渗滤取水技术在海水源热泵系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水温度是决定海水源热泵空调系统的重要参数。天津沿海地质为典型的淤泥质海岸,近海岸海水较浅,冬季海水温度较低,因此不宜直接用作为海水源热泵空调系统的热源/汇。海岸井渗滤取水技术在海水源热泵空调系统中的应用有助于解决上述一系列问题。
     以海岸井渗滤取水技术在海水源热泵空调系统中的应用为工程背景,重点研究两方面的内容,即有界含水层中完整海岸井取水系统渗流换热性能的实验研究与相关理论研究。现场搭建海岸井渗滤取水实验系统,进行抽水和停水实验,并在此基础上对实验数据进行处理,得到一些基本的水文地质参数和渗流过程中海水与土壤换热的特点,为理论建模提供必要的数据资料,同时也为数值理论模型验证提供依据。结合实验系统,在多孔介质渗流换热理论的基础上,建立物理模型和数学模型,并采用数值模拟软件Fluent,对发生在海水渗流换热过程的地下渗流场和温度场变化进行理论分析,为进一步探讨海岸井取水系统的渗流换热性能奠定基础。在经验证的理论模型上,通过变换各个单值性条件参数,对该系统渗流换热特点进行深入研究,并提出有限含水层中完整海岸井渗滤取水系统的优化设计建议。最后将海岸井渗滤取水技术和实际海水源热泵空调工程相结合,设计经优化后的取水系统,并对供水水温作出冬夏季预测,进而在其基础上分析采用海岸井渗滤取水技术的海水源热泵空调系统的经济性,为其它类似工程提供设计参考依据。
     研究结果表明,海岸井渗滤取水可以为海水源热泵空调系统在冬季提供较地表海水温度高的热源,夏季较地表海水温度低的热汇,因此采用渗滤取水比直接取水的海水源热泵空调系统运行效率高。通过对海岸井渗滤取水系统的优化设计,可以减少系统综合成本。此外,渗滤取水水质较好,可以不用进行防海生物处理和减少对海水含砂量的处理,有利于节约海水预处理费用。在环境影响方面,渗滤取水比直接表面取水对海水自然水体的影响小。
Sea water temperature is a key parameter for seawater source heat pump system. The Tianjin coastal zone is of typical silty coast features. The sea water near the coast is shallow and its temperature is low in winter, which make the seawater unfit to be directly used as heat source or sink for heat pump system. Application of beachwell intake technology helps to solve these problems.
     Based on the application of beachwell infiltration intake technology in seawater source heat pump system, two aspects will be studied, including experimental and theoretical researches on seepage and heat transfer characteristics of fully penetrating beachwell infiltration intake system in confined aquifer. Pumping tests are conducted on beachwell infiltration intake system on site. Based on the experimental results, heat transfer performance between sea water and soil in the course of seepage and some hydrogeological parameters can be obtained. These results provide data information not only for establishing theoretical model but also verifying the model. Based on the heat transfer and seepage theory of porous medium and the built-up test system, physical and mathematical model is set up and solved by using Fluent code to study on the seepage field and temperature field in the course of seawater flowing through the aquifer, which builds the basis for further investigations on the characteristics of seepage and heat transfer. Based on the verified theoretical model, simulations are conducted with changing single condition of the theoretical model for further investigations on its characteristics of seepage and heat transfer and providing optimization proposals of this system. In the end, the beachwell infiltration intake technology is applied in a seawater source heat pump project. An optimized intake system for this project is designed and the supplied water temperatures in winter and summer are predicted. Then economic analysis is made on this heat source/sink, which provides design reference for other similar projects.
     The results show that the beachwell infiltration intake system can provide higher temperature heat source in winter or lower temperature heat sink in summer for seawater source heat pump system, which ensures more effective and reliable operation of heat pump system than directly intake system. Optimizing the beachwell intake system, the composite costs can be lower. Additionally, water quality of beachwell infiltration system is better than surface sea water. Marine organism adherence prevention can not be used and sand removing can be reduced, which help to lower the seawater pretreatment costs. In environmental impact aspect, beachwell intake system is also better than direct intake system.
引文
[1]中华人民共和国建设部.地源热泵系统工程技术规范GB 50366-2005[S]. 2006, 25 (3): 34-38.
