用户名: 密码: 验证码:
饼粕蛋白酶解产物对异育银鲫生长发育影响及其生物效价分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物蛋白酶解后会产生活性肽类,活性肽不仅有营养作用,而且能促进动物生长、提高免疫机能、增强抗病能力等。本研究选用饼粕植物蛋白作为酶解底物,以几种内切蛋白酶类对饼粕植物蛋白进行酶解,对其蛋白酶解产物生物效价进行分析,并将其酶解产物添加到饲料中喂养鱼类,探讨蛋白酶解产物对鱼类生长发育的影响及其影响机制,为植物蛋白酶解产物开发与应用提供理论依据。
     1、酶解豆粕蛋白适宜酶类及其酶解条件筛选
     通过正交试验设计(L_9(3~4)),分别对木瓜蛋白酶、胰蛋白酶和As1.398枯草蛋白酶等三种酶解大豆粕的水解条件中的PH、温度、时间、酶浓度进行了适宜范围的筛选。试验共分27组,酶解结束后分别对27组酶解产物SDS-PAGE电泳分析和水解度测定,并以水解度为衡量指标,对三种酶解大豆粕的水解条件筛选结果表明:木瓜蛋白酶水解大豆粕的最佳条件为:PH7.0、温度60℃、时间5h、酶浓度5%,在此条件下,大豆粕的水解度可达到3.67%;胰蛋白酶水解大豆粕的最佳条件为:PH7、温度50℃、时间7h、酶浓度5%,在此条件下,大豆粕的水解度可达到5.53%;As1.398蛋白酶水解大豆粕的最佳条件为:PH 6.5、温度50℃、时间7h、酶浓度5%,在此条件下,可使大豆粕的水解度达到8.73%。因此,在这三种酶种以As1.398枯草蛋白酶对豆粕酶解能力最强。
     2、常见几种饼粕蛋白酶解产物的超滤与电泳比较分析
     用木瓜蛋白酶、胰蛋白酶、Asp1.398枯草蛋白酶酶解豆粕、棉粕、菜粕和花生粕,采用超滤法结合SDS-PAGE电泳法对其酶解产物进行分析,结果表明:Asp1.398枯草蛋白酶酶解豆粕效果最好,其次是胰蛋白酶,木瓜蛋白酶最差,豆粕水解度越大的,其低分子量的蛋白质与肽类等物质越多,水解度为5.68%,30KD以上占73.09%,10KD-30KD占2.75%,3KD-10KD占13.42%,3KD以下10.75%;水解度为8.73%,30KD以上占44.87%,10KD-30KD占8.83%,3KD-10KD占14.63%,3KD以下31.67%;而原料蛋白未水解,30KD以上占94.12%,10KD-30KD占3.06%,3KD-10KD占1.86%,3KD以下只有0.97%。在相同条件下,Asp1.398枯草蛋白酶对豆粕蛋白酶解程度最高,10KD以下的小分子蛋白质和氨基酸总比例为46.3%,其次为棉粕25.13%,花生粕和菜粕较小,分别为13.38%和12.58%。这在SDS-PAGE电泳图谱中也能反映出来,其水解度越大,蛋白带越少。
     3、植物蛋白酶解产物对小鼠胚胎成纤维细胞生长的影响
     用木瓜蛋白酶、胰蛋白酶、As1.398枯草蛋白酶分别对豆粕、棉粕、菜粕和花生粕等四种植物蛋白进行酶解,用酶解产物对小鼠胚胎成纤维细胞进行培养试验研究,探讨不同酶解产物的蛋白质组分对细胞生长的影响。结果表明,各种酶解产物对小鼠胚胎成纤维细胞的生长都有促进作用,而棉粕的As1.398枯草蛋白酶酶解产物对小鼠胚胎成纤维细胞促生长效果最好。其对小鼠胚胎成纤维细胞促生长速度比豆粕、菜粕和花生粕酶解产物都快,且差异显著(P<0.05)。
     4、饼粕蛋白及其酶解物对鱼类肠道微生物体外培养的影响
     用平板法从健康鱼类肠道中分离得到三种不同的微生物:大肠杆菌、芽孢杆菌、乳酸杆菌,再用液体培养法研究了四种植物性蛋白及其酶解物在体外对这三种微生物生长的影响。结果表明,除菜粕原料蛋白外,棉粕、豆粕、花生粕等原料蛋白及棉粕、豆粕、菜粕、花生粕等蛋白酶解物对芽孢杆菌、乳酸杆菌促生长作用明显,差异均显著(P<0.05);除棉粕酶解物对大肠杆菌有促生长作用外,四种原料蛋白及其酶解物对大肠杆菌的促生长作用均不明显,差异不显著(P>0.05)。
     5、饼粕蛋白酶解产物对异育银鲫生长和免疫指标的影响
     以基础日粮为对照,将棉粕、菜粕、豆粕、花生粕的酶解物和鱼粉添加于异育银鲫饲料中,喂养61天,结果表明:试验各组异育银鲫增重率与对照组相比均有提高,饵料系数也相应下降,添加棉粕酶解物组增重率最高,与对照组相比提高32.13%,且差异显著(P<0.05),其它各组增重率比对照组分别提高了3.67%、5.83%、12.17%、11.66%,但差异不显著(P>0.05)。棉粕酶解物组的酸性磷酸酶(ACP)、溶菌酶活力与对照组相比有显著提高(P<0.05),其它各试验组的超氧化物歧化酶(SOD),酸性磷酸酶(ACP),碱性磷酸酶(AKP)和溶菌酶(UL)的活力与对照组相比的活力均无显著差异。
     在以上几个试验中,通过对饼粕蛋白酶解产物的化学分析和生物效价分析得出初步结论,棉粕的枯草蛋白酶酶解产物的小肽数量和生物效价均较高,所以在以下两个试验中,我们进一步对棉粕酶解产物进行高效液相分析及其对异育银鲫生长发育、消化机能和胰蛋白酶基因表达量的研究,探讨蛋白酶解产物对鱼类的影响效果和作用机制。
     6、棉粕蛋白酶解产物组份的凝胶层析和HPLC分析
     通过常规测定、凝胶层析、高效液相色谱等三种方法,测定和分析了棉粕及其As1.398枯草蛋白酶酶解产物的蛋白质组份,并进行比较研究。结果表明:棉粕经过枯草杆菌蛋白酶酶解后,可溶性蛋白比例比原来增加了1倍,游离氨基酸的含量是原来的3.9倍;棉粕原料和酶解后的蛋白质产物经过SephadexG-50、SephadexG-25凝胶层析分离后均得到两个主要蛋白峰,期分子量均超过6000KD,但酶解物的两个峰所含蛋白量均比原料中多;用高效液相色谱法分析可知棉粕原料含有较多大分子蛋白,而酶解物中大分子蛋白含量下降了7.71%,小肽(2-10肽)的含量由27.04%增加到66.78%,游离氨基酸的含量也增加较多。由此可见,棉粕蛋白酶解后能产生丰富的肽类物质,小肽及游离氨基酸的增加有利于动物机体的直接吸收利用,能更快地促进动物的生长发育。
     7、棉粕蛋白酶解物对异育银鲫消化、生长和胰蛋白酶mRNA表达量的影响
     为了探讨棉粕蛋白酶产物及添加量对异育银鲫生长,消化蛋白酶活性及胰蛋白酶mRNA表达水平的影响,并研究鱼类生产性能及各项生化指标与蛋白酶活性之间的相互关系。本研究以棉粕蛋白酶解底物,用枯草杆菌蛋白酶对其进行酶解,以酶解产物的混合物1.5%和3.0%两个梯度等量替代鱼饲料中棉粕在室内流水养殖系统中喂养异育银鲫鱼种(体重30±2g)65天。测定鱼类的生长,营养物质表观消化率、消化蛋白酶活性及肝胰脏中蛋白酶mRNA表达水平等指标。结果表明:添加1.5%和3.0%棉粕酶解产物两组鱼类在饲养35天后的增重率分别比对照组高8.96%和44.24%,且差异显著(p<0.05),在饲养65天后,两组增重率分别比对照组高33.19%和69.62%,且差异显著(p<0.01),肝胰脏中蛋白酶mRNA表达水平也相应提高,并且以3.0%添加梯度的效果最好(p<0.05),表明鱼类的生长与消化蛋白酶mRNA表达水平相关,同时棉粕蛋白酶解物对肠道蛋白酶的活性和营养物质表观消化率都促进作用,这可能是棉粕蛋白酶解物的对鱼类生长调控机制之一。
The plant protein hydrolysates include some active peptides, this active peptide could not only have some nutritional function ,but also could promote animal growth, enhance immunity ability, advance the somatic ability of antivirus and so on. The research use plant protein hydrolysates enzymed by endoproteinase to do biological valuable analysis, and use the hydrolysates to do in vivo experiment to explore the hydrolysates' function on fish development and its mechanism, to offer the theory evidence for the The plant protein hydrolysates' exploration and application.1 Selection of the Optimum Conditions of Enzymatic Hydrolysis of Soybean meal with different EnzymesThe optimum enzymatic conditions of papain , trypsin and As1.398 subtilisin which hydrolyze Soybean meal(SBM) were studied with the degree of hydrolysis(DH) through mono-factor analysis and orthogonal test( L_9 (3~4) ).The result showed that the optimum enzymatic conditions of papain were PH 7.5, temperature 50℃, time 7 hours ,enzyme concentration 5 percent of Soybean meal(SBM) protein .In such conditions, the degree of hydrolysis of soybean meal(SBM) can go up to 3.67%.The optimum conditions of trypsin were PH 7.0, temperature 50℃.time 7 hours ,enzyme concentration 5 percent of Soybean meal(SBM) protein. In such conditions, the degree of hydrolysis of soybean meal can go up to 5.53%; The optimum conditions of Asl.398 subtilisin were PH 6.5, temperature 50℃,time 7 hours ,enzyme concentration 5 percent of Soybean meal(SBM) protein. In such conditions, the degree of hydrolysis of soybean meal can go up to 8.73%.The hydrolysis activity of As1.398 subtilisin is the highest of three enzyme.2 Ultrafiltratione and SDS-PAGE analysis of common feeds plant protein hydrolysatesSoybean meal, cottonseed meal, rapeseed meal and peanut meal were hydrolyzed with the papain, trypsin and As1.398 subtilisin. Enzymolysis products of them were analysed with the method of ultrafiltratione and SDS-PAGE electrophoresis. The result showed that: As1.398 subtilisin was the best proteinase among three enzyme which hydrolyze soybean meal. The higher hydrolysis degree(DH) of soybean meal is, the more small molecular weights of enzymatic products of the soybean meal is, when soybean meal DH is 5.68%, the molecular weights which are bigger than 30KD is 73.09%, from 10KD to 30KD is 2.75%, from 3KD to 10KD is 13.42%, the smaller than 3KD is 10.75%,when soybean meal DH is 8.73%, the bigger than 30KD is 44.87%, from 10Kd to 30Kd is 8.83%, from 3Kd to 10Kd is 14.63%, the smaller than 3KD is 31.67%,when soybean meal was not hydrolyzed, the bigger than 30KD is 94.12%, from 10KD to 30KD is 3.06%, from 3Kd to 10Kd is 1.86%, the smaller than 3KD is 0.97%. As the optional conditions of enzymatic protein hydrolysis were the same, the soybean meal hydrolyzed by As1.398 subtilisin was the highest degree of hydrolysis, the second is cottonseed meal, the third is peanut meal, the lowest is rapeseed meal, the molecular weights below 10KD of enzymatic products were 46.3%, 25.13%, 13.38%and 12.58%. The molecular weights of enzymatic products were measured by sodium dodecy sulfafce-polyactivity gel electrophoresis(SDS-PAGE) in this experiment.
