CO_2滚动转子膨胀机内部相变膨胀过程机理分析与可视化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对CO_2带膨胀机制冷热泵循环中的关键问题,重点研究了该工质在膨胀机中的内部相变膨胀过程的理论分析和试验观察。
     论文首先从“基团贡献法”的研究思路出发,将常规复杂的GWP值计算方法进行了简化,进而对一些复杂结构的工质的GWP进行了估算,计算结果与给出的参考数据基本一致。说明宏观性质GWP是物质微观各部分基团性质的综合表现,有利于对未来合成的新制冷剂的GWP性质作出预测性判断。基于对制冷剂各种性能评价标准的对比分析,论文对制冷剂提出了“自然度”评价标准的概念,并从可持续发展的观点,对未来制冷剂发展方向进行了分析预测,明确了未来制冷剂主要的发展方向应该是CO_2等自然工质。
     论文认为CO_2膨胀机是提高CO_2热泵系统性能的关键部件之一,膨胀机内部膨胀过程涉及从超临界到亚临界并有相变,有复杂的机理。本文从理论分析的角度,对膨胀机内部相变过程进行了探讨。根据调研的相关理论,从不同模型中进行分析对比,提出了一种新的综合理论和模型。论文根据提出的综合模型对膨胀机的相变膨胀过程进行了模拟计算,从参数变化以及汽泡驱动力将膨胀过程进行了简化,划分为三个阶段,分别为初始核化、自由膨胀和有限膨胀阶段,计算结果表明与观测数据能够吻合保持一致。
     为直接观察到CO_2膨胀机内部快速降压的全过程,本文设计了两种可视化的实验装置。第一个装置是高压CO_2快速降压试验试块,为区分汽泡和油滴,在润滑油中添加荧光示踪剂,采用高速摄影仪对CO_2与润滑油混合物的快速降压过程进行试验观测。研究发现:降压速率越大,产生的汽化核心数越多,形成的稳定汽泡直径越小。第二个装置是对原CO_2滚动活塞膨胀机进行了改造,添加了内部LED光源,并在汽缸上加工安装耐压石英视窗,对膨胀机端盖及活塞进行了精加工研磨目的为了增加其反光性,实现了膨胀机内部相变膨胀过程高速摄影观测,拍摄了大量膨胀机内部CO_2相变过程的连续图片,通过图像处理可跟踪单个汽泡的行踪,为膨胀过程的理论分析提供实测数据。
     最后,根据相变成核理论和增加分子聚集度的可能,考虑跨临界循环不存在制冷剂凝结过程,在系统中注入“不凝性气体”,对压缩过程和放热过程没有负面影响,对膨胀过程和蒸发过程增加体相内的汽化核心数,起到正面作用。通过分别添加适当比例两种“不凝性气体”试验结果来看,都对膨胀机的膨胀功回收性能有所提升。
Based on the key issues of CO_2 heat pump cycle system with expander, paper focuses on researching the theoretical analysis and experimental observation of internal phase change and expansion process in expander.
     The conventional complex calculation approach of GWP value had been simplified on basis of“group contribution method”, and the GWP value of complex structure refrigerants were estimated by use of this method. The results are consistent with reference datum. The analysis approach, some macro nature is comprehensive contribution performance of group characters, was conducive to predict and judge the future uncertain nature of the new refrigerant. According to the evaluation standards comparative analysis of refrigerants various performance, paper suggested the“nature”evaluation criteria concept for refrigerants. And based on the view of sustainable development point, the future development direction of refrigerant was analyzed and predicted. It is established that CO_2 etc natural refrigerants should be the main development direction of the refrigerant.
     Paper regards as CO_2 expander is one of the key components for improving the performance of CO_2 heat pump system, internal expansion in expander involves the transformation from the supercritical to subcritical, so it has the complex mechanism. Therefore, paper discussed phase transition process in expander, firstly from the view of theoretical analysis. a new integrated suitable theory andmodel was put forward based on the relevant theories and different models. According to the integrated model, Papers simulated and caculated the phase transition and expanding process of expender, the expanding process had been divided into three stages according to parameters change and bubble-driven force: initial nucleation, free expansion and limited expansion; each stage could been analyzed by use of their own models, and thereby the whole research process of expansion could be simplied. The results show that the theoretical calculations value was anastomotic consistant with the visual observational datum.