    [7] Li Zhen, Duan M L, Shu H W et al. District cooling and heating with seawater seawater installed in an aquarium [J]. Energy and Buildings, 2006, 38 (2): 2005.
    [2]邓波,龙惟定,冯小平.大型地表水源热泵在上海世博园区域供冷系统中的应用[J].建筑热能通风空调,2007,26(6):95-97.
    [3]黄忠,刘宪英,霍建辉.重庆某江水源热泵空调工程[J].暖通空调. 38(2):101-104.
    [4]朱金鸣,项硼中.江水源热泵在上海十六铺工程中的应用[J].暖通空调,2007,37 (2):88-93.
    [5]陈晓,张国强,彭建国等.开式地表水源热泵在湖南某人工湖的应用研究[J].制冷学报,2006,27(3):10-13.
    [6]张莉,胡松涛.海水作为热泵系统冷热源的研究[J].建筑热能通风空调,as heat source and sink in Dalian [J]. Renewable Energy, 2006, 32 (15): 2603-2616.
    [8]金权,寇伟,王文桐等.大连某港口候船楼海水源热泵系统的技术经济分析[J].建筑科学,2007,23(10):103-108.
    [9]于奎明.海水源热泵机组在建筑中的应用[J].中国建设信息供热制冷,2007,4:49-50.
    [10] Friotherm A G. V?rtan Ropsten—The Largest Seawater Heat Pump Facility Worldwide, With 6 Unitop 50FY and 180MW Total Capacities [EB/OL]. http://www.friotherm.com/downloads/ vaertan_e008_uk.pdf, 2009.4.
    [11] Satoru Okamoto. A heat pump system with a latent heat storage utilizing121-128.
    [12] Buyukalaca O, Ekinci F, Yilmaz T. Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump [J]. Energy, 2003, 28 (2): 157-69.
    [13] Tresch R. Thermal energy from the River Limmat [J]. Sulzer Technical Review, 1989, 71 (2): 14-18.
    [14] Jones A T. Campbell R L. Sea water desalination: a generalized model for feedwater intakes [C]. OCEANS 2005, Proceedings of MTS/IEEE. 2005, 3: 2647-2651.verview of seawater desalination intake issues [EB/OL].     [19] Nikolay Voutchkov. Beach wells vs. open surface intake [J]. Water and water International, 2004, 19 (4): 22-23 .
    [20] Nikolay Voutchkov. SWRO desalination process: on the beach-seawater intakes -204. erse osmosis desalination system [J]. Desalination, 2004, 165: 133-139.肖益民,陈金华,刘勇.开式地表水地源热泵取排水方式研究[J].暖兴义.辐射式渗滤井取水工程[J].四川电力技术,2001,4:31-32.水设计一例[J].中国农村水利水电,
    [28]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [29]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.
    [30]司广树,姜培学,李勐.单相流体在多孔介质中的流动和换热研究[J].承德石油高等专科学校学报,2000,2(4):4-9.
    [31] K. Vafai, C.L. Tien. Boundary and inertia effects on flow and heat transfer in porous media [J]. International Journal of Heat and Mass Transfer, 1981, 24 (2): 195-203.
    [15] Tom Pankratz. An overview of seawater intake facilities for seawater desalination [EB/OL]. http://texaswater.tamu.edu/readings/desal/Seawaterdesal. pdf.
    [16] Tom Pankratz. Global o://www%20of%20Intake%20Issues.pdf>. 2008.8.16.
    [17] Thomas Peters, Domènec Pintó. Seawater intake and pre-treatment/brine discharge—environmental issues [J]. Desalination, 2008, 221 (1-3): 576-584.
    [18] S. Bou-Hamad, M. Abdel-Jawad, etc. Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique [J]. Desalination, 1997, 110: 85-92. Waste[J]. Filtration & Separation, 2005, 42 (8): 24-27.
    [21] A.M. Hassan a, A.T.M. Jamaluddin a, etc. Investigating intake system effectiveness with emphasis on a self-jetting well-point (SJWP) beachwell system [J]. Desalination, 1999, 123: 195
    [22] Elham E1-Zanati, Sherif Eissa. Development of a locally designed and manufactured small-scale rev
    [23]王勇,通空调,2008,38(10):124-127.