     3 Effect of plant protein hydrolysates on the growth of the mouse embryo fibroblasts cell
     Papain, trypsin and As1.398subtilisin were used to degrade soybean meal, cottonseed meal, rapeseed meal and peanut meal separately, then used hydrolysates to study the effect on the culture of the mouse embryo fibroblasts cell. The result indicated that all plant protein hydrolysates could promote the growth of the mouse embryo fibroblasts cell, and the most effective hydrolysates was the cottonseed meal degraded by As1.398subtilisin, the speed of cell growth of that was improved than that of hydrolysates of the peanut meal, rapeseed meal and soybean meal.
     4 Effects of plant proteins hydrolysates on proliferation of intestinal microorganisms of fish
     Escherichia coli, Bacillus and Lactobacillus were isolated from intestines of healthy carps by plate cultivation. Effects of plant proteins and their hydrolysates on the growth of three microorganisms were studied by liquid cultivation in vitro. The result was that: cottonseed meal, soybean meal, peanut meal and the hydrolysates of cottonseed, soybean, rapeseed meal and peanut meal observably promoted the proliferation of Bacillus and Lactobacillus. and than the effect was significantly different(p<0.05): all of four meals and their hydrolysates could promote the proliferation of Escherichia coli except hydrotysates of cottonseed meal., but had no significant effects(p>0.05).
     5 Effect of hydrolysates on the growth and immune indices of Alloggnogeuetic Crucian Carp
     The basal diet as the control group, four hydrolysates and fish meal were added in test groups teed for Alloggnogeuetic crucian, fish raised for 61 days, the results demonstrated that: the gained weight rates of all experiment groups were higher than the control and the feed coefficient was reduced, the highest weight gain which was 32.13%higher than control group was in Cottonseed meal hydrolysates group(P<0.05), gained weight rate of others were 3.67%,5.83%,12.17%and 11.66%higher than control (P>0.05).The activity of Acidity Phosphatase(ACP) and lysozyme in Cottonseed meal hydrolysates was significant higher than control(P<0.05), the activity of Superoxide Dismutase(SOD), Acidity Phosphatase(ACP), Alkaline Phosphatase(ALP) and lysozyme was no-significance with the control.
     In finished experiments, based on analysis of chemistry and bio-active valve of plant protein hydrolysates, we have inclusion that cottonseed meal protein hydrolysates contain a lot of small molecular peptides and high bio-active valve, so we do next two experiments in which we used HPLC to analyses peptides of cottonseed meal protein hydrolysates and raising fish indoor, and then study how cottonseed meal protein hydrolystaes affect the group development, digestive performance and trypsin Mrna levels of Alloggnogeuetic crucian in order to evidence affecting mechanism.
     6 Analysis of protein and peptides components of cottonseed hydrolysates by HPLC
     In this experiment, protein components in cottonseed and enzymatic hydrolysates of cottonseed were analyzed by general methods, gel filtration chromatography and high performance liquid chromatography (HPLC). It showed that: soluble proteins were increased by 1 time and free amino acids were increased by 2.9 times after been hydrolyzed by subtilisin; two main peaks were found by chromaography column of sephadexG-50, proteins in the cottonseed's peak were more than those in hydrolysate's. The molecular weight of the cottonseed and hydrolysate's two peaks were higher than 7000Da with a standard curve, but protein concentition of hydrolysates was less than that of cottonseed meal:the HPLC method was used to determine that the hydrolysates contained more proteins than cottonseed, the contents were decreased 7.71%, but small peptides(2-10 amino acids) were increased 24.73%, and tree amino acids were also increased. Animals can absorb small peptides and free amino acids firsthand ,so cottonseed hydrolysates were better for animals contrast with cottonseed。
     7 Effect of cottonseed meal hydrolysates on group, trypsin's activity and expressing level of trypsinogen's mRNA of Allogygenetic Crucian Carp
     To explore the effect of Cottonseed meal hydrolysates and additive quantity in diets on Allogynogenetic Crucian's growth, trypsin's activity and expressing level of trypsinogen's mRNA, and to study the relationship of proteinase's activity and Allogynogenetic Crucian's productive performance and biochemistry index. Firstly, we use the Asl.398 Neutrase to hydrolyze the Cottonseed meal hydrolysates, secondly, use the hydrolysates to feed Allogynogenetic Crucian (weight30±2g) raised in the inner flowing cultivating system by 1.5 and 3.0 percentage for 65 days, finally, measure the fish's growth index, ADC of nutriment, the proteinase's activity and the expressing level of trypsinogen's mRNA. The result stated that, the body weight of 1.5%and 3.0%groups fish were higher then the control by 8.96%and 44.24%respectively raising for 35 days, and significantly different (p<0.05), furthermore after 65 days the higher was 33.19%and 69.62%(p<0.01), and the expressing level of trypsinogen's mRNA were also enhanced, and all the data suggest the 3.0%was the best level, and the correlation of the Allogynogenetic Crucian's growth and expressing level of trypsinogen's mRNA ,simultaneously the hydrolysates could accelerate the trypsin's activity and ADC of nutriment.
