不同种类植物篱对紫色丘陵区坡耕地农田生态的影响机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用长期定位(8年)的方法,以紫花苜蓿(Medicago sativa)、香根草(Vetiveria zizaniodes)、紫穗槐(Amsopha fruticosa)、多变小冠花(Coronilla varia)、蓑草(Eulaliopsis binata)等植物为研究材料,对不同植物篱模式下的水土流失量、土壤养分在系统内的空间再分配规律、植物篱种植系统的各组分间相互作用及能量利用关系、农田节肢动物多样性变化规律、微生物多样性变化规律等方面内容开展深入研究,为植物篱农作模式优化、新模式创制提供理论依据。主要研究结果如下:
     1.植物篱可以显著减少泥沙流失量和径流量,控制水土流失效果好、见效快;植物篱提升了整个系统能量产投比率,是提高四川丘陵区农业能效的有效措施。豆科饲草植物篱能为地面蜘蛛提供良好的避难场所,地面蜘蛛的活动密度在冬小麦生长季节均显著高于对照,丰富了农田蜘蛛多样性;植物篱显著增加了土壤细菌、放线菌、真菌数量、土壤微生物量碳、氮,提高了土壤氨化作用强度,降低了土壤硝化和亚硝化强度,同时,也丰富了农田微生物遗传多样性。因此,饲草植物篱显著改善了紫色丘陵农区旱坡耕地的农田生态,是适于该区域的可持续高效农作模式。
     2.采用标准土壤侵蚀监测小区和SW40型日记式水位计监测不同植物篱模式下的水土流失量,植物篱可以显著减少泥沙流失量和径流量,8年共减少泥沙165.4-242.8t/hm2,在栽种植物篱的第二年,径流减少63.0%-70.8%,泥沙减少79.1%-85.7%,可见控制水土流失效果好、见效快。种植植物篱后土壤坡度减缓明显,两个地块的小区坡度分别从原来的20°、13°减小为16028'和17011'、10°28'和11°5'。植物篱上部有明显的泥沙堆积,香根草、紫花苜蓿、蓑草植物篱前土壤带平均粘粒含量为29.6%、28.9%、33.1%,分别比带间中部和篱下土壤高6.6%和6.5%、5.9%和9.3%、7.0%和15.0%(相对差异),土壤粘粒在篱前富积,篱下加剧侵蚀,粘粒的富积与侵蚀沿等高线成水平带状分布。土壤有机质、N、P等主要营养元素出现与土壤颗粒相同的分布规律,对K来说,其分布不受植物篱的影响。从土壤养分的绝对数量来看,P呈高度富积,香根草、紫穗槐、紫花苜蓿、蓑草植物篱区坡面平均全磷含量分别达0.105%、0.098%、0.096%、0.090%,分别比初始土壤全磷含量提高了54.1%、44.1%、35.2%、26.8%;而有机质和K则是高度耗竭,所有处理的土壤有机质含量较试验初始时都有降低,其中1号地对照、香根草、紫穗槐植物篱区平均降低了34.3%、25.8%、21.8%,2号地对照、紫花苜蓿、蓑草植物篱区平均降低了25%、21.9%、30.2%,钾也表现出类似情况。
     3.通过连续2年的定位试验,对坡度为8-20°的坡耕地“作物—植物篱”系统能流特征如能结构、能效率进行了研究。结果表明:①“作物—植物篱”系统产出能和输入能的数量和结构的变化主要受到植物篱子系统类型的影响,与大面积坡耕地传统农作物生产系统如“小麦/花生(或玉米)/甘薯”比较:由于果树、草本等植物篱的冠层及根系在形态和空间分布上与作物的异质性,形成了对光、热、水、土、肥等资源的连续、多层次的利用,因此能有效提高系统的光能利用率、人工输入能效率和耕地单位面积总产出能。香根草、紫穗槐、梨间作黄花模式的光能利用率分别提高24.62%、14.78%、15.60%;“作物—草本植物篱”的人工输入能效率提高幅度达67.88%-102.32%;坡度越大,耕地单位面积总产出能相对增幅亦越大,1号地增幅为9.8%-24.6%,2号地和3号地增幅为1.2%-15.61%。与对照相比,所有具有植物篱的种植模式都能极显著减少无机能输入能,减幅达30.0%-41.0%,这有利于降低化肥农药使用量,减少对环境的污染和破坏。②“作物—果树类植物篱”系统输入能总量和有机能输入量大幅度增加,“作物—枣”、“作物—梨/黄花”、“作物—枇杷/黄花”系统输入能和有机能分别增加21.6%和69.8%、43.7%和146.1%、43.5%和146.2%,因此有利于优化输入能结构,促进坡地生态系统良性循环和集约高效农业发展。③选择香根草、紫穗槐、小冠花、紫花苜蓿作为植物篱构成的“作物—草本植物篱”系统,人工辅助能的输入量大幅度下降,由于所需投入能少,有机能耗和无机能耗均低,人工输入能效率很高而生物产量也较高,并且它们提高了与其间作的其他作物的能量产投比,其增幅分别为40.93%、8.21%、39.38%、42.91%,因此提升了整个系统能量产投比率,分别达到64.15%、45.03%、41.50%、40.79%;由于保水固土的生态功能显著,使它能在四川广大山地、丘陵区退耕还林还草工程中发挥重要作用。
     4.2005-2007年两个冬小麦和夏玉米生长季节,在1号试验地(坡度20°)和2号试验地(坡度13°)利用陷阱法对香根草(1号地)、紫穗槐(1号地)、蓑草(2号地)和苜蓿(2号地)4种植物篱类型对农田地面蜘蛛的活动密度(种群密度和活动性的参数)的影响进行了调查。结果表明:植物篱处理植物篱带地面蜘蛛的活动密度在冬小麦生长季节均显著高于对照裸地,植物篱处理植物篱带地面蜘蛛的活动密度在夏玉米生长季节也高于对照裸地,但是只有蓑草和苜蓿植物篱带地面蜘蛛的活动密度显著高于对照裸地。植物篱处理和对照处理之间农田地面蜘蛛的活动密度在冬小麦和夏玉米生长季节均没有显著差异。
     5.通过对不同处理土壤微生物数量、微生物量碳、氮,土壤氨化强度、土壤硝化强度和土壤亚硝化强度进行测定,并采用BOXAIR-PCR和16S rDNA PCR-RFLP研究分离自不同植物篱处理土壤氨化细菌和根瘤菌的遗传多样性,进而对代表菌株测序分析,揭示出不同植物篱对氨化细菌和根瘤菌种群特性的影响。结果表明:种植香根草和紫穗槐植物篱处理土壤细菌、放线菌、真菌数量分别比对照土壤增加了63.43%和36.63%、47.87%和71.89%、74.60%和43.65%;土壤微生物量碳、氮分别增加了90.02%和83.32%,24.97%和45.04%;土壤氨化作用强度分别增加了73.28%和75.65%;而土壤硝化和亚硝化强度则分别降低了26.97%和52.96%、6.46%和22.19%;细菌、根瘤菌的16S rDNA PCR-RFLP分析显示,分离自香根草、植物篱处理的细菌、根瘤菌遗传类型都较对照多,对代表菌株进行的16S rDNA全序列测定结果表现出丰富的遗传多样性。
Though choosing Medicago sativa, Vetiveria zizanioldes, Amorpha fruticosa, Coronilla varia and Eulaliopsis binata as the central materials, soil erosion quantity of different forage dedgerow pattens, the space redistribution law of soil nutrient in the system, the interaction and energy utilization relationship of various components in dedgerow cropping system, diversity change rules of farmland arthropod and microorganism were deeply studied by the method of long-term(eight-year) located, it provided theoretical basis for optimizing and innovating dedgerow agricultural pattern. The results were as follows:
