Sirt1与c-Fos,c-Jun相互作用抑制AP-1转录活性及对巨噬细胞功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究Ⅲ类组蛋白去乙酰化酶Sirtl对转录因子AP-1(activator protein-1)的转录抑制作用,及Sirtl通过AP-1抑制COX-2 (cyclooxygenase-2)的表达,下调巨噬细胞炎症反应,改善巨噬细胞的功能及其机制。
     背景:Sirt1是酵母染色质沉默因子(Silent information regulator 2, Sir2)的哺乳动物同源体,属于Ⅲ类组蛋白去乙酰化酶。Ⅲ类组蛋白去乙酰化酶参与的反应依赖于烟酰胺腺嘌呤二核苷酸(nicotinamid adenine dinecleotide, NAD+),这不同于Ⅰ类和Ⅱ类组蛋白去乙酰化酶。Sir2家族的蛋白从细菌到人类都具有高度保守性,人Sirtuins是与Sir2具有同源性的一个家族,其中Sirt1是与Sir2同源性最高的一个成员,在许多生命过程,如细胞凋亡、细胞周期、DNA损伤修复、重组、长寿和基因沉默中都发挥了重要的作用。近年来的研究表明,Sirt1不仅可以去乙酰化组蛋白如组蛋白H3、H4等,而且与很多转录因子和转录辅因子相互作用,调节它们的转录激活作用。这些转录因子包括:p53、FOXO家族、NF-KB(p65)、MyoD等;转录辅因子包括:NcoR、p300、PGC-1α等。
     转录因子AP-1是由结构功能相关的亚家族亚单位组成的二聚体。这些成员均有进化保守的亮氨酸拉链(leucine zipper)又称碱性拉链(bZIP)结构域。c-Fos和c-Jun是哺乳动物细胞内最为常见的两种AP-1亚单位。AP-1对细胞因子、生长因子、感染及致癌刺激等生理或病理信号发生应答,通过bZIP结构域的碱性区域与DNA序列结合,调节基因的转录,参与细胞的增殖、分化等过程。AP-1的活性调节是通过多方面来完成的,包括转录调节、翻译后修饰、AP-1分子的二聚化及和其他辅助蛋白的相互作用调节。COX-2是研究最为深入的AP-1下游分子之一,在巨噬细胞中,COX-2的活性参与炎症反应和巨噬细胞功能调节。
     材料和方法:本实验首先在HEK293细胞中通过荧光素酶报告基因实验方法检测了Sirt1在基础水平和PMA处理下对AP-1的转录活性的影响。随后通过免疫共沉淀的方法确定了Sirt1和c-Fos、c-Jun相互作用的具体结构域。应用EMSA的方法,检测了Sirt1对AP-1的DNA结合活性的影响。通过荧光素酶报告基因实验ChIP、Western blotting及PGE2测定等检测Sirt1对AP-1下游基因COX-2表达及功能的影响。用K562和Jurkat细胞作为目标细胞,检测巨噬细胞的肿瘤杀伤活性;用FITC标记酵母作为吞噬物来检测Sirt1对巨噬细胞吞噬功能的影响。随后制备能量限制小鼠模型,模拟Sirt1高表达状态,检测巨噬细胞COX-2的表达、活性及巨噬细胞功能。结果:本研究发现Sirt1可以抑制基础水平和PMA诱导的AP-1的转录激活作用。AP-1家族中最广泛表达的c-Fos, c-Jun可以和Sirt1相互作用。进一步研究确定了c-Fos、c-Jun碱性DNA结合区参与介导了与Sirt1的相互作用。Sirt1抑制了c-Fos、c-Jun的乙酰化水平,并且抑制了AP-1的DNA结合能力。实验表明Sirt1抑制了AP-1的下游基因COX-2启动子活性。在巨噬细胞中,腺病毒介导的Sirt1高表达下调的COX-2的蛋白水平和COX-2的产物PGE2的生成。进一步的功能学实验表明,Sirt1对巨噬细胞的肿瘤杀伤能力和吞噬能力具有增强和保护作用,这可能是通过抑制COX-2活性来实现的。能量限制小鼠腹腔巨噬细胞Sirt1表达上调。与同窝正常饮食小鼠相比,能量限制小鼠巨噬细胞COX-2表达降低,肿瘤杀伤和吞噬功能增强,模拟了Sirt1过表达的实验效果,从另一方面证明Sirt1的作用。进一步研究发现PMA可以诱导巨噬细胞内Sirt1的表达,这可能是一种细胞的负反馈保护机制,从而防止细胞在某些刺激作用下炎症反应过于激烈,对细胞造成不可逆的损伤,从而保护细胞功能状态。
     结论:我们首次发现AP-1可能是Sirt1的一个新的底物分子。Sirt1可以通过和c-Fos、c-Jun结合并降低c-Fos、c-Jun乙酰化水平,抑制AP-1与DNA的结合,从而进一步抑制其转录激活。在巨噬细胞内,Sirt1可能通过抑制AP-1降低了COX-2的表达及活性,从而抑制了炎症反应,保护了巨噬细胞的肿瘤杀伤和吞噬能力。因此,提高Sirt1的表达和活性可以作为一个调节炎症及免疫反应,保护机体的新的手段。
Target-To elucidate the transcriptional repression function of the histone deacetylase Sirtl on AP-1, and the effects of Sirtl on macrophage COX-2 expression and macrophage inflammatory response and functions.