引文
陈英剑,胡成进,赵苗青.SYBR Green实时荧光定苗PCR技术平台的建立[J].实用医药杂志,2004,21(11):23~25.
    程进.菜籽粕中硫代葡萄糖甙降解产物对猪、鸡、鸭甲状腺的影响[J].浙江农业大学学报,1993,19:209~214.
    程成荣,刘永坚.杂交罗非鱼饲料中发酵豆粕替代鱼粉的研究[J].广东饲料,2004,13(2):37~38.
    崔鸿斌.大豆生物活性物质的开发与应用[M].北京:中国轻工业出版社,2001.
    邓勇,吴煜欢.微生物蛋白酶对大豆分离蛋白水解作用的研究[J].食品科学,1999,6:42~45.
    丁丽敏,沈慧乐,计成,等.豆粕蛋白溶解度与肉仔鸡生产性能关系的研究[J].动物营养学报,1998,10(2):52~58.
    董晓燕,主编.生物化学实验[M].北京:化学工业出版社,1999.111~115.
    董云伟,牛翠娟.豆粕替代鱼粉对罗氏沼虾生长和消化酶活性的影响[J].北京师范大学学报(自然科学版),2000,36(2):260~263.
    杜克生,编著.食品生物化学[M].北京:化学工业出版社,2002.157~183.
    高贵琴,熊邦喜,赵振山.菜籽粕在水产养殖中应用研究综述[J].水利渔业,2001,5:1~3.
    高雯,姜培荣,张之佳,等.食品酶学原理与分析方法[M].哈尔滨:黑龙江科学技术出版社,1991.363~378.
    高立海,曲悦,梁海平.水产饲料中棉籽饼粕替代鱼粉的研究进展[J].水利渔业,2004,4:66~67.
    高健韶,张洪,等.枯草杆菌蛋白酶水解大豆分离蛋白的研究[J].食品工业,2002,3:13~15.
    葛文光.大豆多肽的生理功能及作用效果[J].无锡轻工业大学学报,1996,15(3):272~277.
    郭学敏.脱脂豆粕的中性蛋白酶水解[J].食品科学,1993,7:10~14.
    郭兴风.蛋白质水解度的测定[J].中国油脂,2000,25(6):176~177.
    韩兴泰.动物消化道内肽的吸收与体内肽的代谢[J].中国草食动物,1999,1(2):37~39.
    何惠,谢笔钧,杨卓,等.大豆蛋白和玉米蛋白酶解肽及其活性研究[J].粮油食品科技,1999(6):14~16.
    何昕.大豆蛋白酶解工艺条件的研究[J].科技通报,2000,16(4):278~281.
    黄健韶,张洪,等.枯草杆菌蛋白酶水解大豆分离蛋白的研究[J].食品工业,2002,3:13~15.
    胡晓军,姜延程.花生分离蛋白质基础研究[J].郑州粮食学院学报,1998(3):13~18.
    计成,王丽娟,马秋刚,等.饲料品质对鸡空肠肽类释放量和门脉血浆肽量的影响[J].畜牧兽医学报,2004,35(6):660~663.
    Nicklin J.等.编著.微生物学[M].北京:科学出版社.2000,8:5~11.
    萨姆布鲁克 J.弗里奇E F.曼尼阿蒂斯 T.分子克隆实验指南[M].北京:科学出版社.2002.(?)
    柯里默.张建,周恩华,利用豆粕型饲料养殖德克萨斯州选育品系斑点叉尾鱼回第二代鱼苗的生长性能试验[Jj.渔业现代化.2002,1:20~22.
    马惠茹,范三海,袁巧灵.等.用棉粕代替部分豆粕和鱼粉对蚩鸡生产性能的影响[J].内蒙古畜牧科学,2003.6:27~28.
    马永强,赵毅,石彦国.大豆蛋白水解物中肽分子分布的研究[J].中国粮油学报.2001,16(3):15~17.
    马玉敏.王恬,许若军.牛初乳酶解物对离体犊牛小肠上皮细胞增殖和吸收功能的影响[J].动物营养学报,2002,4(2):9~13.
    莫重文.优质饲用豆粕的工艺研究[J].郑州粮食学院学报,1994,15(2):58~63.
    穆永胜,戴求仲.小肽在水产养殖中的应用研究[J].饲料博览,2003,4:39~41.
    乐国伟,施用辉.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报.1998,29(1):10.
    乐国伟,施用晖,杨凤.肽在动物蛋白质营养中的作用—小肽在动物氨基酸吸收中的作用[J].四川农业大学学报,1996,14(增刊):19~26.
    李珑,李建才,刘树滔,等.大豆分离蛋白酶解过稃的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    李书国,陈辉,庄玉亭.复合酶法制备活性大豆寡肽研究[J].粮食与油脂,2001,3:5~7.
    李珑.李建才,刘树滔,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    李晓刚.张永丹.花生粕的酶解新工艺研究[J].食品工业科技,2004,2:102~103.
    林勉.刘通讯.内肽酶与端肽酶水解花生柏蛋白的研究[J].食品科学,2000,21(1):22~25.
    刘清海,冯静,李健,等.微生物多肽对黑鲷面以鱼生长的促进作用[J].海洋科学,2000,24(5):11~13.
    刘文斌,王爱民,王恬.菜籽粕中芥子酸和硫甙对异育银鲫生长和生理机能的影响[J].南京农业大学学报,2004,27(1):78~80.
    刘洋,王长云,薛长湖,等,鳀鱼蛋白酶解物的营养评价[J].青岛海洋大学学报,1996,26(1):37~43.
    刘凌云,汪磊.益生素在动物生产中的应用[J].饲料博览,2003,5:17~18.
    刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶凶酶、磷酸酶和过氧化物酶的作用[J].海洋与湖沼,1999,30(3):278~283.
    陆恒.菜籽蛋白质的营养优势及食用趋势研究[J].现代商贸工业,2004,7:42~45.
    饶平凡,李建才,李珑.酶促水解大豆分离蛋白动力学模型的研究[J].生物数学学报,1996,11(3):181~188.
    石彦国,毛伟杰,张朝.高变性豆粕中蛋白质水解特性的研究[J].黑龙江商学院学报(自然科技版),1997,13(3):5~8.
    沈维华.棉籽粕的营养价值及在鱼饲料中的应用[J].湖北农业科学,1995,1:63~67.
    沈维华,蔡洪东,张志强.以棉籽粕代替大豆粕饲养团头鲂鱼种的初步研究[J].水利渔业,1995,3:19~21.
    王胜兰.大豆蛋白酶解及应用[J].大豆通报,1996,5:18~19.
    王丽娟,计成,郭宝海,等.十二指肠灌注饲料寡肽对鸡肠道氮基酸吸收的影响[J].中国农业大学学报,2003,8(3):81~84.