    [24]胡
    [25]戴陈.渗滤取水(渗流井、辐射井)技术在铁路给水的应用[J].成铁科技,2005,4:39-42.
    [26]陈永红,姜应和.河床渗井取水及供2006,6:29-33.
    [27]陈永红,袁志宇,杨晓敏等.渗滤取水技术在浠水县南城水厂的应用[J]. 2008,6:23-28.
    [32] J.T. Hong, C.L. Tien, M. Kaviany. Non-Darcian effects on vertical-plate natural convection in porous media with high porosities [J]. International Journal of Heat and Mass Transfer, 1985, 28 (11): 2149-2157.
    [33] K. Vafai, R. Thiyagaraja. Analysis of flow and heat transfer at the interface 0 ( 7): 1391-1405. rnal of Heat and Mass P. Cheng, Thermal dispersion in a porous medium [J], International . Lin. Unsteady forced convection heat transfer on a flat Journal of Heat and Mass Transfer, 2002, iz Vafai. Constant wall heat flux boundary conditions in Pedras, Marcelo J.S. de Lemos. Thermal dispersion in porous (21-22): 5359-5367. ble porosity incompressible flow through porous media [J]. Heat and tially filled with a porous material [J]. International Journal of Heat natural convection in a porous medium enclosure [J]. International er Al-Azmi, Alia Marafie, Ioan Pop. Non-Darcian effects Wong, Nawaf H. Saeid. Numerical study of non-Darcian effects on jet impingement cooling in a horizontal porous layer in the mixed convection region of a porous medium [J]. International Journal of Heat and Mass Transfer, 1987, 3
    [34] J.T. Hong, C.L. Tien. Analysis of thermal dispersion effect on vertical-plate natural convection in porous media [J]. International JouTransfer, 1987, 30 (1): 143-150.
    [35] C.T. Hsu, Journal of Heat and Mass Transfer, 1990, 33 (8): 1587-1597.
    [36] Wen T. Cheng, Hsiao Tplate embedded in the fluid-saturated porous medium with inertia effect and thermal dispersion [J]. International 45 (7): 1563-1569.
    [37] Bader Alazmi, Kambporous media under local thermal non-equilibrium conditions [J]. International Journal of Heat and Mass Transfer, 2002, 45 (15): 3071-3087.
    [38] Marcos H.J.media as a function of the solid–fluid conductivity ratio [J]. International Journal of Heat and Mass Transfer, 2008, 51
    [39] A. Amiri, K. Vafai. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variaInternational Journal of Heat and Mass Transfer, 1994, 37 (6): 939-954.
    [40] Y. Ould-Amer, S. Chikh, K. Bouhadef, G. Lauriat. Forced convection cooling enhancement by use of porous materials [J]. International Journal ofFluid Flow, 1998, 19 (3): 251-258.
    [41] M. K. Alkam, M. A. Al-Nimr. Transient non-Darcian forced convection flow in a pipe parand Mass Transfer, 1998, 41 (2): 347-356.
    [42] Wu-Shung Fu, Wen-Wang Ke. Effects of a random porosity model on double diffusiveCommunications in Heat and Mass Transfer, 2000, 27 (1): 119-132.
    [43] Khalil Khanafer, Badon natural convection heat transfer in a wavy porous enclosure [J]. International Journal of Heat and Mass Transfer, 2009, 52 (7-8):1887-1896.
    [44] Kok-Cheongregime [J]. International Communications in Heat and Mass Transfer, 2009, 36 (1): 45-50.
    [45] Po-Chuan Huang, Chao-Fu Yang. Analysis of pulsating convection from two p. Steady-state conjugate natural ous substrate [J]. International Journal of Heat and Mass aximum effect on buoyancy- and Mass Transfer, 2008, 51 blocks in a channel using porous . Xiong. Development of an engineering approach to ces, 2003, 42 (10): 913-919. enard–Marangoni convection in porous media [J], International Journal of Heat and王补宣. [J].上海交通大学薛禹群,谢春红,李勤奋胡雪蛟,吴伟, [J].机械太阳能n模型的解析解[J].中国科学heat sources mounted with porous blocks [J]. International Journal of Heat and Mass Transfer, 2008, 51 (25-26): 6294-6311.