     In order to directly observing the whole rapid decompression process in expander, paper designed two visual experimental devices. One is high-pressure CO_2 test block. To distinguish between lubricant drip and bubble, the fluorescent tracer is added to the mixture. The decompression process of CO_2 and PAG lubricant mixture solution was experimental observed using high speed camera. The research results found that greater decompression rate, more nucleation rate, and smaller diameter of the stability bubble. The other is the rebuilded CO_2 rolling piston. The LED light source were added in expander, and the internal high-pressure quartz windows was installed on cylinder, and the cover and piston of expander were processed and grinding in order to increase those reflectance. The high-speed photographic observation of internal phase change and expansion process was carried out. A lot of continuous picture of internal phase change process in expander were obtained, and the track a singe bubble could be caught through image processing. It provided the measured datum for the theoretical analysis of expansion process
     Finally, considering that there is not refrigerant condensation process in transcritical cycle,“non condensable gas”is appended CO_2 expander on the view of phase change and nucleation theory. It has no negative impact on compression and heat process, and plays a positive role as increasing nucleation of bulk phase in expansion and evaporation process. From the experimental test results of adding the appropriate ratio of two“no condensable gas”, the methods had improved the performance of expander.
引文
[1]中国气候变化信息网,中国应对气候变化国家方案,国家发展和改革委员会国家气候变化对策协调小组,2007,6,4
    [2] J.M.Calm and G.C.Hourahan, refrigerant data summary [J], Engineered Systems, 2001,18(11):74~88
    [3] J.M.Calm and G.C.Hourahan, Refrigerant data update [J], Heating Piping Air Conditioning Engineering, 2007,79(1):50~64
    [4]田华,马一太,欧洲准备禁氟及对策[C],中国制冷学会2007年学术年会
    [5]马一太,杨昭,我国R22等HCFCs制冷剂的现在与未来[C],中国制冷学会2007年学术年会
    [6] J.Paul, State-of-the-art for cooling with“Water as Refrigerant”[C], International Congress of Refrigeration, 2007
    [7] O.Jonassen, A residential ammonia heat pump-comparison with non-natural refrigerants for two different heat sources [C], 7th IIR Gustav Lorentzen Conference on Natural Working Fluids, 2006
    [8] A.D.PASEK, Flammability and performance test of R-290/R134a mixtures for HCFC-22 replacement [C], 7th IIR Gustav Lorentzen Conference on Natural Working Fluids, 2006
    [9]刘胜春,马一太,CO_2热泵热水器实验研究[J],天津大学学报,2008,41(2):238~242
    [10] P.HRNJAK,Natural working fluids: development and future prospective with emphasis on carbon dioxide issues [C],7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [11]邓建强,姜培学,跨临界CO_2汽车空调微通道气体冷却器的设计开发[J],制冷学报,2005,26(4):51~55
    [12] K.ENDOH,Instant hot water supply heat pump water heater using CO_2 refrigerant for home use [C],7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [13] Samer Sawalha, Theoretical evaluation of trans-critical CO_2 systems in supermarket refrigeration. Part I:Modeling, simulation and optimization of two system solutions [J],International Journal of Refrigeration, 2008,31(4):516~524
    [14] C.Rohrer, Transcritical CO_2 bottle cooler development [C], 7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [15]马一太,杨俊兰,CO_2跨临界循环吸气过程换热性能理论分析[J],热科学与技术,2003,4:
    [16]杨俊兰,CO_2跨临界循环系统及换热理论分析与实验研究[D],天津大学博士学位论文,天津,2005
    [17]丁国良,CO_2制冷技术新发展[J],制冷空调与电力机械,2002,86(23):1~6
    [18] Purdue University, Evaluation of the performance potential of CO_2 as a refrigerant in air-to-air air conditioners and heat pumps system modeling and analysis [R], ARTI-21CR, 2003