     1.The amounts of runoff and sediment were decreased significantly after planting hedgerows, the effect of controlling soil erosion was good and quick. The energy out-input ratio of whole system was improved by hedgerow, it was a effective measure of improving agricultural energy efficiency in Sichuan hilly area. Leguminosae forage hedgerows provided favorable evacuee shelter for ground-dwelling spiders, whose activity density was significantly improved than in the bare soil strips during the winter wheat season, and the diversity was also enriched. The amounts of soil bacteria, actinomycetes, fungi of the VH and AH treatments, microbial biomass carbon and ammonification activity were increased by hedgerows. So the farmland ecology of purple soil was significantly improved by hedgerows, forage hedgerow system was one of surstainable farming methods in the purple soil area of Sichuan province.
     2. Using the standard soil erosion monitoring plot and the SW 40 diary water level recorder to monitor the effect of different hedgerows against the control treatment on soil erosion and fertility. Results showed that, the amounts of runoff and sediment were decreased significantly after planting hedgerows,165.4-242.8 t/hm2 sediments were totally reduced in 8 years, the amounts of runoff and sediment were reduced by 63.0%-70.8% and 79.1%-85.7% in the following year of planting hedgerows, the effect of controlling soil erosion was good and quick. The soil grade significantly eliminated after planting hedgerows, the slope gradient of two plots respectively decreased from 20°,13°to 16°28' and 17°11',10°28'and 11°5'. There was obvious sediment deposition in the upper part of hedgerows, the average clay contents of Vetiveria zizaniode, Medicago sativa, Eulaliopsis binata's soil zone above the hedgerows were 29.6%,28.9%,33.1%,6.6% and 6.5%,5.9% and 9.3%,7.0% and 15.0% respectively more than middle zone and zone below the hedgerows(Relative difference), clay particles tended to accumulate above the hedgerows and to be eroded downward below the hedgerows along contour lines across the field. Distribution of soil organic matter and all plant nutrients except K showed the same pattern as the clay particles. Potassium (K), however, was evenly distributed in the field without any noticeable influence from the hedgerows. Since the fixed experiment started, soil P has kept accumulating, the average total P contents of Vetiveria zizaniodes, Amsopha fruticosa, Medicago sativa and Eulaliopsis binata hedgerows were respectively up to 0.105%, 0.098%,0.096%,0.090%, increased by 54.1%,44.1%,35.2%,26.8% more than that of total P content of initial soil. While soil organic matter and K were in depletion, the organic matter content of all treatments decreased compared to the beginning of experiment, the organic matter content of control treatment and Vetiveria zizaniodes, Amsopha fruticosa hedgerows were decreased by 34.3%,25.8%,21.8% in field no.1, the organic matter content of control treatment and Medicago sativa, Eulaliopsis binata hedgerows were decreased by 25%,21.9%,30.2% in field no.2, K content had the similar statement.