    [46] Abdalla Al-Amiri, Khalil Khanafer, Ioan Poconvection in a fluid-saturated porous cavity [J]. International Journal of Heat and Mass Transfer, 2008, 51 (17-18): 4260-4275.
    [47] Khalil Khanafer, Abdalla Al-Amiri, Ioan Pop. Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porTransfer, 2008, 51 (7-8): 1613-1627.
    [48] P. Kandaswamy, M. Eswaramurthi. Density mdriven convection of water in a porous cavity with variable side wall temperatures [J]. International Journal of Heat (7-8): 1955-1961.
    [49] P.C. Huang, C.F. Yang, J.J. Hwang, M.T. Chiu. Enhancement of forced-convection cooling of multiple heated covers [J]. International Journal of Heat and Mass Transfer, 2005, 48 (3-4): 647-664.
    [50] A. V. Kuznetsov, Mcomputations of turbulent flows in composite porous/fluid domains [J]. International Journal of Thermal Scien
    [51] I.S.Shivakumara, C.E.Nanjundappa, Krishna B.Chavaraddi, Darcy–BMass Transfer, 2009, 52 (11-12): 2815-2823.
    [52]多孔介质中单相对流换热分析的流体渗流模式学报,1999,33(8):966-969.
    [53] .含水层贮热能研究-上海贮能试验数值模拟[J].地质学报,1989,1:73-85.
    [54]杜建华,王补宣.多孔介质单相渗流的热弥散模型工程学报,2001,37(7):9-11.
    [55]陈威,刘伟.多孔介质太阳能集热组合墙的耦合传热与流动分析[J].学报,2008,29(2):220-226.
    [56]蔡睿贤,张娜.多孔介质中自然对流Brinkma(A辑),2002,32(6):566-573.
    [57]候钊.天津软土地基[M].天津:天津科学技术出版社,1987.
    [58] Detlef Gille. Seawater intakes for desalination plants [J]. Desalination, 2003, 156: 249-256.
    [59]刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的境条件下土壤温度日变化的计算模拟[J].太[J].地球学报,2008. .港工技术,津港30万吨级原油码头工程地质勘察报港船闸交通改善工程岩土工程详, 2007, 203电力出版社,初步分析[J].青岛海洋大学学报,2003,33 (1):007-014.
    [60]贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征[J].海洋通报,2002,21(4):1-8.
    [61]刘文通,宋珊.渤海中部海底泥温铅直分布特征以及与水温的关系[J].海洋与湖沼,1993,24(6):584-591.
    [62]范爱武,刘伟,王崇琦.不同环阳能学报,2003,24(2):167-171.
    [63]金旭,陈晓冬,管彦武.气候变化对浅层地温测量影响的改正2004,25(5):579-582.
    [64] Fluent Incorporated. Fluent User’s Guide [M]. Release 6.2.16, 2005.
    [65]吴君华,由世俊.天津地区使用海水源热泵技术可行性研究[C].第十六届暖通制冷学术年会,
    [66]许有师.天津地区采用浅层地能热泵空调系统的技术分析[J].中国建设动态(阳光能源),2007,3:54-55.
    [67]邢恩桥,许国辉,胡光海等.天津沿海地层工程地质性质统计特征[J].海岸工程,2005,24(1):48-52.
    [68]傅瑞清,朱平,杨锦贤.天津南疆港区工程地质层划分及评价[J]1997,4:56-62.
    [69]柴寿喜,席燕林.贝壳地基工程特性研究及工程设计[J].郑州工学院学报,1991,12 (3):104-110.
    [70]丁东,尹延鸿,李晓红.渤海沿岸风暴沉积体的研究[J].黄渤海海洋,2000,18(3):54-60.
    [71]中交第一航务工程勘察设计院.天告[M]. 2005.
    [72]殷缶,梅深.天津加快构建一港多区港口布局[J].水道港口,2009,2:88-88.
    [73]中交天津港湾工程研究院有限公司.天津细勘察. 2007.
    [74] Manuel Fari?as, Luisángel López. New and innovative sea water intake system for the desalination plant at San Pedro del Pinatar [J]. Desalination(1-3, 5): 199-217.
    [75]李云峰.供水水文地质计算[M].北京:地质出版,2007.