     Background-The silent information regulator 2 (Sir2) protein family (sirtuins or SIRTs) belongs to classⅢhistone/protein deacetylases (HDACs). Unlike the other classⅠandⅡHDACs, which require zinc for deacetylation, Sirtuins require nicotinamide adenosine dinucleotide (NAD+) as a cofactor. Sirtl, the mammalian homolog of Sir2 also mediate a variety of physiological processes such as life span, fat mobilization. Sirtl has been reported to deacetylate a broad array of targets including histones (H3, H4), transcription factors (p53, FOXO, NFκB) and transcriptional integrators (p300, NcoR, PGC-1α). AP-1, a transcriptional factor composed of homodimers or heterodimers of Jun, Fos, Maf and ATF families, is known to be proto-oncogenes. In response to growth factors, cytokines, oxidative stress and PMA, AP-1 could bind to the various promoters and alter the expression of genes, which are involved in cell proliferation, inflammation and so on. The c-Jun and c-Fos are the major component of cellular AP-1. The activity of AP-1 is regulated at many levels: the transcription of c-Fos and c-Jun genes, the post-translational modification of Fos and Jun proteins. Among AP-1 modifications, phosphorylation has been the most extensively studied. Sumoylation of c-Fos and c-Jun has been shown as another covalent modification of AP-1, which may down-regulate AP-1 transcriptional activity. In addition, p300-mediated acetylation of AP-1 has been reported recently. As for all bZIP transcription factors, AP-1 activity is also regulated by the composition of dimerization that is required for binding to DNA. The leucine zipper domain of c-Fos/c-Jun is required for dimerization and the basic region functions to bind to DNA. Cyclooxygenase-2(COX-2), the rate-limiting enzyme for Prostaglandins (PGs) production, has been one of the most intensively studied AP-1 target gene.
     Methods-To examine the ability of Sirtl to repress AP-1 transcriptional activity, we tranniently transfected HEK293 cells with AP-1 luciferase plasmid and pcDNA3.1 or pcDNA3.1 Sirtl. Using immunoprecipitation, we identified the domain of c-Fos, c-Jun that mediated the association between AP-1 and Sirtl. We detect the AP-1 DNA binding activity by EMSA. Using luciferase assay, ChIP, western blotting and PGE2 measurement, we examined the effect of Sirtl on COX-2, one of classic AP-1 target genes. We further detected the effects of Sirtl on macrophage function including phagocytosis and tumoricidal function. Using calorie restriction moedel to mimic the overexpression of Sirtl in mice, we detect the effects of calorie restriction on macrophage COX-2 expression and macrophage function.