     3. The energy flow characteristics of "crop-hedgerow" system, such as the structure and efficiency on slopping land(8-20°) had been studied for 2 years. There were 3 main conclusions.①The quantity and structure change of output and input energy of "crop-hedgerow" system was mainly affected by the type of hedgerow subsystem, in comparison with the traditional crop production system on large area sloping land, for instance, wheat/peanut(or corn)/sweet potato system:there was difference between hedgerows (including fruit tree, herb etc.) and crop in shape and space distribution of crown and root so that the natural resources of light, heat, water and soil were continuously utilized in time and space, which enhanced light energy utilization efficiency, input labour energy utilization efficiency and total output energy per unit area. The light energy utilization of Vetiveria zizaniodes, Amsopha fruticosa and intercropping pear and yellow flower pattens were increased by 24.62%,14.78% and 15.60% respectively, the increased range of "crop-herb" hedgerow system's input labor energy utilization efficiency was up to 67.88%-102.32%, the steeper the sloping land, the higher the relative amplitude, the increase amplitude of field no.1 was 9.8%-25.62%, and which of no.2 and no.3 was 1.2%-15.61%. Compared to control treatment, all the input inorganic energy was reduced significantly through planting hedgerows, the reduction amplitude was up to 30.0%-41.0%, the quantity of chemical fertilizer and pesticide can be reduced, resulting environment protection.②The total input energy (including organic energy) of "crop-fruit" hedgerow system was increased, which of "crop-jujube", "crop-pear/yellow flower", "crop-loquat/yellow flower"system were increased by 21.6% and 69.8%,43.7% and 46.1%, 43.5% and 146.2% respectively. It was useful for improving input energy structure and ecosystem, and enhancing intensive agriculture development.③Choosing Vetiveria zizaniodes, Amsopha fruticosa, Coronilla varia and Medicago sativa as the hedgerow of "crop-herb" hedgerow system, the input artifical supplementary energy was greatly decreased, the fewer demand of input energy and the low level of organic and inorganic energy resulted in increasing the input labour energy utilization efficiency and biomass, energy out-input ratio of inter-planted crops, the increase amplitude of four hedgerows' energy out-input ratio were 40.93%,8.21%,39.38%,42.91% respectively, hence the energy out-input ratio of whole system was improved to 64.15%,45.03%,41.50%,40.79%. It conserves water and soil, play an important role in agricultural reform in vast mountainous and hilly area in Sichuan.
     4. We investigated the effects of four hedgerow plant species, which served as undisturbed and permanent semi-natural habitats, on ground-dwelling spider activity density (a parameter of population density and relative activity) by using pitfall trapping methord. Samples were collected over two winter wheat and two summer maize growing seasons during 2005-2007 in trial field 1 (slope gradient of 20%) and field 2 (slope gradient of 13%). The hedgerow species evaluated were Amorpha fruticosa (field 1), Vetiveria zizanioides (field 1), Eulaliopsis binata (field 2) and Medicago sativa (field 2). The results showed that:activity density of ground-dwelling spiders was significantly higher in the hedgerow strips than in the bare soil strips during the winter wheat season. Activity density of ground-dwelling spiders was also higher in the hedgerow strips than in the bare soil strips during the summer maize season, however, only the Eulaliopsis and Medicago strips had significantly higher activity densities of ground-dwelling spiders than the bare soil strips. Activity density of ground-dwelling spiders in the crop fields did not differ significantly between hedgerow and control plots during the winter wheat or summer maize seasons.
     5. Though determining soil microbial quantity, microbial biomass carbon and nitrogen, soil ammonifying capacity, soil nitrifying capacity and soil Nitrosation capacity of different treatments, studying genetic diversity separated from different plant hedgerow treatments of soil ammonifying bacteria and rhizobia by using BOXAIR-PCR and 16S rDNA PCR-RFLP methods, then squencing analysis representative strain, the effect of different plant hedgerow on population characteristics of ammonifying bacteria and rhizobia was revealed.The results showed that, compared with CK, the amounts of soil bacteria, actinomycetes and fungi of the VH and AH treatments were increased by 63.43% and 36.63%,47.87% and 71.89%,74.60% and 43.65%; MBC was increased by 90.02% and 24.97%; MBN was increased by 83.32% and 45.04%; ammonification activity was increased by 73.28% and 75.65%; however, nitrosification and nitrification activity was decreased by 26.97% and 52.96%,6.46% and 22.19%, respectively. The 16S rDNA PCR-RFLP analysis results of bacteria and rhizobia showed that, genetic types separated from Vetiveria zizaniodes and Amsopha fruticosa treatments of soil ammonifying bacteria and rhizobia were more than CK. The squencing results of representative strain showed abundant genetic diversity.
引文
[1]刘松波,庄春兰,孟琳琳,等.坡度对坡面侵蚀产沙响应的研究[J].中国水土保持,2009,(5):44-46.
    [2]胡建民,胡欣,左长清,等.红壤坡地坡改梯水土保持效应分析[J].水土保持研究,2005,12(4):271-273.
    [3]夏立忠,杨林章,李运东.生草覆盖与植物篱技术防治紫色土坡地土壤侵蚀与养分流失的初步研究[J].水土保持学报,2007,21(2):28-31.
    [4]陈明霞,查轩.生草覆盖和植物篱措施对红壤坡地土壤侵蚀调控效应研究[J].亚热带资源与环境学报,2009,4(1):32-37.
    [5]刘学军,李秀彬.等高线植物篱提高坡地持续生产力研究进展[J].地理科学进展,1997,16(3):69-79.
    [6]Sanchez PA. Science in Agroforestry[M].Agroforestry systems,1995,30:5-55.
    [7]Young R A. A non-point source pollution model for evaluating agricultural watershed [J]. Journal of Soiland Water Conservation,1989,44(2):168-173.
    [8]Peterjohn W T,Carrell D L. Nutrient dynamics in an agricultural watershed:Observation on the role of a riparian forest [J].Journal of Ecology,1984,65:1460-1475.
    [9]李阳兵,谢德体,杨朝现.坡地开发中的植物篱技术[J].热带地理,2001,21(2):121-130.
    [10]唐政洪,蔡强国,许峰.半干旱区植物篱侵蚀及养分控制过程的试验研究[J].地理研究,2001,20(5):593-600.
    [11]周兴魁,孙国亮,蔡强国.黄土丘陵区的地埂植物篱——紫穗槐[J].山西水土保持科技,1997(2):32-34.