    王忠,马永兵.网箱养鲤菜籽饼最适用量的研究[J].饲料博览,1992,11:5~6.
    王俐,蔡辉益,刘国华.不同抗生素对肉鸡肠道微生物的影响[J].饲料工业,2002,23(8):11~13.
    王恬,许若军.饲料源活性肽及其营养生物学意义[J].畜牧与兽医,2002,34(增刊):96~102.
    王建辉,陈立祥,贺建华.益生素的不同作用机理探讨及其在动物生产中的应用[J].饲料工业,2004,25(3):26~30.
    王梁燕,洪奇华,张耀州.实时定量PCR技术及其应用[J].细胞生物学杂志,2004,26(1):61~65.
    邬海峰,姜延程.菜籽分离蛋白的研究[J].中国粮油学报,1995,10(1):50~56.
    吴遵霖.棉、菜饼的去毒方法及养鱼效果[J].湖北农业科学,1985,10:30.
    肖凯军,曾庆孝.大豆分离蛋白的酶法改性[J].食品科学,1995,16(9):30~34.
    解绶启,崔奕波.鱼类对植物性蛋白源的利用[J].上海水产大学学报,1998,7(增刊):44~52.
    解绶启,Jokumsen.饲料中土豆蛋白替代鱼粉对虹鳟摄食率、消化率和生长率的影响[J].水生生物学报,1999,23:127~133.
    徐岩,袁春涛,刁新平.棉粕代替豆粕对蛋种鸡生产性能影响的研究[J].饲料博览,2003,7:3~5.
    杨肚,主编.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993.
    严泉剑,郭金龙,刘恩靖,等.绘制细胞生长曲线及细胞群体倍增时间的简化计算[J].前卫医药杂志,2000,17(4):228~229.
    张驰宇,张高红,杨敏.四步法消除SYBR Green Ⅰ实时定量RT-PCR中引物二聚体的影响[J].中国生物化学与生物学报,2004,20(3):387~392
    张亚丽,徐忠.脱脂豆粕蛋白对乳酸菌增殖作用的研究[J].哈尔滨商业大学学报(自然科学版), 2003,9(1):87~89.
    张亚丽,徐忠.中性蛋白酶提取变性脱脂豆粕中蛋白质的研究[J].食品研究与开发,2002,23(4):26~29
    张春江,罗欣,王海燕.壳寡糖和nisin对熏煮香肠中腐败菌的抑制作用研究[J].肉类工业,2004,6:30~33.
    张意静.食品分析技术[M].北京:中国轻工业出版社,1996.175~177.
    赵玉红.孔保华.鱼蛋白水解的研究进展[J].肉类工业,2000,3:31~34.
    赵新淮,冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报,1995,26(2):178~181.
    郑玉锖,李珑.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~1137.
    周先碗,胡晓倩,编.生物化学仪器分析与实验技术.北京:化学工业出版社.
    周萌,崔奕波,朱晓鸣,等.豆粕和士豆蛋向替代饲料中鱼粉对异育银鲫生长及能量收支的影响[J].水生生物学报,2002,26(2):370~377.
    周涛.酶解鲐鱼蛋白制取低分子肽的初步研究[J].浙江水产学院学报,1997,16(1):12~18.
    朱碧英,毋瑾超,胡锡钢.酶解鱼是鱼可溶性肽分子组成结构及营养评价[J].中国海洋药物,2001.4:32~36
    Adler-Nissen J. Enzymic Hydrolysis of Food Protein [M]. England: Elsevier Applied Science Publisher Essex 1986.
    Azuma N S, Nagaune Y, Ishino H, et al. DNA-synthesis stimulating peptides from human β-casein [J]. Agric Bio Chem, 1989, 53: 2631~2640.
    Balogun T F, Aduku A O, Dim N I, et al. Undecorticated cottonseed meal as a substitute for soya bean meal in diets for weaner and growing-finishing pigs [J]. Animal Feed Science and Technology, 990, 8 (30): 193~201.
    Berseth C L, Lichtenberger L M. Comparison of the gastrointestinal growth-promoting effects of rat colostrums and mature milk in newborn rat in vivo [J]. Am J Clin Nutri, 1983, 37: 52~60.
    Boza J. Protein V enzymic protein hydrolysates nitrogen utilization in started rats [J]. Brit Nutr, 1995, 73 (1):65.
    Danny Hooge. Groeth enhancers: Direct-fed microbials and antibiotics in broilers [J]. Feed International, 2003, (5): 16~19.
    Franek F, Hohenwarter O, Katinger H. Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures [J]. Biotechnol Prog, 2000, 16 (5): 688~692.
    Gonzalez-telld P. Enzymatic hydrolysis of whey proteins I. Molecular-weight range [J]. Biotechnology and Bioengineering, 1994, 44: 529—532.
    Gonzalez-tello P, Camacho F. Enzymatic hydrolysis of whey Proteins Ⅱ. Molecular weight range [J]. Biotechnology and Bioengineering, 1994, 44: 529 — 532.
    Hamerstrand G E, Black. L T, Glover J D. Trypsin inhibitors in soy products: Modification of the standard analytical procedure [J]. Cereal Chem, 1981, 58: 42—45.
    Hilton J W, Slinger S J. Digestibility and utilization of canola meal in practical-type diets for rainbow trout Salmo gairdneri [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986,43(6): 1149— 1155.
    Kamata Y, Chiba K. Selectiong of commercial enzyme for soymilk-ued production by limited proteolysis with immobilized enzyme reactor [J]. Journal of Janpanese Society of Food Science and Technology, 1992, 39 (1): 102.
    Li D F, Nelssen J L. Reddy P G, et al. Interrelationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs [J]. J Anim Sci, 1991, 69: 4062~4069.
    Marty J M. Nutritional evaluation of various processed soybean products with growing pigs and rats [D]. Ph. D. Thesis, Montreal, Quebec, Canada: McGill Univ, 1994.
    Margarida M Barros, Chhorn Lim, Phillip H Klesius. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth,, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge [J]. Aquaculture. 2002, 5 (24): 263—279.
    Minagawa E. Kaminogawa debittering mechanism in bitter peptides of enzymatic hydrolysis of milk casein by aminopeptidease [J]. J Food Sci, 54: 1225—1229.
    Nishi T, Hara H. Hira T, et al. Dietary protein peptic hydrolysates stimulate cholecystokinin release via direct sensing by rat intestinal mucosal cells [J]. Exp Boil Med, 2001, 226 (11): 1031-1036.
    Qin G, Elst E R. Bosch M W, el al. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets [J]. Anim Feed Sci Technol, 1996, 57: 313-324.
    Rooke J A, Fraser H, Shanks M, et al. The potential for improving soya-bean meal in diets for weaned piglets by protease treatment: Comparison with other protein sources [J]. Anim Sci, 1996, 62: 658 .
    Schulze H. Endogenous ileal nitrogen losses in pigs: Dietary factors [D]. Ph.D. Thesis, Wageningen, The Netherlands: Wageningen Agricultural Univ, 1994.
    Schulze H, Saini H S. Huisman J, et al. Increased nitrogen secretion by inclusion of soya lectin in the diets for pigs [J]. J Sci Food Agric, 1995, 69: 501-510.
    Steel R G D, Torrie J H. Principles and Procedures of Statistics: A Biometrical Approach (2nd edn.) [M]. New York: McGraw-Hill, 1980.
    Shiau S Y. Chuang J L. Sun C L. Inclusion of soybean meal in Tilapia diets at two protein levels [J]. Aquacultrue. 1987, 65: 251-261.
    Tyzebiatowski R- Filipiak J. Using rapeseed oilmeal in pelleted feed mixtures for carp C_(12)[J]. Zootechnika, 1992, 37: 97-103.
    Tamminga S, Schulze H, van Bruchem J, et al. The nutritional significance of endogenous N-losses along the gastro-intestinal tract of farm animals [J]. Arch Anim Nutr, 1995. 48: 9 — 22.
