brill J P,A study of two-phase flow in inclined pipes,Journal of Petroleum Technology,1973,25:607~617
    [81]黄作仁,浅析减压炉对润滑油料质量的影响和对策,润滑油,2000,15(3):1~8
    [82] Jegla Z,Kohoutek J,Stehlik P,Global algorithm for systematic retrofit of tubular process furnaces,Applied Thermal Engineering,2003,23:1797~1805
    [83] Behnia M,Most accurate two-phase pressure-drop correlation identified,Oil and Gas Journal,1991,89(37):90~95
    [84]Dukler A E,Wicks M,Cleveland R G,Frictional pressure drop in two-phase flow: B an approach through similarity analysis,AIChE Journal,1964,10(1):44
    [85] Eaton B A,Andrews D E,Knowles C R,The prediction of flow patterns, liquid holdup and pressure losses occurring during continuous two-phase flow in horizontal pipelines,Journal of Petroleum and technology,1967,19:815
    [86] Flanigan O,Effect of uphill flow on pressure drop in design of two-phase gathering systems,Oil and Gas Journal,1958,56:132~136
    [87] Mukherjee H,Brill J P,Empirical equations to predict flow patterns in two-phase inclined flow,Internal Journal of Multiphase Flow,1985,11(3):299~315
    [88] Hagedorn A R,Brown K E,Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits,Journal of Petroleum and Technology,1965,17:475~485
    [89]曹学文,李玉星,冯叔初,平湖-上海输气管道模拟计算软件开发,油气储运,1997,16(6):16~21
    [90]杜英生,戴文松,李鑫钢,等,多元多级绝热闪蒸过程的研究(i)-两对角和块状两对角矩阵闪蒸模型,化学工程,1992,20(1):6~1124
    [91]杜英生,戴文松,李鑫钢,等,多元多级绝热闪蒸过程的研究(ii)-绝热闪蒸规律及实验,化学工程,1993,21(5):2~10
    [92]杜英生,戴文松,李鑫钢,等,多元多级绝热闪蒸过程的研究(iii)-多级闪蒸过程的工业应用,化学工程,1994,22(1):19~24
    [93] Lightstone L , Osamusali S I , Chang J , Gas-liquid two-phase flow in symmetrically dividing horizontal tubes,AIChE Journal,1991,37(1):111~122
    [94] Thompson P A,Compressible fluid dynamics,New York:McGraw-Hill,1972
    [95]韩占忠,王敬,兰小平,Fluent流体工程仿真计算实例与应用,北京:北京理工大学出版社,2004
    [96]陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2004
    [97]李人宪,有限体积法基础,北京:国防工业出版社,2005
    [98]帕坦卡,传热与流体流动的数值计算,北京:科学出版社,1992,1~9
    [99]王福军,计算流体动力学分析,北京:清华大学出版社,2004,1~5
    [100] Perez-garcia J,Sanmiguel-rojas E,Hernandez-grau J,et al.,Numerical and experimental investigations on internal comprssible flow at T-type junctions,Experimental Thermal and Fluid Science,2006,31:61~74
    [101] Arias D A,Shedd T A,CFD analysis of compressible flow across a complex geometry venturi,Journal of Fluids Engineering,2007,129:1193~1202
    [102] Huang J,Li R,He Y, et al.,Solutions for variable density low mach number flows with a compressible pressure-based algorithm,Applied Thermal Engineering,2007,27:2104~2112
    [103] Souza B A,Matos E M,Guirardello R, et al.,Predicting coke formation due to thermal cracking inside tubes of petrochemical fired heaters using a fast CFD formulation,Journal of Petroleum Science and Engineering,2006,51:138~148
    [104] Lan X Y,Xu C M,Gao J S,et al.,CFD simulation on ethylene furnace reactor tubes,Petroleum Science,2006,3(2):73~80
    [105]王朋涛,涡流管内可压缩气体三维流场研究,硕士学位论文,哈尔滨工程大学,2006
    [106] Adamopoulos K G,Petropakis H J,Simulation of distribution of discrete inert particles in two phase supersonic mixing,Journal of Food Engineering,1999,42:59~66
    [107] Http://gong.snu.ac.kr/down/on-line-documents/fluent/help/index.htm
    [108] Mason M L,Putnam L E,Re R J,The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions:NASA,1980
    [109] Ferguson M E G,Spedding P L,Measurement and prediction of pressure drop in two-phase flow,Journal of Chemical Technology and Biotechnology,1995,62:262~278
    [110] Karki K C,Patankar S V,Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations,AIAA Journal,1989,27
    [111]约翰芬纳莫尔,流体力学及其工程应用(钱翼稷,周玉文):机械工业出版社,2006
    [112]魏文韫,高速气雾两相流弛豫过程相间动量传递研究,博士学位论文,四川大学,2002
    [113]孔珑,两相流体力学,北京:高等教育出版社,2000
    [114] Fairuzov Y V,Blowdown of pipelines carrying flashing liquids,AIChE Journal,1998,44(2):245~254
    [115] Landies R L,Solve flashing-fluid critical-flow problems,Chemical engineering,1982,(3):79~82
    [116]姚玉英,化工原理,天津:天津科学技术出版社,2001
    [117] Taylor A M K P,Whitelaw J H,Yianneskis M,Curved ducts with strong secondary motion:velocity measurements of developing laminar and turbulent flow,Transactions of the ASME,1982,104:350~359
    [118]孙东亮,陶文铨,高密度和高粘度比率下气液两相流动的数值模拟,工程热物理学报,2007,28(4):667~669
    [119]谷芳,规整填料局部流动与传质的计算流体力学研究,博士学位论文,天津大学,2004
    [120]刘德新,精馏塔板气液两相流体力学和传质CFD模拟与新塔板的开发,博士学位论文,天津大学,2008
    [121]魏峰,新型高效规整填料的CFD研究及在硼同位素分离中的应用,博士学位论文,天津大学,2008
    [122]张友波,李长俊,杨静,油气混输管流中压降和持液率的影响因素分析,天然气与石油,2005,23(5):9~12
    [123]中国石化集团洛阳石油化工工程公司,40B229-1998,常压和减压转油线管道设计技术规定,
    [124]杨伯极,减压转油线改造的必要性,炼油设计,1992,(3):52~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700