     Results-We show here that Sirtl depresses the transcriptional activity of activator protein-1(AP-1) and directly interacts with basic DNA-binding region of c-Fos and c-Jun, which are the major components of AP-1 in most cells. c-Fos and c-Jun can be acetylated by p300 and the acetylation is reduced by the overexpression of Sirtl. Unexpectedly, the dominant-negative mutant Sirtl HY could also bind to c-Fos and c-Jun and suppress AP-1 transcriptional activity. Sirtl reduces COX-2, a typical AP-1 target gene, and improves the phagocytosis and tumoricidal function of peritoneal macrophages (MΦ). Calorie restriction (CR) could mimic the effects of Sirtl overexpression in MΦ.
     Conclusion-To our knowledge, this report demonstrates for the first time that Sirtl could interact with and deacetylate AP-1 to regulate its transcriptional activity. The results of this study may provide additional insight into the mechanism underlying the effects of CR and Sirt1. We hypothesize that PMA induce COX-2 expression by AP-1 and meantime PMA still increase the Sirt1, which could counteractive the AP-1 transcriptional activity and abrogate COX-2 transcriptional expression as a feedback mechanism.
引文
Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., Jonat, C., Herrlich, P., and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49,729-739.
    Aronoff, D. M., Canetti, C., and Peters-Golden, M. (2004). Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol 775,559-565.
    Bai, L., Pang, W. J., and Yang, G. S. (2006). [Sirtl:a novel adipocyte and myocyte regulatory factor]. Yi Chuan 28,1462-1466.
    Benbow, U., and Brinckerhoff, C. E. (1997). The AP-1 site and MMP gene regulation:what is all the fuss about? Matrix Biol 15,519-526.
    Birt, D. F., Pelling, J. C., White, L. T., Dimitroff, K., and Barnett, T. (1991). Influence of diet and calorie restriction on the initiation and promotion of skin carcinogenesis in the SENCAR mouse model. Cancer Res 51,1851-1854.
    Bitterman, K. J., Medvedik, O., and Sinclair, D. A. (2003). Longevity regulation in Saccharomyces cerevisiae:linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67,376-399, table of contents.
    Bordone, L., Cohen, D., Robinson, A., Motta, M. C., van Veen, E., Czopik, A., Steele, A. D., Crowe, H., Marmor, S., Luo, J., et al. (2007). SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6,759-767.
    Borra, M. T., Smith, B. C., and Denu, J. M. (2005). Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280,17187-17195.
    Bouras, T., Fu, M., Sauve, A. A., Wang, F., Quong, A. A., Perkins, N. D., Hay, R. T., Gu, W., and Pestell, R. G. (2005). SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280,10264-10276.
    Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7,592-604.
    Brundage, K. M., Schafer, R., and Barnett, J. B. (2004). Altered AP-1 (activating protein-1) activity and c-jun activation in T cells exposed to the amide class herbicide 3,4-dichloropropionanilide (DCPA). Toxicol Sci 79,98-105.
    Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303,2011-2015.
    Burleigh, M. E., Babaev, V. R., Oates, J. A., Harris, R. C., Gautam, S., Riendeau, D., Marnett, L. J., Morrow, J. D., Fazio, S., and Linton, M. F. (2002). Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105,1816-1823.
    Castello, L., Froio, T., Cavallini, G., Biasi, F., Sapino, A., Leonarduzzi, G., Bergamini, E., Poli, G., and Chiarpotto, E. (2005). Calorie restriction protects against age-related rat aorta sclerosis. Faseb J 19, 1863-1865.
    Chen, H. Z., Zhang, Z. Q., Wei, Y. S., and Liu, D. P. (2007). [Research progression of deacetylase (SIRT1)]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 29,441-447.
    Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280,40364-40374.
    Chen, L., Glover, J. N., Hogan, P. G., Rao, A., and Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392,42-48.
    Chung, H. Y., Kim, H. J., Kim, J. W., and Yu, B. P. (2001). The inflammation hypothesis of aging: molecular modulation by calorie restriction. Ann N Y Acad Sci 928,327-335.
    Cohen, H. Y., Miller, C., Bitterman, K.J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., and Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 505,390-392.
    Delerive, P., De Bosscher, K., Besnard, S., Vanden Berghe, W., Peters, J. M., Gonzalez, F. J., Fruchart, J. C., Tedgui, A., Haegeman, G., and Staels, B. (1999). Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274,32048-32054.
    Denu, J. M. (2003). Linking chromatin function with metabolic networks:Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28,41-48.
    Foletta, V. C., Segal, D. H., and Cohen, D. R. (1998). Transcriptional regulation in the immune system:all roads lead to AP-1. J Leukoc Biol 63,139-152.
    Fontana, L., Meyer, T. E., Klein, S., and Holloszy, J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101,6659-6663.
    Frye, R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260,273-279.
    Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273,793-798.
    Glover, J. N., and Harrison, S. C. (1995). Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373,257-261.
    Grall, F. T., Prall, W. C., Wei, W., Gu, X., Cho, J. Y., Choy, B. K., Zerbini, L. F., Inan, M. S., Goldring, S. R., Gravallese, E. M., et al. (2005). The Ets transcription factor ESE-1 mediates induction of the COX-2 gene by LPS in monocytes. Febs J 272,1676-1687.
    Grozinger, C. M., Chao, E. D., Blackwell, H. E., Moazed, D., and Schreiber, S. L. (2001). Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276,38837-38843.
    Grubisha, O., Smith, B. C., and Denu, J. M. (2005). Small molecule regulation of Sir2 protein deacetylases. Febs J 272,4607-4616.
    Guarente, L., and Picard, F. (2005). Calorie restriction-the SIR2 connection. Cell 120,473-482.
    Hess, J., Angel, P., and Schorpp-Kistner, M. (2004). AP-1 subunits:quarrel and harmony among siblings. J Cell Sci 117,5965-5973.
    Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425,191-196.
    Hubbard, A. K., and Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 28,1379-1386.
    Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403,795-800.
    Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13,2570-2580.
    Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85,403-414.
    Kang, G., Kong, P. J., Yuh, Y. J., Lim, S. Y., Yim, S. V., Chun, W., and Kim, S. S. (2004). Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci 94,325-328.
    Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483-16486.
    Karin, M., Liu, Z., and Zandi, E. (1997). AP-1 function and regulation. Curr Opin Cell Biol 9,240-246.
    Kataoka, H., Bonnefin, P., Vieyra, D., Feng, X., Hara, Y., Miura, Y., Joh, T., Nakabayashi, H., Vaziri, H., Harris, C. C., and Riabowol, K. (2003). ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63,5785-5792.
    Kim, H. J., Jung, K. J., and Seo, A. Y. (2002a). Calorie restriction modulates redox-sensitive AP-1 during the aging process. Age 25,123-130.
    Kim, H. J., Jung, K. J., Yu, B. P., Cho, C. G., Choi, J. S., and Chung, H. Y. (2002b). Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Ageing Dev 123,1589-1595.
    Kundu, J. K., Chun, K. S., Kim, S. O., and Surh, Y. J. (2004). Resveratrol inhibits phorbol ester-induced cyclooxygenase-2 expression in mouse skin:MAPKs and AP-1 as potential molecular targets. Biofactors 21, 33-39.
    Kundu, J. K., Shin, Y. K., and Surh, Y. J. (2006). Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo:NF-kappaB and AP-1 as prime targets. Biochem Pharmacol 72,1506-1515.