    Wang T, Xu R J, Chang Y Q. et al. Effects of milk protein pre-hydrolyzation on crypt cell proliferation and intestinal morphology in neonatal pigs [J]. Chinese Journal of Histochemistry and Cytochemistry, 1999, 2: 48-54, 8 (Photomicrographs).
    Webster CD, Tiu LG, Tidwell J H, et al. Growth and body composition of channel catfish Ictalurus punctatus fed diets containing various percentage of canola meal [J]. Aquaculture, 1997, 150 (1/2): 103-112.
    Wdak W D Z, Zjajka S. Enzymatic hydrolysis of milk protein under alkline and acidic conditions [J]. Food Sci, 64: 393—394.
    Zambonino infante J, Cahu C, Peres A. Partial substitution of di-and tripeptides for native proteins in seabass diets improves dicentrarchus labrax larval development [J]. Journal of Nutrition, 1997, 127: 608-614.
    邓勇.吴煜欢.微生物蛋白酶对大豆分离蛋白水解作用的研究[J].食品科学,1999,6:42~45.
    杜克生,编著.食品生物化学[M].北京:化学工业出版社,2002.157~183.
    杜翠荣,马荣山.酶解高水解度大豆蛋白肽的研究[J].粮油加工与食品械.2004,8:57~59.
    高雯,姜培荣,张之佳,等.食品酶学原理与分析方法[M].哈尔滨:黑龙江科学技术出版社.1991.363~378.
    葛文光.大豆多肽的生理功能及作用效果[J].无锡轻工业大学学报,1996.15(3):272~277.
    郭学敏.脱脂豆粕的中性蛋白酶水解[J].食品科学,1993,7:10~14,
    郭兴风.蛋白质水解度的测定[J].中国油脂,2000,25(9):176~177.
    何昕.大豆蛋白酶解工艺条件的研究[J].科技通报,2000,16(4):278~281.
    黄健韶,张洪,等.枯草杆菌蛋白酶水解大豆分离蛋白的研究[J].食品工业,2002,3:13~15.
    何惠,谢笔钧,杨卓,等.大豆蛋白和玉米蛋白酶解肽及其活性研究[J].粮油食品科技,1999.6:14~16.
    李珑,李建才,刘树滔,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    李磊.陈均志.中性蛋白酶与碱性蛋白酶双酶法水解大豆蛋白的研究[J].西北轻工业学报,2002,1:35~38.
    乐国伟,施用辉.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,29(1):10.
    饶平凡,李建才,李珑.酶促水解大豆分离蛋白动力学模型的研究[J].生物数学学报,1996,11(3):181~188.
    石彦国,毛伟杰,张朝.高变性豆粕中蛋白质水解特性的研究[J].黑龙江商学院学报(自然科技版).1997.13(3):5~8.
    王恬,许若军.饲料源活性肽及其营养生物学意义[J].畜牧与兽医,2002,34(增刊):96-102.
    肖凯军.高孔荣,曾庆孝.木瓜蛋白酶水解大豆分离蛋白的研究[J].广州食品工业科技,1996,12(1):1~6.
    杨胜,主编.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993.
    应恺,沈祥坤,芮汉明.有限酶解花生蛋白的研究[J].食品工业科技,2004,25(11):72~75.
    赵新淮.蛋白质水解物水解度的测定[J].食品科学,1994,11:65~67.
    赵亲淮.冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报,1995,26(2):178~181.
    张亚丽.徐忠.中性蛋白酶提取变性脱脂豆粕中蛋白质的研究[J].食品研究与开发,2002,23 (4):26~29.
    周涛.酶解鲐鱼蛋白制取低分子肽的初步研究[J].浙江水产学院学报,1997,16(1):12~18.
    朱碧英,毋瑾超.不同酶解条件对鳀鱼蛋白水解物苦味及氨基酸组成的影响[J].中国水产科学,2001,8(3):73~76.
    Boza J. Protein V enzymic protein hydrolysates nitrogen utilization in started rats [J]. Brit Nutr, 1995, 73 (1):65.
    Kamata Y, Chiba K. Selectiong of commercial enzyme for soymilk-ued production by limited proteolysis with immobilized enzyme reactor [J]. Journal of Janpanese Society Of Food Science and Technology, 1992, 39 (1):102.
    Lozano P. Food nutrient improvement by protease at reduced water activity [J]. Food Sci, 1994, 59 (4):876~880.
    Gonzalez-tello P, Camacho F. Enzymatic hydrolysis of whey Proteins Ⅱ. Molecular weight range [J]. Biotechnology and Bioengineering, 1994, 44: 529~532.
    Wang T, Xu R J, Chang Y Q, et al. Effects of milk protein pre-hydrolyzation on crypt cell proliferation and intestinal morphology in neonatal pigs [J]. Chinese Journal of Histochemistry and Cytochemistry. 1999, 2: 48~54.
    杜克生,编著.食品生物化学[M].北京:化学工业出版社,2002.157~183.
    高雯,姜培荣,张之佳,等.食品酶学原理与分析方法[M].哈尔滨:黑龙江科学技术出版社,1991.363~37.
    葛文光.大豆多肽的生理功能及作用效果[J].无锡轻工大学学报,1996,3:272~277.
    郭学敏.脱脂豆粕的中性蛋白酶水解[J].食品科学,1993,7:10~14.
    郭兴风.蛋白质水解度的测定[J].中国油脂,2000.25(9):176~177.
    韩兴泰.动物消化道内肽的吸收与体内肽的代谢[J].中国草食动物,1999,1(2):37~39.
    黄健韶,张洪,等.枯草杆菌蛋白酶水解大豆分离蛋白的研究[J].食品工业,2002,3:13~15.
    李珑,李建才,刘树滔,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    李磊,陈均志.中性蛋白酶与碱性蛋白酶双酶法水解大豆蛋白的研究[J].西北轻工业学报,2002,1:35~38.
    李书国,陈辉,庄玉亭.复合酶法制备活性大豆寡肽研究[J].粮食与油脂,2001,3:5~7.
    马永强,赵毅,石彦国.大豆蛋白水解物中肽分子分布的研究[J].中国粮油学报,2001,16(3):15~17.
    穆永胜,戴求仲.小肽在水产养殖中的应用研究[J].饲料博览,2003,4:39~41.
    石继红,赵永同,王俊楼,等.SDS2聚丙烯酰胺凝胶电泳分析小分子多肽[J].第四军医大学学报,2000,21(6):761~763.
    王胜兰.大豆蛋白酶解及应用[J].大豆通报,1996,5:18~19.
    邬小兵,乐国伟.重组小分子多肽的SDS2PAGE分析方法[J].无锡轻工大学学报,2003,22(1):93~95.
    肖凯军,高孔荣,曾庆孝.木瓜蛋白酶水解大豆分离蛋白的研究[J].广州食品工业科技,1996,12(1):1~6.
    杨胜,主编.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,1993.
    杨晓泉,陈中,赵谋民.花生蛋白的分离及部分性质研究[J].中国粮油学报,2001,16(5):25~28.
    应恺,沈祥坤,芮汉明.有限酶解花生蛋白的研究[J].食品工业科技,2004,25(11):72~75.
    赵新淮.蛋白质水解物水解度的测定[J].食品科学,1994,11:65~67.
    赵新淮,冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报.1995,26(2):178~181.
    张亚丽,徐忠.中性蛋白酶提取变性脱脂豆粕中蛋白质的研究[J].食品研究与开发.2002,23(4):26~29.
    赵玉红.孔保华.鱼蛋白水解的研究进展[J].肉类工业.2000,3:31~34.
    周涛.酶解鲐鱼蛋白制取低分子肽的初步研究[J].浙江水产学院学报,1997,16(1):12~18.
    郑玉锖.李珑,李建才,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996.24(2):109~113.