    [76]陈雨孙,颜明志.抽水试验原理与参数测定[M].北京:水利1985.
    [77]杜绍敏,姜英俊,王国春.抽水试验中的参数计算问题[J].黑龙江水专学报,1994(4):9-15.及计算在广汉市三星堆水源地on Building Energy and Environment李海山.海水源热泵系统取水技术试验[J],天津大学学g.com/rbwi 46(9):1518-1521. 63-1167. Water, 2007, 45 (5): 525-528. mp systems using groundwater and heat
    [78]石中平.水文地质求参实际问题探讨[J].西安理工大学学报,2002,1(81):84-87.
    [79]张远明.山前冲洪积扇水文地质参数的选择的应用[J].四川地质学报,2001,2(11):39-41.
    [80]刘忠贤,秦毅,赵尔慧.利用单井抽水试验确定含水层系数[J].地下水,1995,17(2):57-58.
    [81] Y. K. Chan, N. Mullineux, J. R. Reed. Analytic solutions for drawdowns in rectangular artesian aquifers [J]. Journal of Hydrology, 1976, 31 (1-2): 151-160.
    [82] Wu JH, You SJ. Experimental research on a seawater-geothermal hybrid system [C]. First Internaional Conference Proceedings, 2008, 1-3: 477-483.
    [83]沈韫元,白玉珍,陈玉梅等.建筑材料热物理性能[M].北京:中国建筑工业出版社,1981.
    [84]吴君华,由世俊,报,2009,42(1):78-82.
    [85]河北省地质局水文地质四大队.水文地质手册[M].北京:地质出版社, 1978.
    [86]同登科,陈钦雷,廖新维等.非线性渗流力学[M].北京:石油工业出版社,2003.
    [87] Richard B Winston. HST3D GUI [EB/OL]. , 1998.
    [88]郑凯,方红卫,王理许.地下水水源热泵系统中的细菌生长[J].清华大学学报,2005,45 (12):1608-1612.
    [89]张远东,魏加华,王光谦.区域流场对含水层采能区地温场的影响[J].清华大学学报(自然科学版) ,2006,
    [90]张远东,魏加华,李宇等.地下水源热泵采能的水-热耦合数值模拟[J].天津大学学报, 2006, 39 (8):907-912.
    [91]张远东,魏加华,汪集旸.井对间距与含水层采能区温度场的演化关系[J].太阳能学报,2006,27(11):11
    [92] Trefry Mike G, Muffels Chris. FEFLOW: A finite-element ground water flow and transport modeling tool [J]. Ground
    [93] Hikari Fujii, Ryuichi Itoi, Junichi Fujii, Youhei Uchida. Optimizing the design of large-scale ground-coupled heat putransport modeling [J]. Geothermics, 2005, 34 (3):347-364.
    [94] Stefano Lo Russo, Massimo Vincenzo Civita. Open-loop groundwater heat pumps development for large buildings: A case study [J]. Geothermics,软件[J].广西地水运移模型[M].北京:中国建筑工业出版社,1990. 01-305.司,HD双温/HT三联供地能热泵机组[EB/OL],(7):1069-1079. tion and Public Health (EPPH2009) Special . Antonopoulos. Evaporation and energy budget 2009.1.24.
    [95]蒋亚萍,陈余道. MODFLOW-一套水文地质学实用计算质,1999,9(3):75-78.
    [96]朱学愚,谢春红.地下
    [97]李素芬,王金香,葛玉林等.热渗耦合作用下U型埋管换热器的数值模拟[J].热科学与技术,2006,5 (4):3
    [98]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [99]吴业正等.制冷与地温技术原理[M].北京:高等教育出版社,2004.
    [100]北京永源热泵有限责任公2009.
    [101] M. M. Kablan. Techno-economic analysis of the Jordanian solar water heating system [J]. Energy, 2004, 29
    [102] Junhua Wu, Shijun You, Haishan Li. CFD-based Prediction on Thermal Pollution [C]. Environmental PolluTrack within iCBBE, 2009, June 14-18.
    [103] Soultana K. Gianniou, Vassilis Zin Lake Vegoritis, Greece [J]. Journal of Hydrology, 2007, 345 (3-4): 212-223.