    [19]孙方田,含油超临界CO_2冷却换热理论与实验研究[D],天津博士学位论文,天津,2007
    [20] Neeraj Agrawal and Souvik Bhattacharyya, Studies on a two-stage transcritical carbon dioxide heat pump cycle with flash intercooling [J], Applied Thermal Engineering, 2007,27(3):299~305
    [21]李敏霞,二氧化碳跨临界循环转子式膨胀机的分析与实验研究[D],天津大学博士学位论文,2003
    [22] S.Elbel and P.Hrnjak, Experimental validation and design study of a transcritical CO_2 prototype ejector system [C], 7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [23] Jian-qiang Deng and Pei-xue Jiang, Particular characteristics of transcritical CO_2 refrigeration cycle with an ejector [J], Applied Thermal Engineering, 2007,27(3):381~388
    [24]杨俊兰,CO_2跨临界两级压缩及膨胀机循环的性能分析[J],天津大学学报, 2005,11:996~1000
    [25]管海清,CO_2跨临界循环膨胀机理与转子式膨胀-压缩机研究[D],天津大学博士学位论文,天津,2005
    [26] Fukuta M, Performance and characteristics of compressor/expander combination for CO_2 cycle [C], Proc. of the 7th IIR Gustav-Lorentzen Natural Working Fluids Conf, 2006:4.1
    [27] Beak JS, Groll EA, Lawless PB, Development of a piston-cylinder expansion device for the transcritical carbon dioxide cycle [C], Proc. of 9th Int. Refrig. and Air Conditioning Conf. at Purdue, 2002,:R11-8
    [28] Heyl P, Free piston expander-compressor for CO_2 design, applications and results [R], http://www.tu-dresden.de/mw/iem/kkt/mitarbeiter/lib. 2003.5
    [29] Quack H, Kraus WE, Nickl J, Will G, Integration of a three-stage expander into a CO_2 refrigeration system [C], Proc. of the 6th IIR Gustav-Lorentzen Natural Working Fluids Conf, 2004: 4/A/12.20
    [30] Z.Bo and P.Xueyuan, Design and experimental validation of the slider-based free piston expander for trancritical CO_2 refrigeration cycle [C], 7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [31] Huff HJ, Radermacher R, Preissner M, Experimental investigation of a scroll expander in a carbon dioxide air-conditioning system [C], Proc. of the 21st IIR Int. Congr. of Refrig, 2003: ICR485
    [32]魏东,二氧化碳跨临界循环换热与膨胀机理的研究[D],天津大学博士学位论文,天津,2002
    [33]査世彤,二氧化碳跨临界循环膨胀机的研究与开发[D],天津大学博士学位论文,天津,2003
    [34] Maurer T., Zinn T. Experimentelle Untersuchung von Entspannungsmaschinen mit mechanischer Leistungsauskopploung fuer die transkritische CO_2-Kaeltemaschine. DKV Tagungsbericht Berlin, 1999,26(1):304-318.
    [35] Tondell E, Impulse expander for CO_2 [C], 7th IIR Gustav Lorentzen conference on natural working fluids, Trondheim, Norway, 2006:107-110
    [36] Bjφrn F. Feasibility study of using centrifugal compressor and expander in a car conditioner working with carbon dioxide as refrigerant [R], ACRC CR-23. http://acrc.me.uiuc.edu/publications.asp?type=contract&page=2
    [37] Boyer C, Duquenne A.M, Measuring Techniques in Gas-Liquid and Gas-Liquid-Solid Reators [J], Chem. Eng. Sci, 2002(57):3185~3215
    [38] R.Grousson and S.Mallick, Study of flow patten in a fluid by scattered laser light, 1977, 16:2334~2353
    [39] M.Reeves, C.P.Garner and J.C.Dent, Particle image velocimetry analysis of IC engine in-cylinder flows [J], Optics and Laser in Engineering, 1996, 25(6):415~432
    [40] J.Li and G.P.Peterson, Boiling nucleation and two phase flow patterns in forced liquid flow in microchannels [J], International Journal of Heat and Mass Transfer, 2005,48(24):4797~4810
    [41] Triplett K A, Gas-liquid two-phase flow in microchannels.Part 1, Two-phase flow patterns [J], International Journal of Multiphase Flow, 1999, 25(3):377~394
    [42] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a,R125, R32, R410A, R236ea) in a horizontal smooth tube [J]. Int. Journal of Refrigeration, 2001, 24(1):74~88.