    [12]王喜龙,蔡强国,王忠科.冀西北黄土丘陵沟壑区梯田地埂植物篱的固埂作用与效益分析[J].自然资源学报,2000,15(1):74-79.
    [13]刘世荣,温远光,王兵,等.中国森林生态水文生态功能规律[M].北京:中国林业出版社,1996.
    [14]ONELLM. Progress in the understanding of runof generation dynamics infores t[J]. JHydrol, 1993,150:217-275.
    [15]PETERSDL. Run of production in aforested, shallowsoil,Canadian Shieldbasin[J]. WaterResourRes,1995,31(5):1291-1304.
    [16]许峰,蔡强国,吴淑安,等.坡地等高植物篱间距对表土养分流失的影响[J].水土保持学报,1999,5(2):23-29.
    [17]Kusumandari A. Soil erosion and sediment yield in forest and agro-forestry area in west java,Indonesia[J]. Journal of Soil and Water Conservation,1997,52(5):36-38.
    [18]孙辉,唐亚,陈克明,等.固氮植物篱改善退化坡耕地土壤养分状况的效果[J].应用与环 境生物学报,1999,5(5):473-477.
    [19]张炎周.等高固氮植物篱对横断山区农业产业结构调整作用的研究[J].四川林勘设计,2002(1):9-14.
    [20]唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究,2001,8(1):104-109.
    [21]Kang BT, Wilson GF, Sipkens L. Alley cropping maize (Zea mays, L.) and leucaena (Leucaena leucocephala Lam de Wit) in southernNigeria[J]. Plant and soil,1981,63: 165-179.
    [22]Tang Y. Agricultural development in Ningnan County:government2community interaction to promote technology[J]. Mountain Researchand Development,2001,2:212-214.
    [23]National Research Council. Vetiver grass:a thin green line against erosion[M].Washiongton D.C:National Academy Press,1993.
    [24]许峰,蔡强国,吴淑安,等.香根草植物篱控制坡地侵蚀与养分流失研究[J].山地农业生物学,2002(2):25.
    [25]陈庆平,谢良.香根草等高植物篱防治边坡侵蚀[J].福建土保持,2002(3):25-30.
    [26]徐建云,万明,彭跃山,等.香根草等高植物篱技术在江西上分公路边坡防护中的应用[J].华东公路,2002(3):25-27.
    [27]张炎周,唐亚,孙辉.金沙江干热河谷不同栽培模式下桑树年片叶量与树势间的相关分析[J].四川林堪设计,2002(4):28-30.
    [28]谢嘉穗,唐亚,孙辉,等.等高固氮植物篱值得大力推广[J].中国水土保持,2003(3):12.
    [29]袁远亮,杜开杰.高建文.宁南县推广等高固氮植物篱技术的措施[J].中国水土保持,2001(2):28-30.
    [30]孙辉,唐亚,王春明,等.等商固氮植物篱技术——山区坡耕地保护开发利用的有效途径[J].山地学报,2001(2):15.
    [31]陈一兵,林超文,朱钟麟,等.经济植物篱种植模式及其生态效益研究[J].水土保持学报,2002,16(2):80-83.
    [32]李秀彬,施讯.等高活植物篱笆试验研究的若干问题[J].地理研究,1996,15(1):66-7.
    [33]孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用[J].水土保持学报,2004,18(2):114-117.
    [34]姚小华,罗细芳.坡耕地植被恢复中生态经济型植物篱应用及其展望[J].江西农业大学学报,2005,27(2):294-298.
    [35]Bross E L, Gold M A, Nguyen P V. Quality and decomposition of black locust and alfalfa mulch for temperate alley cropping sys-tems Agroforestry Systems,1995,29(3):255-264.
    [36]Xu Z H, Saffigna P G, Myers R J K, Chapman A L. Nitrogen cycling in leucaena alley cropping in semi-arid tropics.I.Mineralization of nitrogen from leucaena residues-Plant and Soil,1993,148(1):63-72.
    [37]J.O.Owino, S.F.O.Owido, M.C.Chemelil. Nutrients in runoff from a clay loam soil protected by narrow grass strips[J].Soil&Tillage Research.2006,88(1-2):116-122.
    [38]Susama Sudhishri, Anchal Dass, N.K.Lenka. Efficacy of vegetative barriers for rehabilitation of degraded hill slopes in eastern India[J].Soil&Tillage Research 2008,99(1):98-107.
    [39]张斌.参数投影寻踪模型在坡耕地水土保持牧草优选中的应用[J].水土保持研究,2007,14(2):299-301.
    [40]王燕,宋凤斌, 刘阳,等高植物篱种植模式及其应用中存在的问题[J].广西农业生物科学,2006,25(4):369-374.
    [41]李秀彬,彭业轩,姜臣,等.等高活篱笆技术提高坡地持续生产力探讨——以三峡库区为例[J].地理研究.1998,17(3):309-315.
    [42]孙辉,唐亚,陈克明,等,固氮植物篱防治坡耕地土壤侵蚀效果研究[J],水土保持通报,1999,19(6):1-5.
    [43]何国亚,陈一兵,林超文,经济植物篱保墒效果灰色分析[J],西南农业大学学报,2004,16(1):10-14.
    [44]丁树文,王峰,蔡崇法.两种绿篱植物对作物养分吸收的影响[J],资源科学,2004,26:156-160.
    [45]郑珉姣,香根草和紫穗槐浸提液对豆类作物化感作用的初步研究[D],华中农业大学,2008.
    [46]尹迪信,唐华彬,朱青.坡耕地不同水土保持措施下的养分平衡和土壤肥力变化[J],水土保持学报,2002,16(1):72-75.
    [47]谢庭生,罗蕾.紫色土丘陵侵蚀沟建植物篱自然植被恢复及水土流失特征研究[J],水土保持研究,2005,10,12(5):62-65.