    Alher-Nissen J. Enzymic Hydrolysis of Food Protein [M]. England:Elsevier Applied Science Publisher Essex, 1986.
    Boza J. Protein V enzymic protein hydrolysates nitrogen utilization in started rats [J]. Brit.Nutr, 1995, 73 (1):65.
    Gonzalez-telld P, Camacho F. Enzymatic hydrolysis of whey Proteins I. Molecular-weight range [J]. Biotechnologyand Bioengineering, 1994, 44: 529~532.
    Minagawa E. Kaminogawa debittering mechanism inbitter peptides of enzymatic hydrolysis of milk casein by aminopeptidease [J]. J Food Sci, 54: 1225~1229.
    Zwdak W D, Zjajka S. Enzymatic hydrolysis of milk protein under alkline and acidic conditions [J]. Food Sci, 64: 393~394.
    崔鸿斌.大豆生物活性物质的开发与应用[M].北京:中国轻工业出版社.2001.2
    穆永胜.戴求仲.小肽在水产养殖中的应用研究[J].饲料博览,2003,4:39~41.
    乐国伟.施用辉.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,9(10):10.
    马玉敏.王恬.许若军.牛初乳酶解物对离体犊牛小肠上皮细胞增殖和吸收功能的影响[J].动物营养学报.2002,4(2):9~13.
    赵新淮.冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报,1995,26(2):178~181.
    严泉剑.郭金龙,刘恩靖,等.绘制细胞生长曲线及细胞群体倍增时间的简化计算[J].前卫医药杂志,2000,17(4):228~229.
    周涛.酶解鲐鱼蛋白制取低分子肽的初步研究[J].浙江水产学院学报,1997,16(1):12~15.
    朱碧英.毋瑾超.胡锡钢.酶解鳀鱼可溶性肽分子组成结构及营养评价[J].中国海洋药物,2001,4:2~36.
    李珑.李建才,刘树滔,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    李文青,肖成祖.葡萄糖的添加对昆虫细胞SP21悬浮生长的影响[J].生物工程学报,1996,12(1):50~53.
    焦瑞身.细胞工程[M].北京:化学工业出版社,1989.
    张静波.细胞生物学实用方法与技术[M].北京:高等教育出版社,1990.
    Alder Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid [J]. J Agric Food Chem, 1979, 27: 1256~1262.
    Brantl V H, Teschemacher H, Henschen A, et al. Novel opioid peptides derived from casein(β-casomophins) [J]. PhysiolChem , 1979, 360: 1211~1219.
    Ichiba H, Kusuda S, Ztagane Y. Measurement of growth promoting activity in human milk using a fetal small intestinalceIlline [J]. Bio Neonate, 1992, 61: 47~53.
    Rao R K. Biologically active peptides in the gastrointestinal lumen [J]. Life Sci, 1991, 48: 1685~1704.
    Simmen F A, Cera K R, et al. Stimulation by colostrums or mature milk of gastrointestinal tissue development in newborn pigs [J]. J Anim Sci, 1990, 68: 3596~3603.
    陈勇.黄权,李月红.等.溢康素对鲤鱼肠道菌群生长的影响[J].北华大学学报(自然科学版),2001,2(5):441~445.
    涥泽.芽孢杆菌B01、B02对肠道致病菌的体外微生物拮抗作用的研究[D].四川农业大学硕士论文,1993.
    胡东兴.鲤体内地衣芽孢杆菌对气单孢菌生物拮抗及鱼免疫功能、酶活性影响的研究[D].四川农业大学硕士论文,1996.
    Nicklin J,编著.微生物学[M].北京:科学出版社,2000,8:5~11.
    陆恒.菜籽蛋白质的营养优势及食用趋势研究[J].现代商贸工业,2004,7:42~45.
    李晓刚,张永丹.花生粕的酶解新工艺研究[J].食品工业科技,2004,2:102~103.
    李平兰,时向东,吕燕妮,等.常见中草药对两种肠道有益菌体外生长的影响[J].中国农业大学学报,2003,8(5):33~36.
    王秀茹,主编.预防医学微生物学及检验技术[M].北京:人民卫生出版社,2002.1129.
    刘凌云,汪磊.益生素在动物生产中的应用[J].饲料博览,2003,5:17~18.
    张红梅,张磊,姜会民.甘露寡聚糖对生长期鲤鱼生长性能及肠道菌群的影响[J].中国饲料,2003,9:22~23.
    刘栋辉,阳会军,刘永坚.B-葡聚糖和维生素C对斑节对虾生长和抗病力的效果[J].中山大学学报(自然科学版),2002,41(4):59~62.
    刘小刚,周洪琪.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报,2002,26(5):448~451.
    莫重文.优质饲用豆粕的工艺研究[J].郑州粮食学院学报,1994,15(2):58~63.
    王俐,蔡辉益,刘国华.不同抗生素对肉鸡肠道微生物的影响[J].饲料工业,2002,23(8):11~13.
    潘康成.微生物添加剂对鲤鱼生长和消化酶活性的影响研究[J].饲料工业,1997,18(10):41~42.
    王建辉.陈立祥.贺建华.益生素的不同作用机理探讨及其在动物生产中的应用[J].饲料工业,2004,25(3):26~30.
    王俐.蔡辉益,刘国华.不同抗生素对肉鸡肠道微生物的影响[J].饲料工业.2002.23(8):11~13.
    王红宁,何明洁,柳苹.等.鲤鱼肠道正常菌群的研究[J].水生生物学报,1994.18(4):354~359.
    王红宁.胡延秀,何明清,等.微生物添加剂饲喂鲤鱼肠道菌群的变化研究[J].四川农业大学 学报,1994.12(增刊):654~657.
    徐勇,江华,勇强,等.低聚木糖对青春双歧杆菌的增殖[J].食品科学,2001,7:20.
    张亚丽,徐忠.脱脂豆粕蛋白对乳酸菌增殖作用的研究[J].哈尔滨商业大学学报(自然科学版),2003,9(1):87~89.
    张春江,罗欣,王海燕.壳寡糖和nisin对熏煮香肠中腐败菌的抑制作用研究[J].肉类工业.2004,6:30~33.
    Danny Hooge. Groeth enhancers: Direct-fed microbials and antibiotics in broilers [J]. Feed International, 2003, (5): 16~19.
    Douillet P A , Langdon C J. Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg) [J]. Aquaculture , 1994, 119: 25~40.
    Erasmus J H, Cook P A , Coyne V E. The role of bacteria in the digestion of seaweed by the abalone Haliotismidae[J]. Aquaculture, 1997, 155: 377~386.
    Gatesoupe V F J. The use ofprobiotics in aquaculture [J]. Aquaculture, 1999, 180: 147~165.
    Liu P C, Chen Y C , Lee K K. Pathogenicity of Vibrio alginolyticus isolated from diseased small abalone Haliotis diversicolor supertaxa [J]. Microbios, 2001, 104: 71~77.
    Margarida M, Barros, Chhorn Lim, et al. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge [J]. Aquaculture, 2002, 5 (24): 263~279.
    Olafsen J A. Interactions between fish larvae and bacteria in marine aquaculture [J]. Aquaculture, 2001, 200: 223~247.
    Sugita H, Hirose Y. Production of the antibacterial substance by Bacillus sp.strain NM 12,an intestinal bacterium of Japanese coastal fish [J]. Aquaculture, 1998, 165: 3~4.
    Schrijver R D, Ollevier F. Protein digestion in juvenile turbot (Scophthalmus maximus) and effects of dietary administration of Vibrio proteolyticu s [J]. Aquaculture, 2000, 183: 107~116.
    Xu Z R, Zou X T, Hu C H, et al. Effects of dietary fructo-oligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs [J]. Asian Australasian Journal of Animal Science, 2002, 15 (12): 1784~1789.
    Ward M D, Gordon D T, Pace L W, et al. Effects of dietary supplementation with fructooligo-saccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs [J]. Journal of Pediatric Gastroenterology & Nutrition., 1995, 21 (3) :297~303.