    Kutuk, O., Poli, G., and Basaga, H. (2006). Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol Sci 90,120-132.
    Kyriakis, J. M. (1999). Activation of the AP-1 transcription factor by inflammatory cytokines of the TNF family. Gene Expr 7,217-231.
    Lee, C. K., Klopp, R. G., Weindruch, R., and Prolla, T. A. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285,1390-1393.
    Lee, C. K., Weindruch, R., and Prolla, T. A. (2000). Gene-expression profile of the ageing brain in mice. Nat Genet 25,294-297.
    Leiro, J., Alvarez, E., Arranz, J. A., Laguna, R., Uriarte, E., and Orallo, F. (2004). Effects of cis-resveratrol on inflammatory murine macrophages:antioxidant activity and down-regulation of inflammatory genes. J Leukoc Biol 75,1156-1165.
    Li, X., Zhang, S., Blander, G., Tse, J. G., Krieger, M., and Guarente, L. (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28,91-106.
    Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 707,137-148.
    Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25,677-686.
    McCay, C. M., Crowell, M. F., and Maynard, L. A. (1935). The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr 10,63-79.
    Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116,551-563.
    Moulton, K. S., Semple, K., Wu, H., and Glass, C. K. (1994). Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol Cell Biol 14,4408-4418.
    Naesh, O. (2006). Back to the future:postoperative pain management beyond COX-2 inhibitors. N Z Med J 119, U2170.
    Nakao, S., Kuwano, T., Tsutsumi-Miyahara, C., Ueda, S., Kimura, Y. N., Hamano, S., Sonoda, K. H., Saijo, Y., Nukiwa, T., Strieter, R. M., et al. (2005). Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115,2979-2991.
    Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., and Guarente, L. (2004). Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429,771-776.
    Rajaram, N., and Kerppola, T. K. (1997). DNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site. Embo J 16,2917-2925.
    Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature 434,113-118.
    Rogina, B., and Helfand, S. L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101,15998-16003.
    Schultz, R. M., Pavlidis, N. A., Stylos, W. A., and Chirigos, M. A. (1978). Regulation of macrophage tumoricidal function:a role for prostaglandins of the E series. Science 202,320-321.
    Shaulian, E., and Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene 20,2390-2400.
    Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4, E131-136.
    Shen, F., Chen, S. J., Dong, X. J., Zhong, H., Li, Y. T, and Cheng, G. F. (2003). Suppression of IL-8 gene transcription by resveratrol in phorbol ester treated human monocytic cells. J Asian Nat Prod Res 5,151-157.
    Shio, M. T., Ribeiro-Dias, F., Timenetsky, J., and Jancar, S. (2004). PAF is involved in the Mycoplasma arthritidis superantigen-triggering pathway for iNOS and COX-2 expression in murine peritoneal cells. Exp Cell Res 298,296-304.
    Stein, M., Keshav, S., Harris, N., and Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity:a marker of alternative immunologic macrophage activation. J Exp Med 176, 287-292.
    Sterner, D. E., and Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64,435-459.
    Stocker, R., and Keaney, J. F., Jr. (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev 84, 1381-1478.
    Stout, R. D., and Suttles, J. (2005). Immunosenescence and macrophage functional plasticity:dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 205,60-71.
    Suh, N., Honda, T., Finlay, H. J., Barchowsky, A., Williams, C., Benoit, N. E., Xie, Q. W., Nathan, C., Gribble, G. W., and Sporn, M. B. (1998). Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res 58,717-723.
    Tanno, M, Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282,6823-6832.
    Tissenbaum, H. A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410,227-230.
    Tuckermann, J. P., Reichardt, H. M., Arribas, R., Richter, K. H., Schutz, G., and Angel, P. (1999). The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 147,1365-1370.
    Vasanwala, F. H., Kusam, S., Toney, L. M., and Dent, A. L. (2002). Repression of AP-1 function:a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 169,1922-1929.
    Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 707,149-159.