    [48]夏汉平.香根草在土壤改良和水土保持中的作用[J].热带地理,1996,16(3):265-270.
    [49]胡建业.香根草在红壤开发中的应用研究[J].当代复合农林业,1997,5(3): 55-59
    [50]黄波,张秀川,许毅涛.应用植物篱生态技术治理强风化岩质边坡研究[J].云南环境科学,2004,23(增刊):14-16,19.
    [51]蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析[J].资源科学,2004,26:7-12.
    [52]朱远达,蔡强国,张光远.植物篱对土壤养分流失的控制机理研究[J].长江流域资源与环境,2003,12(4):345-351.
    [53]唐政洪.GIS支持下小流域农林复合经营的侵蚀控制模拟[J].水土保持学报,2001,15(6):70-73.
    [54]陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价[J].水土保持学报,2003,17(4):125-127,160.
    [55]秦松,夏锦慧,邓英,等.坡耕地经济植物篱建设技术,贵州农业科学[J].2004,32(1): 49-51.
    [56]马根录.植物篱技术在湖北坡耕地治理中的应用和效益分析[J].长江科学院院报,2009,26(3):9-12.
    [57]牛德奎,黄传伟,武菊,等.草篱对坡耕地水土流失和土壤养分的影响[J].安徽农业科学,2009,37(7):3079-3081.
    [58]刘晓峰,豆科牧草对黄土丘陵沟壑区退耕地水土流失及土壤养分的影响[J].甘肃科技,2009,25(19).
    [59]朱钟麟,卿明福,刘定辉.蓑草根系特征及蓑草经济植物埂的水土保持功能[J].土壤学报,2006,43(1):164-167.
    [60]刘定辉,赵燮京,曹均城.紫色丘陵区蓑草植物篱的减流减沙效应及其机理[J].西南农业学报,2007,20(3):439-442.
    [61]赵燮京,刘定辉,四川紫色丘陵区旱作农业的土壤管理与水土保持[J].水土保持学报,2002,16(5):6-10.
    [62]李裕荣,尹迪信,韦小平,等.贵州植物篱梯化项目区农户对水土保持植物的参与式评价[J].贵州农业科学,2007,35(5):108-110.
    [63]D.D.Poudel,D.J.Midmore,L.T.West.Farmer participatory research to minimize soil erosion on steepland vegetable systems in the Philippines[J].Agriculture,Ecosystems and Environment,2000,79(2-3)113-127.
    [64]董有浦.南方丘陵山地不同植物篱处理下水土流失研究[D],安徽农业大学,2009.
    [65]唐华彬,尹迪信,罗红军,等.经济植物篱模式在坡耕地上的试验示范研究[J].中国水土保持,2006,1:17-20.
    [66]朱钟麟,陈一兵.经济植物篱主要模式及其生态经济效益研究[J].西南农业学报,2005,18(6):715-718.
    [67]王正秋.试论等高灌木带在陕北丘陵区生态环境建设中的作用[J].中国水土保持,2000,8:26-28.
    [68]张鹏,全彦福.径流水保林技术及其在山西省的推广应用[J].中国水土保持,1996(7):30-31.
    [69]宋凤斌,杨富亿,李景林,等.吉林东南部半山区高效生态农业模式研究——以吉林省柳河县圣水镇为例[J].地理科学,2003,23(3):323-328.
    [70]尹迪信,唐华彬,朱青,等.植物篱逐步梯化技术试验研究[J].水土保持学报,2001,15(2):84-87.
    [7l]陈一兵,林超文,黄晶晶.植物篱本质及“作物—植物篱”复合生产系统结构研究[J].西南农业学报,2005,18(增刊):68-73.
    [72]唐政洪,蔡强国,许峰,等.基于GIS的农林复合经营的侵蚀控制模拟研究[J].水土保持研究,2001(4).
    [73]邓良基,凌静,张世熔,等.四川旱耕地生产、生态问题及水土流失综合治理研究[J].水土保持学报,2002,16(2):8-11.
    [74]丁军.我国生态环境恶化的现状、原因及给西部大开发带来的思考[J].农业环境与发展2001(4):37-39.
    [75]史德明.我国脆弱生态环境的评估与保护[J].水土保持学报,2002,16(1):6-10.
    [76]Rappot DJ.What constitutes ecosystem health?[J].Perspectives in Biology and Medicine, 1989,33:120-132.
    [77]许峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,2002(1):25.
    [78]申元村.三峡库区植物篱坡地农业技术水土保持效益研究[J].水土保持学报,1998,4(2):61-66.
    [79]ANGIMA S D, STOTT D E, NEILL M K, et al. Use of calliandra-napier grass contour hedges to control erosion in central Kenya [J]. Agriculture, Ecosystems &Environment,2003, 91 (1-3):15-23.
    [80]AGUS F, GARRITY P, CASSEL D K. Soil fertility in contour hedgerow systems on sloping oxisols in Mindanao Philippines [J]. Soil and Tillage Research,1999,50 (2):159-157.
    [81]Young A. Agroforestry for soil conservation. International Center for Research in Agroforestry,Nairobi,Kenya,1989.
    [82]Young A. Agroforestry for soil management. CAB International,Wallington,UK,1997.
    [83]Angima SD,O'Neill MK,Omwega AK,et al. Use of tree/grass hedges for soil erosion control in the central Kenyan highlands[J]. Soil Water Conserv.2000,55:478-482.
    [84]Kang BT. Alley cropping:past achievements and future directions. Agro-forestry systems,1993,23(2-3):141-156.
    [85]Leachand M,Marslan N. Food beneficiary assessment study using participatory rural appraisal methods. Planning division,Ministry of agriculture and livestock department,Lilongwe,Malawi,1994,15(1).