    [43] Thome JR and El Hajal J, Flow boiling heat transfer to carbon dioxide: General prediction method [J], Int. Journal of Refrigeration, 2004, 27: 294~301
    [44] Thome JR and El Hajal J, Two-phase flow pattern map for evaporation in horizontal tubes: Latest version [C], First International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Kruger Park, South Africa, 2002: 182~188
    [45] A.Cavallini and L.Doretti, Experimental investigation into two-phase flow patterns a herringbone microfin tube [C], International Congress of Refrigeration, 2007
    [46] Bredesen AM and Hafner A, Heat transfer and pressure drop for in-tube evaporation of CO_2 [C], Proc. of Int. Conference on Heat Transfer Issues in Natural Refrigerants, University of Maryland, 1997:1~15
    [47] H?gaard Knudsen HJ and Jensen PH, Heat transfer coefficient for boiling carbon dioxide, Proc. of Int. R&D on Heat Pump, Air Conditioning and Refrigeration Systems, Gatlinburg, TN, USA, 1997:113~122
    [48] Lixin Cheng and Gherhardt Ribatski, New prediction methods for CO_2 evaporation inside tubes: Part I- A two phase flow pattern map and a flow pattern based phenomenological model for two phase flow frictional pressure drops [J], International Journal of Heat Mass Transfer, 2008,51:111~124
    [49] Dieter Gorenflo and Stephan Kotthoff, Review on pool boiling heat transfer of carbon dioxide [J], International Journal of Refrigeration, 2005,28:1169~1185
    [50] Chaobing Dang and Koji Iino, Study on two phase flow pattern of supercritical carbon dioxide with entrained PAG type lubricating oil in a gas cooler [J], Int. Journal of Refrigeration, 2008:1~8
    [51] Serizawa Akimi, Two-phase flow in microchannels [J], Experimental Thermal and Fluid Science, 2002, 26(6):703~714
    [52] Lee Jaeseon, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling application. Part 1:Pressure drop characteristics [J], International Journal of Heat and Mass Transfer. 2005, 48(5):928~940
    [53] Kawahara A, Inverstigation of two-phase flow pattern, void fraction and pressure drop in a microchannel [J], International Journal of Multiphase Flow, 2002, 28(9):1411~1435
    [54] Ribatski Gherhardt, An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels [J], Experimental Thermal and Fluid Science, 2006, 31(1):1~19
    [55] Petterson, J., Two-Phase Flow Pattern, Heat Transfer, and Pressure Drop in Microchannel Vaporization of CO_2 [C], ASHRAE Transactions, 2003
    [56] Y. Zhao, and M.M. Ohadi, Flow boiling of CO_2 in microchannels [C], ASHRAE Trans., 2000: 437~445
    [57] B.B. Mikic and W.M. Rohsenow, On bubble growth rates [J], International Journal of Heat and Mass Transfer 1970, 13(4): 657~666
    [58] Klausner J F, Mei R, Bernhard D M, Vapor bubble departure in forced convection boiling [J], International Journal of Heat and Mass Transfer, 1993, 136(3):651~662
    [59] Karine Loubiere, Gilles Hebrard, Bubble formation from a flexible hole submerged in an inviscid liquid [J], Chemical Engineering Science, 2003,58:135~148
    [60] Susan Daniel and Manoj k. Chaudhury, Fast Drop Movements Resulting from the Phase Change on a Gradient Surface [J], Science, 2001, Vol.291, pp: 633~636