    Vivancos, M., and Moreno, J. J. (2008). Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 99,1199-1207.
    Vogt, P. K. (2001). Jun, the oncoprotein. Oncogene 20,2365-2377.
    Vries, R. G., Prudenziati, M., Zwartjes, C., Verlaan, M., Kalkhoven, E., and Zantema, A. (2001). A specific lysine in c-Jun is required for transcriptional repression by E1A and is acetylated by p300. Embo J 20, 6095-6103.
    Walford, R. L., Liu, R. K., Mathies, M., and al., e. (1975). Influence of caloric restriction on immune function:relevance for an immunologic theory of aging, in:A. Chavez, H. Bourges, S. Basta (Eds.),. Proc IXth Intl Congr Nutr(book of abstracts), Karger, Basel,,374-381.
    Wang, N., Verna, L., Liao, H., Ballard, A., Zhu, Y., and Stemerman, M. B. (2001). Adenovirus-mediated overexpression of dominant-negative mutant of c-Jun prevents intercellular adhesion molecule-1 induction by LDL:a critical role for activator protein-1 in endothelial activation. Arterioscler Thromb Vasc Biol 21, 1414-1420.
    Weindruch, R. (2003). Caloric restriction, gene expression, and aging. Alzheimer Dis Assoc Disord 17 Suppl 2, S58-59.
    Woods, J., Lu, Q., Ceddia, M. A., and Lowder, T. (2000). Special feature for the Olympics:effects of exercise on the immune system:exercise-induced modulation of macrophage function. Immunol Cell Biol 78, 545-553.
    Wu, D., Mura, C., Beharka, A. A., Han, S. N., Paulson, K. E., Hwang, D., and Meydani, S. N. (1998). Age-associated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. Am J Physiol 275, C661-668.
    Xia, Y., Wang, J., Liu, T. J., Yung, W. K., Hunter, T., and Lu, Z. (2007). c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosis. Mol Cell 25, 219-232.
    Yang, S. R., Wright, J., Bauter, M., Seweryniak, K., Kode, A., and Rahman, I. (2007). Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo:implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292, L567-576.
    Yang, X., Chen, Y., and Gabuzda, D. (1999). ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF-kappaB. J Biol Chem 274, 27981-27988.
    Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., and Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J 23, 2369-2380.
    1. Lin SJ and Guarente L (2003) Nicotiuamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol.15:241-246.
    2. Ziegler M (2000) New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem.267:1550-1564.
    3. Berger F, Ramirez-Hemandez MH and Ziegler M (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci.29:111-118
    4. Bedalov A and Simon JA (2004) Neuroscience. NAD to the rescue. Science.305:954-955.
    5. Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N and Ruggieri S (2004) Enzymology of NAD+homeostasts in man. Cell Mol Life Sci.61:19-34.
    6. Ziegler M and Niere M (2004) NAD+surfaces again. Biochem J.382:e5-6.
    7. Starkov AA and Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem.86:1101-1107.
    8. La Piana G.Marzulli D, Consalvo MI and Lofrumento NE (2003) Cytochrome c-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis. Arch Biochem Biophys.410:201-211.
    9. Petrat F, Pindiur S, Kirsch M and de Groot H (2003) NAD(P)H, a primary target of 102 in mitochondria of intact cells. J Biol Chem.278:3298-3307.
    10. Pias EK aud Aw TY (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ.9:1007-1016.
    11. Attene-Ramos MS, Kitiphongspattana K, Ishii-Schrade KB and Gaskins HR (2005) Temporal Changes Of Multiple Redox Couples From Proliferation To Growth Arrest In Iec-6 Intestinal Epithelial Cells. Am J Physiol Cell Physiol.
    12. Kapinya KJ, Harms U, Harms C, Blei K. Katchanov J, Dimagl U and Hortnagl H (2003) Role of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischaemia in vivo. J Neurochem.84:1028-1039.