    [86]Kerkhoff P. Agro-forestry in Africa:a survey of project experience.SIDA/EC/CTA Panos,UK, 1990.
    [87]Versteeg MN,Koudokpon V. Participative farmer testing of four low external input technologies,to address soil fertility decline in mono province(Benin). Agricultural systems,1993,42:265-276.
    [88]Holden ST,Joseph LO. Farmer participatory research and agro-forestry development:a case study from N.Zambia,Agricultural systems 1991,36:173-189.
    [89]Cummins RP,French DD,1994. Floristic diversity,management and associated land use in British hedgerows.In:Watt,TA,Buckley,GP(Eds.),Hedgerow Management and Nature Conservation.Wye College Press,London,pp.95-106.
    [90]Barr C,Petit S,2001. Hedgerows of the world their functions in different landscapes. In: Proceedings of the 2001 Annual IALE(UK)Conference,Centre for Ecology and Hydrology,University of Birmingham.
    [91]Boutin C,Jobin B,Belanger L,et al. Comparing weed composition in natural and planted hedgerows and in herbaceous field margins adjacent to crop fields[J].Plant Sci,2001,81: 313-324.
    [92]McCollin D,Jackson JI,Bunce RGH,et al. Hedgerows as habitat for woodland plants[J]. Environ Manage,2000,60:77-90.
    [93]Baudry J,Bunce RGH,Burel F. Hedgerows:an international perspective on their origin,function and management[J]. Environ Manage,2000,60:7-22.
    [94]Barr CJ,Bunce RGH,Clarke RT,et al. Countryside Survey 1990,MainReport. London: Department of the Environment,HMSO.
    [95]Kilewe AM,1987.Prediction of erosion rates and effects of topsoil thickness on soil productivity.Ph.D.Dissertation,University of Nairobi,Nairobi,Kenya.
    [96]Lenssen AW,Johnson GD,Carlson GR. Cropping se-quence and tillage system influences annual crop produc-tion and water use in semiarid Montana,USA [J]. Field Crops Research,2007,100:32-43.
    [97]许峰,蔡强国,吴淑安.等高植物篱在南方湿润山区坡地的应用——以三峡库区紫色土坡地为例[J].山地学报,1999,17(3):193-199.
    [98]夏青,何丙辉,谢洲,等.紫色土农林复合经营土壤理化性状研究[J].水土保持学报,2006,20(2):86-89.
    [99]Yiridoe EK,Langyintuo AS,DogbeW. Economics of the impact of alternative rice cropping systemson subsist-ence farming:Whole-farm analysis in northern Ghana[J]. Agricultural Systems,2006,91(1/2):102-121.
    [100]Dowdeswell WH,1987. Hedgerows and Verges. Allen&Unwin,London.
    [101]Szott LT,Fernandes ECM,Sanchez PA. Soil-plant interactions in agroforestry systems[J]. Forest Ecol Manage,1991,45:127-152.
    [102]Sanchez P A, Palm C A. Nutrient cycling andagroforestry in Africa[J]. Unasylva, 1996,185(47):24-28.
    [103]Snapp S S, Mafongoya P L, Waddington S. Organicmatter strategies for integrated nutrient management in smallholder cropping systems of southern Africa [J].Agric Ecosys Environ, 1998:68-77.
    [104]Desender K. Ecological and faunal studies on Coleopterain agricultural land Ⅱ Hibernation of Carabidae in agro-ecosystems.Pedobiologia,1982,23:295-303.
    [105]王正秋.等高灌木带的规划与设计[J].中国水土保持,1994,1:26-27.
    [106]蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析[J].土壤侵蚀与水土保持学报,1998,4(2):54-60.
    [107]李新平,王兆骞,陈欣,等.红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及 机理研究[J].水土保持学报,2002,16(2):36-40.
    [108]李洪勋,草带在防治坡耕地土壤侵蚀中的作用,草业科学,2005,22(1):94-97.
    [109]孙辉,唐亚,陈克明,等.等高固氮植物篱控制坡耕地地表径流的效果[J].水土保持通报,2001,21(2):48-51.
    [110]孙辉,唐亚,赵其国,等.干旱河谷区坡耕地等高植物篱种植系统土壤水分动态研究[J].水土保持学报,2002,16(1):84-87.
    [111]孙辉,唐亚,何永华,等.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):79-82.
    [112]尹迪信,周长华,唐华斌.贵州省植物篱逐步梯化技术试验研究[J].贵州农业科学,1996(5):1-6.
    [113]张炎周,唐亚,陈克明,等.等高固氮植物篱中套种桑树的桑叶产量及生物产量[J].应用与环境生物学报,2001,7(4):303-307.
    [114]申元村,景可.关于加强黄土高原水保生态建设的研究[J].中国水土保持,2002,12:22-24.
    [115]孙辉,唐亚,赵其国,等.植物篱枝叶有机碳分解研究[J].土壤学报,2002,39(3):361-366.
    [116]张丽萍,邓良基.四川省坡耕地研究及其展望资源调查与评价[J].2003,(20):1-4.
    [117]袁远亮,孙辉,唐亚,等.高固氮植物篱脐橙园综合效益研究[J].中国生态农业学报,2001,9(4):76-78.
    [118]辛东平,梁太文.植物篱建设是水土保持的有效措施[J].县域专栏,1996,10.
    [119]李仰斌.山西省水土保持生态环境建设面临的问题与对策[J].中国水土保持,2000,9:4-5.
    [120]广东省农业科学院,大田作物科学试验方法[M].北京,科学出版社,1977:83-85.
    [121]刘巽浩.能量投入产出研究在农业上的应用[J].农业现代化研究,1984,(4):15-20.
    [122]卞有生.农业生态工程中生态效率的计算与分析[J].农村生态环境,1999,15(1):1-4.