    [61] N.A.Kazakis and A.A.Mouza, Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution [J], Chemical Engineering Journal, 2008,137: 265~281
    [62] Valerie J.Anderson, Insights into phase transition kinetics from colloid science [J], Nature, 416:811~815
    [63] S.ELBEL, P.HRNJAK, Experimental investigation of transcrital CO_2 ejector system performance [C], International Congress of Refrigeration 2007
    [64] Ioannis Tsivintzelis, Foaming of polymers with supercritical CO_2: An experimental and theoretical study [J], Polymer, 2007(48): 5928~5939
    [65] C.Dang and I.Koji, Study on two-phase flow pattern in gas cooler of supercritical carbon dioxide entrained with PAG-type lubrication oil [C], International Congress of Refrigeration, 2007
    [66] James M.Calm, Resource, Ozone, and global warming implications of refrigerant selection for large chillers [C], International Congress of Refrigeration, 2007
    [67] Working groups of IPCC, Safeguarding the Ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocabons [R], IPCC special report, 2005
    [68] Working groups of IPCC, Technical summary on climate change [R], IPCC, 2007
    [69] World Meteorological Organization, Global Ozone research and monitoring project-scientific assessment of Ozone depletion: 2006 [R], National Oceanic and Atmospheric Administration, 2007
    [70]周公度,无机结构化学[M],无机化学丛书,第11卷,31,北京:科学出版社,1982
    [71] Dewar M J著.戴树珊,刘有德译,有机化学分子轨道理论[M],北京:科学出版社,1979
    [72] Stig Rune Sellevag, Atmospheric gas-phase degradation and global wariming potentials of 2-fluoroethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol [J], Atmospheric Environment, 2004,38:6725~6735
    [73]史琳,朱明善,LCCP,一种全球气候变暖影响的评价指标[J],暖通空调,2004,10:33~38
    [74]现有建筑物改造、运行和维护的绿色建筑物评估体系2.2版[R],美国绿色建筑委员会,2007
    [75]于渌,郝柏林,相变与临界现象[M],北京:科学出版社。1984
    [76] L.E,统计物理现代教程[M],黄田匀译,北京:北京大学出版社,1983
    [77]彭晓峰,田勇,微尺度条件小气液相变的若干问题浅析[J],西安交通大学学报,2003,37(7):661~665
    [78]任欧旭,气-液-固三相循环流化床中汽泡行为研究[D],河北工业大学硕士学位论文,天津,2003
    [79]王浩,自然界临界现象的数值模拟及其应用[D],重庆大学硕士学位论文,天津,2005
    [80] Thomas R.Palmer,Rapid transient two-phase flow of vaporizing liquids containing dissolved Gas [D],Lehigh University,2001
    [81]刘朝,曾丹苓,快速降压下过热液中汽泡的生长[J],工程热物理学报,1998,19(1):1~4
    [82]曾宪阳,CO_2跨临界循环滚动活塞膨胀机和涡旋压缩机的研究[D],天津大学博士学位论文,天津,2006
    [83]刘朝,亚稳态过热液体特性及降压自蒸发过程中汽泡生长规律的研究[D],重庆大学博士学位论文,重庆,1997
    [84] Bosnjakaric.F, Verdampfunj und flussigkeit suber hitzung [J], Tech.Mech. Thermodyn, Berlin, 1930(1):358~400
    [85] Plesset.M.S and Zwick.S.A, The growth of bubbles in superheated liquid [J], Appl.Phys, 1952(25): 493~500
    [86] Birkhoff.G, Spherical bubble growth [J], Phys.Fluids, 1958(1): 201~204
    [87] Scriben.L.E, On the dynamics of phase growth [J], Chem.Eng.Sci, 1959(10): 1~13
    [88] Forster.H.K and Zuber.N, Growth of a vapor bubble in a superheated liquid [J], Appl.Phys, 1954(25): 474~478
    [89] Bankoff.S.G, Asymptotic Growth of a bubble in a liquid with uniform initial superheat [J], Appl.Sci.Res, 1963(12):267~281
    [90] Kwang Jin Oh, Molecular Theory and computer simulation of vapor phase nucleation [D], University of Nebraska, 2000
    [91] Kinjo T, Matsumoto M, Caviation processes and negative pressure [J], Fluid Phase Equilibrium, 1998,144(2):343~350