    13. Kirsch M and De Groot H (2001) NAD(P)H, a directly operating antioxidant? Faseb J.15: 1569-1574.
    14. Zhu K, Swanson RA and Ying W (2005) NADH can enter into astrocytes and block poly(ADP-ribose)polymerase-1-mediated astrocyte death. Neuroreport.16:1209-1212.
    15. Oeckler RA, Arcuino E, Ahmad M, Olson SC and Wolin MS (2005) Cytosolic NADH redox and thiol oxidation regulate pulmonary arterial force through ERK MAP kinase. Am J Physiol Lung Cell Mol Physiol.288:L1017-1025.
    16. Jonas EA, Hickman JA, Hardwick JM and Kaczmarek LK (2005) Exposure to hypoxia rapidly induces nutochondrial channel activity within a living synapse. J Biol Chem.280:4491-4497.
    17. Ceconi C, Bemocchi P, Boraso A, Cargnoni A, Pepi P, Curello S and Ferrari R (2000) New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. Cardiovasc Res.47:586-594.
    18. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL and Sartorelli V (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state Mol Cell.12:51-62.
    19. Zima AV, Copello J A and Blatter LA (2004) Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes. J Physiol 555:727-741
    20. Bonicalzi ME,Haince JF, Droit A and Poirier GG(2005)Regulatioa of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase:where and when? Cell Mol Life Sci.62: 739-750.
    21. Malanga M and Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol.83:354-364.
    22. Diefenbach J and Burkle A (2005) Introduction to poly(ADP-ribose) metabolism Cell Mol Life Sci. 62:721-730.
    23. Erdelyi K. Bakondi E. Gergely P. Szabo C and Virag L (2005) Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation:focus on cell death and transcriptional regulation. Cell Mol Life Sci 62:751-759.
    24. Chiarugi A and Moskowitz MA (2002) Cell biology. PARP-1-a perpetrator of apoptoric cell death? Science.297:200-201,
    25. Hong SJ.Dawson TM and Dawson VL(2004) Nuclear and mitochondrial conversations in cell death:PARP-1 and AIF signaling. Trends Pharmacol Sci.25:259-264.
    26. Koh DW, Dawson TM and Dawson VL (2005) Mediation of cell death by poly(ADP-ribose) porymerase-1. Pharmacol Res.52:5-14.
    27. Chiarugi A (2002) Poly(ADP-ribose) polymerase:killer or conspirator? The'suicide hypothesis'revisited. Trends Pharmacol Sci.23:122-129.
    28. Szabo C and Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci.19:287-298.
    29. Zong WX,Ditstworth D,Bauer DE,Wang ZQ and Thompson CB(2004)Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev.18:1272-1282.
    30. Suh SW.Aoyama K,Matsumoti Y, Liu J and Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment Diabetes.54: 1452-1458.
    31. Ying W.Alano CC, Gamier P and Swanson RA (2005) NAD+as a metabolic link between DNA damage and cell death. J Neurosci Res.79:216-223.
    32. Alano CC, Ying W and Swanson RA (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+depletion and mitochondrial permeability transition. J Biol Chem.279:18895-18902.
    33. Ying W, Gamier Pand Swanson RA (2003) NAD+repletion prevents PARP-1-induced grycolytic blockade and cell death n cultured mouse astrocytes. Biochem Biophys Res Commun.308:809-813.
    34. Mukherjee SK,Klaidman LK,Yasharel R and Adams JD.Jr.(1997)Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol.330; 27-34.
    35. van Wijk SJ and Hageman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med.39:81-90.
    36. Yu SW. Wang H, Poitms MF, Coombs C. Bowers WJ, Federoff HJ, Poirier GG, Dawson TM and Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259-263.
    37. Cregan SP, Dawson VLand Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene.23.2785-2796.
    38. Cipriani G,Rapizzi E,Vannacci A,Rizzuto R,Moroni F and Chianrugi A(2005)Nuclear poly(ADP-ribose) porymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem.280:
    17227-17234.