    高健韶,张洪.枯草杆菌蛋白酶水解大豆分离蛋白的研究[J].食品工业,2002,3:13~15.
    洪鹏志,章超桦,杨文鸽,等.翡翠贻贝肉酶解动物蛋白营养评价及其生理活性初探[J].水产学报.2002,26(1):85~89.
    乐国伟,施用辉.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,29(1):10.
    刘清海,冯静,李健,等.微生物多肽对黑鲷面以鱼生长的促进作用[J].海洋科学,2000,24(5):11~13.
    李珑,李建才,刘树滔,等.大豆分离蛋白酶解过程的研究与产物分析[J].福州大学学报,1996,24(2):109~113.
    刘文斌,王爱民,王恬.菜籽柏中芥子酸和硫甙对异育银鲫生长和生理机能的影响[J].南京农业大学学报,2004,27(1):78~80.
    林勉,刘通讯.内肽酶与端肽酶水解花生粕蛋白的研究[J].食品科学.2000,21(1):22~25.
    刘洋,王长云,薛长湖,等.鳀鱼蛋白酶解物的营养评价[J].青岛海洋大学学报,1996,26(1),37~43.
    刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J].海洋与湖沼,1999,30(3):278~283.
    王恬,许若军.饲料源活性肽及其营养生物学意义[J].畜牧与兽医,2002,34(增刊):96~102.
    石彦国,毛伟杰,张朝.高变性豆粕中蛋白质水解特性的研究[J].黑龙江商学院学报(自然科技版),1997,13(3):5~8.
    杨小军,左伟勇,陈伟华,等.灌喂大豆蛋白胃蛋白酶酶解物对大鼠免疫功能的影响[J].畜牧兽医学报,2005,36(4):348~351.
    钦传光,黄开勋,徐辉碧.酶解泥鳅蛋白免疫调节活性的研究[J].中药材,2001,24(12):879~881.
    郑建仙.功能性食品[M].北京:中国轻工出版社.1999.
    郑华,傅伟龙.酪蛋白水解物对小鼠生长及免疫功能的影响[J].华南农业大学学报,2002,21(3):71~74.
    朱碧英,毋瑾超,胡锡钢.酶解鳀鱼可溶性肽分子组成结构及营养评价[J].中国海洋约物.2001,4.32~36.
    Franek F, Hohenwarter O, Katinger H. Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures [J]. Biotechnol Prog, 2000, 16 (5): 688~92.
    Migliore samoure D, Floc H F, Jolles P. Biologically active case in peptides implicated in immunomodulation [J]. Dairy Research. 1989. 56: 357 — 362.
    Nishi T. Hara H. Hira T, et al. Dietary protein peptic hydrolysates stimulate cholecystokinin release via direct sensing by rat intestinal mucosal cells [J]. Exp Boil Med. 2001, 226(11): 1031 — 1036.
    Wang T. Xu R J. Chang Y Q, et al. Effects of milk protein pre-hydrolyzation on crypt cell proliferation and intestinal morphology in neonatal pigs [J]. Chinese Journal of Histochemistry and Cytochemistry, 1999, 2: 48—54.
    Yoshikawa M, Akahashi M. Isolation and characterization of oryzatenska novel bioactivepeptide with I leum-contracting and dimmunomdulating activities derived from rice alumbumin [J]. Biochem and Molecular Boil International, 1994, 33(6): 1151 — 1158.
    Zambonino infante J, CahuC, Peres A. Partial substitution of di-and tripeptides for native proteins in seabass diets improves dicentrarchus labrax larval development [J]. Journal of nutrition. 1997, 127: 608-614.
    董晓燕.主编.生物化学实验[M].北京:化学工业出版社,1999.111~115.
    高立海,曲悦,梁海平.水产饲料中棉籽饼粕替代鱼粉的研究进展[J].水利渔业,2004,4:66~67.
    胡晓军,姜延程.花生分离蛋白质基础研究[J].郑州粮食学院学报,1998,3:13~18.
    计成,王丽娟,马秋刚,等.饲料品质对鸡空肠肽类释放量和门脉血浆肽量的影响[J].畜牧兽医学报,2004,35(6):660~663.
    沈维华.棉籽粕的营养价值及在鱼饲料中的应用[J].湖北农业科学,1995,1:63~67.
    沈维华,蔡洪东,张志强.以棉籽柏代替大豆粕饲养团头鲂鱼种的初步研究[J].水利渔业,1995,3:19~21.
    王丽娟,计成,郭宝海,等.十二指肠灌注饲料寡肽对鸡肠道氨基酸吸收的影响[J].中国农业大学学报,2003,8(3):81~84.
    邬海峰,姜延程.菜籽分离蛋白的研究[J].中国粮油学报,1995,10(1):50~56.
    徐岩,袁春涛,刁新平.棉粕代替豆柏对蛋种鸡生产性能影响的研究[J].饲料博览,2003,7:3~5.
    周先碗,胡晓倩,编.生物化学仪器分析与实验技术[M].北京:化学工业出版社.2003.
    Balogun T F, Aduku A O, Dim N I. Undecorticated cottonseed meal as a substitute for soya bean meal in diets for weaner and growing-finishing pigs [J]. Animal Feed Science and Technology, 1990, 8 (30): 193~201.
    Margadda M Barros, Chhorn Lim, Phillip H Klesius. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge [J]. Aquaculture, 2002, 5 (24): 263~279.
    陈季旺,姚惠源.几种常见植物蛋白生物活性肽的研究概述[J].中国油脂,2003,28(1):37~39.
    洪鹏志,章超桦,杨文鸽,等.翡翠贻贝肉酶解动物蛋白营养评价及其生理活性初探[J].水产学报,2002,26(1):85~89.
    沈维华.棉籽粕的营养价值及在鱼饲料中应用[J].湖北农业科学,1995,1:63~67.
    谭斌,曾凡坤,吴永娴.花生肽的酶法生产工艺研究[J].食品与机械,2001,3:14~17.
    陶妍,王造,黄慧红,等.鲢鱼加工废弃物的酶法水解[J].水产科技情报,1997,24(4):175~179.
    王梁燕,洪奇华,张耀州.实时定量PCR技术及其应用[J].细胞生物学杂志,2004,26(1):61~66.
    吴建平,丁霄霖.大豆降血压肽的研究(Ⅰ)——生产高活性ACE Ⅰ肽酶系的筛选[J].中国油脂,1998,23(2):49~51.
    严宏忠,舒留泉,丘春江.鲢鱼制取水解动物蛋白工艺初步研究[J].淮海工学院学报,2001,10(增刊):24~26.
    杨小军,左伟勇,陈伟华,等.面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响[J].南京农业大学学报,2004,27(4):69~72.
    钦传光.黄开勋,徐辉碧.酶解泥鳅蛋白免疫调节活性研究[J].中药材,2001,24(12):879~881.
    郑键仙.功能性食品[M].北京:中国轻工业出版社,1995.347~352.
    赵国华,陈宗道,王光慈.改性对玉米蛋白质和结构的影响[J].中国粮油学报,2000,15(3):28~31.
    周涛.酶解鲐鱼蛋白制取低分子肽的初步研究[J].浙江水产学院学报,1997,16(1):12~18.
    Anggawati A M, Murtini J T, Heruwati E S. The use of hydrolyzed protein concentrate in practical diets for Penaeus monodon juveniles [J]. Palmerah Jakarta: Research Report. Research Institute for Fish Technology, 1990, 12.
    Akiyama D M, Dominy W G, Lawrence A. Penaeid shrimp nutrition for the commercial feed industry: revised [J]. Proceeding of the Aquaculture Feed Processing and Nutrition Workshop, 1991, 9: 19~25.
    Allaoua Achouri, Wang Zhang, Xu Shiying. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates [J]. Food Research International, 1998, 31 (9): 617~623.