    [92] Maruyama S, Molecular dynamics method for microscale heat transfer [J], Advances in Numerical Heat Transfer, 2000, 2:189~226
    [93] Shen V K, Debenedetti P G, A computational study of homogeneous liquid vapor nucleation in the Jennard-Jones fluid [J], Journal of Chemical Physics, 1999,111(8):3581~3589
    [94]王金照,汽泡成核的分子动力学研究及纳米颗粒对成核的影响[D],清华大学博士论文,北京,2004
    [95] Shigeo Maruyama, Chapter Six: Molecular dynamics method for microscale heat transfer [M], Advances in Numerical Heat Transfer, New York, 2000:189~226
    [96] Ford I J.Thermodynamic properties of critical clusters from measurements of vapor-liquid homogeneous nucleation rates [J].J Chem Phys,1996,105(18):8324~8332
    [97]童景山,聚集力学原理及其应用[M],高等教育出版社,北京,2006
    [98]田勇,王晓东,彭晓峰,气液相变过程亚稳态体相内部界面分析[J],工程热物理学报,2004,12(1):100~102
    [99]马秋林,彭晓峰,凝固成核的团聚分析探讨[J],工程热物理学报,2004,25(6):992~994
    [100] Lin Zhuo, A critical reexamination of the fundamentals of classical nucleation theory [D], Yale University, 2005
    [101] XiaoBing Liu, Nucleation of gas-supersaturated liquids [D], Michigan State University, 2001
    [102] Greiner and Walter,钟云霄译,热力学与统计力学[M],北京大学出版社,北京,2001
    [103] Frenkel, Daan, Understanding molecular simulation from algorithms to applications [M], Academic Press, 1996
    [104]曾丹苓,敬成君,利用涨落理论确定液体的极限过热度[J],中国科学,1995,25(10):1075~1081
    [105]刘朝,曾丹苓,快速降压下过热液中汽泡的生长[J],工程热物理学报,1998,19(1):1~4
    [106] Christopher Earls Brennen, Cavitation and bubble dynamics [M], Oxford University Press, 1995
    [107] H. Kwak, S. Lee, J. Heat Transfer[M], 1994
    [108]彭少方,张昭,线性和非线性平衡态热力学进展和应用[M],化学工业出版社,2006
    [109] Jones.S.F and Evan.G.M, Bubble nucleation from gas cavities-a review [J], Advances in Colloid and Interface Science, 1999, 80(1):27~50
    [110] Vincent K.Shen and Pablo G.Debenedetti, A kinetic theory of homogeneous bubble nucleation [J], Journal of Chemical Physics, 2003,118(2):768~783
    [108] Kwak H Y and Panton R L, Gas bubble nucleation in nonequillibrium water-gas solutions [J], Journal of Chemical Physics, 1983, 78(9):5795~5799
    [110] Kwak H Y and Lee S B, Homogeneous bubble nucleation predicted by a molecular interaction model [J], Journal of Heat Transfer-Transactions of ASME, 1991, 113:715~721
    [113] Kwak H Y and Panton R L, Tensile strength of simple liquids predicted by a model of molecular interactions [J], Journal of Physics D: Applied Physics, 1985,18(4) :647~659
    [114] Pankaj A.Apte, Phase equilibria nucleation in condensed phase: a statistical mechanical study [D], Ohio State University, 2006
    [115] Kwak H Y, Quantum nucleation of bubbles in liquid helium [J], Journal of Physical Society of Japan, 2002,71(9):2186~2191
    [116] Avedisian C.T, Modeling homogeneous bubble nucleation in liquids [C], Modeling of Heat Transfer Phenomena Southampton, 1999:327~368
    [117]曾丹苓,一个基于非平衡热力学理论的核沸腾汽泡长大的数学模型,工程热物理学报,1995,15(1):9~12
    [118]董磊,林文胜,过热液氦均匀核化速率的确定[J],低温技术,2006,32(2):109~113
    [119] Kwak H Y and Oh S D, Gas-vapor bubble nucleation-a unified approach [J], Journal of Colloid and Interface Science, 2004, 278:436~446
    [120]邢子文,吴华根,束鹏程,螺杆压缩机设计理论与关键技术的研究和开发[J],西安交通大学学报,2007,41(7):763~770
    [121]刘直芳,数字图像处理与分析[M],清华大学出版社,北京,2006