    [123]刘巽浩.我国不同地区农田生态系统能量转化效率的初步研究[J].北京农业大学学报,1982,8(1):47-53.
    [124]Obrist MK,Duelli P. Trapping efficiency of funnel-and cup-traps for epigeal arthropods[J]. Mitteilungen der Schweizerischen Entomolo-gischen Geselschaft,1996,69:361-369.
    [125]涂仕华,陈一兵,朱青,等.经济植物篱在防治长江上游坡耕地水土流失中的作用及效果[J].水土保持学报,2005,19(6):1-5.
    [126]Salvador-Blanes S, Cornu S, Couturier A, et al. Morphological and geochemical properties of soil accumulated in hedge-induced terraces in the Massif Central, France[J]. Soil & Tillage Research,2006, (85):62-77.
    [127]Cullum RF, Wilson GV, McGregor KC, et al. Runoff and soil loss from ultra-narrow row cotton plots with and without stiff-grass hedges[J]. Soil & Tillage Research,2007 (93): 56-63.
    [128]Raffaelle Jr. JB, McGregor KC, Foster GR, et al. Effect of narrow grass strips on conservation reserve land converted to cropland[J]. Transactions of the ASAE,1997,40(6): 1581-1587.
    [129]Chaubey I, Edwards DR, Daniel TC, et al. Effectiveness of vegetative filter strips in controlling losses of surface 2 applied poultrylitter constituents[J]. Transactions of the ASAE,1995,38 (6):1687-1692.
    [130]Dabney SM, Meyer LD, McGregor KC. Sediment control and landscape modification with grass hedges. Proceeding of the Conference on Management of Landscapes Distributed by Channel Incision.1997,1093-1099.
    [131]Zheng FL. Effect of Vegetation Changes on Soil Erosion on The Loess Plateau[J]. Pedosphere,2006,16(4):420-427.
    [132]Tian GM, Wang, FE, Chen, YX, et al. Effect of Different Vegetation Systems on Soil Erosion and Soil Nutrients in Red Soil Region of Southeastern China[J]. Pedosphere,2003, 13(2):121-128.
    [133]Zheng FL. Effects of Accelerated Soil Erosion on Soil Nutrient Loss after Deforestation on the Loess Plateau[J]. Pedosphere,2005,15(6):707-715.
    [134]张建辉,李勇,DavidALobb,等.我国南方丘陵区土壤耕作侵蚀的定量研究[J].水土保持学报,2001,15(2):1-4.
    [135]Zhang JH, Lobb DA, Li Y, et al. Assessment for tillage translocation and tillage erosion by hoeing on the steep land in hilly areas of Ichuan, China[J]. Soil Tillage and Research,2004, 75:99-107.
    [136]Zhang JH,Frielinghaus M,Tian G,et al. Ridge and contour tillage effects on soil erosion from steep hillslopes in the Sichuan Basin, China[J]. Journal of Soil and Water Conservation,2004,59(6):277-284.
    [137]Zhang JH, Quine TA, Ni SJ, et al. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion[J]. Global Change Biology,2006,12:1834-1841.
    [138]张希彪.陇东黄土旱塬农业生态系统能流特征研究[J].中国农学通报,2002,18(1):82-92.
    [139]魏小红,蔺海明,胡觉恒.甘肃河西地区农田生态系统能量投入产出效率分析[J].草业学报,2001,10(3):79-84.
    [140]叶旭君,王兆骞.浙江省德清县农田生态系统能量投入的优化[J].生态学报,2001,21(12):2081-2088.
    [141]张建华,赵燮京,林超文,等.川中丘陵坡耕地水土保持与农业生产的发展[J],水土保持学报,2001,15(1):81-84.
    [142]唐小明.有机肥的保水培肥效果及对东小麦产量的影响[J].水土保持研究,2003,10(1): 130-132.
    [143]郭胜利,等.长期施用化肥对粮食生产和土壤质量性状的影响[J].水土保持研究,2003,10(1):16-21.
    [144]张维理,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [145]邹超亚,等.立体农业的概念与发展途径[M].中国高功能高效益耕作制度研究进展,贵州科学技术出版社,1990:45-59.
    [146]张恩和,等.间套复合群体根系的时空生态位机制[M].面向21世纪的中国农作制,河北科学技术出版社,1998:287-290.
    [147]巨晓棠,等.冬小麦厦玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    [148]吴善堂,等.旱地分带轮作三熟制——种植结构和功能的研究[J].耕作与栽培,1991,(1):1-7.
    [149]Cole L, McCracken D, Downie IS, et al. Comparing the effects of farming practices on ground beetle(Coleoptera:Carabidae) and spider (Araneae) assemblages of Scottish farmlands[J]. Biodiversity and Conservation,2003,14:441-460.
    [150]Downie I, Wilson W, Abernethy V, et al. The impact of different agricultural land-uses on epigeal spider diversity in Scotland[J]. Journal of Insect Conservation,1999,3:273-286.
    [151]Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in agriculture[J]. Annual Review of Entomology,2000,45:175-201.
    [152]Collins KL, Boatman ND, Wilcox A, et al. Influence of beetle banks on cereal aphid predation in winter wheat[J]. Agriculture, Ecosystems and Environment,2002,93:337-350.
    [153]Collins KL, Boatman ND, Wilcox A, et al. A 5-year comparison of overwintering polyphagous predator densities within a beetle bank and two conventional hedgebanks[J]. Annals of Applied Biology,2003,143:63-71.
    [154]Collins KL, Boatman ND, Wilcox A, et al. Effects of different grass treatments used to create overwintering habitat for predatory arthropods on arable farmland[J]. Agriculture, Ecosystems and Environment,2003,96:59-67.