    Adriana Muhlia-Almazan, Fernando L Garcia-Carreno. Effects of dietary protein on the activity and mRNA level of trypsin in the midgut gland of the white shrimp Penaeus vannamei[J], Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2003, 135: 373-383.
    Al-Mohanna S Y, Nott J A. Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: decapoda) during the molting cycle [J]. Mar Biol. 1989. 101: 535- 544.
    Barillas-Mury C. HanYS. Seeley D. et al. Anopheles gambiae Ag-STAT, a new insect member of the STAT familiy, is activated in response to bacterial infection [J]. EMBOJ, 1999. 184: 959-967.
    Blom J H, Blom K.-J Lee. Rinchard J, et al. Reproductive efficiency and maternal-offspring transfer of gossypol in rainbow trout (Oncorhynchus mykiss) fed diets containing cottonseed meal [J]. J Anim Sci, 2001. 79: 1533-1539.
    Berge G. Storebakken T. Fish protein hydrolysate in starter diets for Atlantic salmon (Salmo salar) fry [J]. Aquaculture. 1996. 145: 205-212.
    Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding [J]. Anal Biochem, 1976, 72: 248—254.
    CahuC L, Zambonino Infante J L. Quazuguel P. et al. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labraxlarvae [J]. Aquaculture , 1999, 171: 109—119.
    Cushman D W, Cheung H S. Ondetti M A, et al. Design of potent competivive inhibition of angiotensin cohueting enzyme [J]. Biochemistry, 1977, 16: 5484—5487.
    Carvalhoa A P, Sa'a R, Oliva-Telesa A, et al. Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio)during early larval stages [J]. Aquaculture. 2004. 234: 319-333.
    Clare DA, Swaisgood H E. Bioactive milk peptides: a prospectus [J]. Journal of Dairy Science, 2000. 83: 1187-1195.
    Ezquerra J M, Garcia-Carrefio F L, Haard N F. Effects of feed diets on digestive proteases from the hepatopancreas of white shrimp Penaeus vannamei [J]. J Food Biochem. 1997, 21: 401—419.
    Fuita H, Yashikawa M. A product-type-ACE-inhibitory peptide derived from fish protein [J]. Immuno pharmacology, 1999, 44 (1-2): 123—127.
    Grazziotin A. Pimentel F A, de Jong E V, et al. Nutritional improvement of feather protein bytreatment with microbial keratinase [J]. Animal Feed Science and Technology (in press).
    Haard N F. Enzymic modification of food proteins. In: Sikorski Z. Editor. The Chemical and Functional Properties of Food Proteins [M]. Lancaster: Technomic Publishing, PA. 2001. Chap 7.
    Hardy R W. Fish hydrolysates: production and use in aquaculture feeds[J]. Proceeding of the Aquaculture Feed Processing and Nutrition Workshop. 1991, 9: 109 — 115.
    Hernandez P, QuadrosW, Navarrete A, et al. Rate of ingestion and proteolytic activity in digestive system during continuous feeding of juvenile shrimps [J]. J Appl Aquacult, 1999, 9: 35-45.
    Julio Humberto Cordova-Murueta . Fernando Luis Garcia-Carreno. Nutritive value of squid and hydrolyzed protein supplement in shrimp feed [J]. Aquaculture, 2002, 210(1-4): 371—384.
    Kolkovski S, Tandler A. The use of squid protein hydrolysate as protein source in microdiets for gilthead seabream Sparus aurata larvae [J]. Aquacult Nutr, 2000, 6: 11 — 15.
    Kristinsson H G, Rasco B A. Hydrolysis of salmon muscle protein by an enzyme mixture extracted from Atlantic salmon (Salmo salar) pyloric caeca [J]. J Food Biochem, 2000, 24: 177—187.
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680-685.
    Lee P G, Smith L, Lawrence A L. Digestive protease of Penaeus vannamei Boone: relationship between enzyme activity, size and diet [J]. Aquaculture, 1984, 42: 225-239.
    Lemos D, Hernandez-Cortes M P, Navarrete A, et al. Ontogenetic variation in digestive proteinase activity of larvae and postlarvae of the pink shrimp Farfantepenaeus paulensis (crustacea: decapoda: penaeidae) [J]. Mar Biol, 1999, 135: 653-662.
    LhosteEF, FislewiczM, Gueugneau A M, et al. Adaptation of exocrine pancreas to dietary proteins: effect of the nature of protein and rat strain on enzyme activities and messenger RNA levels [J]. J Nutr Biochem, 1994, 5: 84-93.
    Muhlia-Almazan A, Garcia- Carreno F L. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei [J]. Comp Biochem Physiol, Part B, 2002, 133 (3): 383-394.
    Maria del Mar Yust, Justo Pedroche, Cristina Megias, et al. Rapeseed protein hydrolysates: a source of HIV protease peptide inhibitors [J]. Food Chemistry, 2004, 87 (3): 387—392.
    Noriega FG, Barillas-Mury C, Wells M A. Dietary control of late trypsin gene transcription in Aedes aegypti[J]. Insect Biochem Mol, 1994, 24 (6): 627-631.
    Noriega F G, Wells M A. A molecular view of trypsin synthesis in the midgut of Aedes aegypti [J]. J Insect Physiol, 1999, 45: 613-620.
    Olli J J, Hjelmeland K, Krogdahl A. Soybean trypsin inhibitors in diets for Atlantic salmon (Salmo salar, L): effects on nutrient digestibilities and trypsin in pyloric caeca homogenate and intestinal content [J]. Comp Biochem Physiol, Part A, 1994, 109 (4): 923—928.
    Peres A, Zambonino-Infante J L, Cahu C. Dietary regulation of activities and mRN A levels of trypsin and amylase in sea bass (Dicentrachus labrax) larvae [J]. Fish Physiol Biochem, 1998, 19: 145— 152.
    Phillip G Lee. Linda L Smith, Addison L Lawrence. Digestive proteases of Penaeus vannamei Boone: Relationship between enzyme activity, size and diet [J]. Aquaculture , 198 1, 12: 225—239.
    Robinson. Robinson E H, Li M H. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal [J]. J World Aquac, 1994, Soc25: 271-276.
    Rodriguez A, Le Vay L, Mourente G. et al. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding [J]. Mar Biol, 1994, 118: 45—51.
    Stale Refstie, Jan J Olli(?), Hakon Standal. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet [J]. Aquacultur, 2004, 239(1-4): 331-349.
    Smacchi E. Gobbetti M. Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes [J]. Food Microbiology, 2000, 17: 129—141.
    Tae-Gee Lee, Susumu Maruyama. Isolation of HIV-1 protease-inhibiting peptides from thermolysin hydrolysate of oyster proteins [J]. Biochemical and Biophysical Research Communications, 1998, 253 (3): 604-608
    Vente-Spreeuwenberg M A. VerdonkJF, KoninkxJG. Verstegen dietary protein hydrolysates vs. the intact proteins do not enhance mucosal integrity and growth performance in weaned piglets [J]. Liv Prod Sci, 2004, 85: 151 — 164.
    Vizioli J, Catteruccia F, della Torre A. Blood ingestion in the malaria mosquito Anopheles gambiae. Molecular cloning and biochemical characterization of two inducible chymotrypsins [J]. Eur J Biochem, 2001, 268: 4027—4035.
    Vioque J, Sanchez-Vioque R, Clemente A. Production and characterisation of an extensive rapeseed protein hydrolysate [J]. Journal of the American Oil Chemical Society, 1999, 76: 819—823.
    Vioque J, Sanchez-Vioque R, Clemente A. Partially hydrolyzed rapeseed protein isolates with improved functional properties [J]. Journal of the American Oil Chemical Society, 2000, 77: 447—450.
    Zambonino-Infante J L, Cahu C, Peres A. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentratrachus labrax larval development [J]. J Nutr, 1997, 127: 608—614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700