    [124] Rafael C.Gonzalez and Richard E.Woods, Digital Image Processing Using MATLAB [M], Prentice Hall, 2004
    [125] Mary Ruth, Nucleation in liquid-liquid miscibility gap systems [D], Clarkson University, 1991
    [126] Joseph Kestin, A course in thermodynamics [M], McGraw-Hill, New York, 1979: 303~314
    [127] J.H.Lienhard and N.Shamsundar, Spinodal lines and equations of state: a review [J], Nuclear Enging, 1986,95: 297~314
    [128] Md.Alamgir and C.Y.Kan, An experimental study of the rapid depressurization of hot water [J], Journal of Heat Transfer, 1980,102:433~438
    [129] C.D.Sulfredge and K.A.Tagavi, Homogeneous nucleation of vapor by depressurization at constant volume [J], International Journal of Heat and Mass Transfer, 1996,39(2): 235~246
    [130] Han S and Kennedy P, Numerical analysis of microcellular injection molding [J], Journal of Cellular Plastics, 2003,39: 475~485. 2003
    [131] Pai V and Favelukis M, Dynamics of spherical bubble growth [J], Journal of Cellular Plastics, 2002,38: 403~419
    [132] Deming Mao and Jack R.Edwards, Prediction of foam growth and its nucleation in free and limited expansion, Chemical Engineering, 2005,61: 1836~1845
    [133] Favelukis M and Zhang Z, On the growth of a non-ideal gas bubble in a solvent-polymer solution [J], Polymer Engineering and Science, 2000,40:1350~1359
    [134] N.G.Lensky and O.Navon, Bubble growth during decompression of magma: experimental and theoretical investigation [J], Journal of Volcanology and Geothermal Research, 2004,129:7~22
    [135] Marcus Preissner,Carbon dioxide vapor compression cycle improvements with focus on scroll expanders [D], University of Maryland, 2001
    [136] Guan Haiqing and Ma Yitai, Some design features of CO_2 swing piston expander [J], Applied Thermal Engineering, 2006,26:237~243
    [137] Hans-Joachim Huff and Reinhard Radermacher, CO_2 compressor-expander analysis-Final report [R], Department of Mechanical Engineering University of Maryland, 2003
    [138] Juan Carlos de la Rosa, Jose L. Munoz-Cobo and Alberto Escriva, Non-iterative model for condensation heat transfer in presence of non-condensable gases inside passive containment cooling vertical tubes [J], Nuclear Engineering and Design 2008, 238: 143~155
    [139] H.L.Wu, X.F.Peng, P.Ye and Y.Eric Gong, Simulation of refrigerant flow boiling in serpentine tubes [J], Int. Journal of Heat and Mass Transfer, 2007,50:1186~1195
    [140] Jun Li and Henrique A.Matos, Two phase homogeneous model for particle formation from gas-saturated solution processes [J], Journal of Supercritical Fluids, 2004,32:275~286
    [141] Volmer M and Weber A, Keimbildung in¨ubers¨attigten Gebilden [J], Z. Phys. Chem., 1925,119:277~301
    [142] Federica Trudu Dornbierer, Computer simulation study of homogeneous nucleation in Lennard-Jones fluid [D], Swiss Federal Institute of Technology, 2006
    [143] James E.Gardner, Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure [J], Chemical Geology, 2007,236: 1~12
    [144] J.Li and G.P.Peterson, Microscale heterogeneous boiling on smooth surfaces-from bubble nucleation to bubble dynamics [J], International Journal of Heat and Mass Transfer, 2005,48: 4316~4332