    [155]Marc P, Canard A, Ysnel F. Spiders (Araneae) useful for pest limitation and bioindication[J]. Agriculture, Ecosystems and Environment,1999,74:229-273.
    [156]Nyffeler M, Sunderland KD. Composition, abundance and pest control potential of spider communities in agroecosystems:a comparison of European and US studies[J]. Agriculture, Ecosystems and Environment,2003,95:579-612.
    [157]Schmidt MH, Tscharntke T. The role of perennial habitats for Central European farmland spiders[J]. Agriculture, Ecosystems and Environment,2005,105:235-242.
    [158]Toth F, Kiss J. Comparative analyses of ground-dwelling spider assemblages in northern Hungarian winter wheat fields and their adjacent margins[J]. The Journal of Arachnology, 1999,27:241-248.
    [159]Meek B, Loxton D, Sparks T, et al. The effect of arable field margin composition on invertebrate biodiversity[J]. Biological Conservation,2002,106:259-271.
    [160]Pfiffner L, Luka H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats[J]. Agriculture, Ecosystems and Environment,2000,78:215-222.
    [161]Thomas MB, Wratten SD, Sotherton NW. Creation of island habitats in farmland to manipulate populations of beneficial arthropods:predator densities and species composition[J]. Journal of Applied Ecology,1992,29:524-531.
    [162]Macleod A, Wratten SD, Sotherton NW, et al.'Beetle banks'as refuges for beneficial arthropods in farmland:long-term changes in predator communities and habitat[J]. Agricultural and Forest Entomology,2004,6:147-154.
    [163]Green J. Sampling method and time determines composition of spider collections[J]. The Journal of Arachnology,1999,27:176-182
    [164]Timothy DH, Nilsa ABP, Jodi JM, et al. Tillage differentially affects the capture rate of pitfall traps for three species of carabid beetles[J]. Entomologia Experimentalis et Applicata, 2007,124:177-187.
    [165]喻国辉,陈建.使用陷阱采样在陷阱生态学研究中的应用[J].蛛形学报,2001,10(1):52-56.
    [166]Topping CJ, Sunderland KD. Limitation to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat[J]. Journal of Applied Ecology, 1992,29:485-491.
    [167]Holland JM, Smith S. Sampling epigeal arthropods:an evaluation of fenced pitfall traps using mark-release-recapture and comparisons to unfenced pitfall traps in arable crops[J]. Entomologia Experimentalis et Applicata,1999,91:347-357.
    [168]Lemke A, Poehling HM. Sown weed strips in cereal fields:overwintering site and "source" habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae) [J]. Agriculture, Ecosystems and Environment,2002,90:67-80.
    [169]Baines M, Hambler C, Johnson PJ, et al. The effects of arable field margin management on the abundance and species richness of Araneae (spiders) [J]. Ecography,1998,21:74-86.
    [170]Huusela-Veistola E. Effects of perennial grass strips on spiders (Aranaeae) in cereal fields and impacts on pesticide side-effects[J]. Journal of Applied Entomology,1998,122: 575-583.
    [171]Girma H, Rao MR, Sithanantham S. Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya[J]. Agroforestry Systems,2000, 50:279-292.
    [172]Alderweireldt M. An ecological analysis of the spider fauna (Araneae) occurring in maize fields, Italian ryegrass fields and their edge zones, by means of different multivariate techniques[J]. Agriculture, Ecosystems and Environmen,1989,27:293-306.
    [173]Kromp B, Steinberger KH. Grassy field margins and arthropod diversity:a case study on ground beetles and spiders in eastern Austria (Coleoptera:Carabidae; Arachnida:Aranei, Opiliones) [J]. Agriculture, Ecosystems and Environment,1992,40:71-93.
    [174]Pywell RF, James KL, Herbert I, et al. Determinants of overwintering habitat quality for beetles and spiders on arable farmland[J]. Biological Conservation,2005,123:79-90.
    [175]Rypstra AL, Carter PE, Balfour RA, et al. Architectural features of agricultural habitats and their impact on the spider inhabitants[J]. The Journal of Arachnology,1999,27:371-377.
    [176]Melbourne, BA. Bias in the effect of habitat structure on pitfall traps:an experimental evaluation[J]. Australian Journal of Ecology,1999,24:228-239.
    [177]卢升奎,贺湘逸,熊国根,等.香根草在红壤丘陵的适应性及效益[J].中国水土保持,1994,12(4):22-24.
    [178]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004,30(3):35-38.
    [179]高云超,朱文珊,陈文新.耕作方法对土壤真菌数量和群落结构的影响[J].华南师范大学学报(自然科学版),2001,11:30-36.
    [180]李博.鄂尔多斯高原的自然条件与草地资源概况[A].鄂尔多斯高原沙质灌木草地绒山羊试验区研究所成果汇编[C].呼和浩特:内蒙古教育出版社,1995,1-6.
    [181]谢卓霖.稻田保护性耕作土壤微生物特性研究[D].四川农业大学,2006.
    [182]王芸.保护性耕作对麦田土壤微生物特性及理化形状的影响[D].山东农业大学,2007.
    [183]Martin B,Humbert O,Amara M, et al. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumonia[J]. Nucleic Acid Rev,1992,20:3479-3483.
    [184]Laguerre G, Allard M, Revoy F, et al. Rapid identification Rhizobium by restriction fragment length polymorphism analysis of PCR-amplified 16SrRNA genes [J]. Appl. Environ. Microbiol.1994 60:56-63.
    [185]Nick G, de Lajudie p, Eardly BD. Sinorhizobium arboris sp. Nov. and Sinorhizobium kostiese sp. Nov, isolated from leguminous trees in Sudan and Kenya[J]. Int.J.Syst. Bacteriol,1999,49(5):1359-1368.