    39. Ame JC, Spenlehauer C and de Murcia G (2004) The PARP superfamily. Bioessays.26: 882-893.
    40. Meder VS. Boeglin M, de Murcia G and Schreiber V (2005) PARP-1 and. PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci.118: 211-222.
    41. Kofler J, Otsuka T, Zhang Z, Noppens R, Grafe MR Koh DW, Dawson VL, de Murcia JM, Hum PD and Traystman RJ (2005) Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia, J Cereb Blood Flow Metab.
    42. Liu Y, Snow BE, Kickhoefer VA, Erdmann N, Zhou W, Wakeham A, Gomez M, Rome LH and Harrington L (2004) Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo. Mol Cell Biol.24:5314-5323.
    43. Seimiya H, Muramatsu Y Ohishi T and Tsuruo T (2005) Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell. 7:25-37.
    44. Chung HK, Cheong C, Song J and Lee HW (2005) Extratelomeric functions of telomerase. Curr Mol Med.5:233-241.
    45. Imai S, Armstrong CM. Kaeberlein M and Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature.403:795-800.
    46. Blander G and Guarente L (2004) the sir2 family of protein deacetylases. Annu. Rev. Biochem. 73:417-435.
    47. Porcu M and Chiarugi A (2005) The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci.26:94-103.
    48. Guarente L.and Picard F (2005) Calorie restriction-the SIR2 connection. Cell.120:473-482.
    49. Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T and Takata M (2005) Role of NAD-dependent deacetylases SIRTI and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells.10:321-332.
    50. Parker JA, Arango M, Abderrahmane S, Lambert E. Tourette. C, Catoire H and Neri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet.37:349-350.
    51. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R and Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science.305:390-392.
    52. Yeung F, Hoberg JE, Ramsey CS. Keller MD, Jones DR. Frye RA and Mayo MW (2004) Modulation of NF-kappaB-dependeut transcription and cell survival by the SIRT1 deacetylase. Embo J.23:2369-2380.
    53. Araki T, Sasaki Y and Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science.305:1010-1013.
    54. Luo J,Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L aud Gu W (2001)Negative control of p53 by Str2alpha promotes cell survival under stress. Cell.107:137-148.
    55. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D. Gu W, Bultsma Y, McBurney M and Gnarente L(2004) Mammalian SIRT1 represses forkhead transcription factors. Cell.116: 551-563.
    56. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE,
    Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW and Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science.303:2011-2013.
    57. Giannakou ME and Partridge L (2004) The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends Cell Biol.14:408-412.
    58. Susse S, Scholz CJ. Burkle A and Wiesmuller L (2004) Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res.32:669-680.
    59. McLure KG, Takagi M and Kastan MB (2004) NAD+modulates p53 DNA binding specificity and function. Mol Cell Biol.24:9958-9967.
    60. Zhang J (2003) Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays.25:808-814.
    61. Wieler S, Gagne JP and Vaziri H (2003) Poly(ADP-ribose) Polymerase-1 Is a Positive Regulator of the p53-mediated G1 Arrest Response following Ionizing Radiation J Biol Chem 278:18914-18921.
    62. Alvarez HM and Gonzalez FA (2001) Regulation of p53 Sequence-specific DNA-binding by Covalent Poly(ADP-ribosyl)ation. J Biol Chem.276:36425-36430.
    63. Seman M. Adriouch S, Scheuplein F. Krebs C, Freese D, Glowacki G, Deterre P, Haag F and Koch-Nolte F (2003) NAD-induced T cell death:ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity.19:571-582.
    64. Bruzzone S, Guida L, Zocchi E, Franco L and De Flora A (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+f(?)xes in intact cells. Faseb J.15:10-12.
    65. Romanello M, Padoan M, Franco L, Veronesi V, Moro L and D'Andrea P (2001) Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun.285:1226-1231.
    66. Gerth A, Nieber K, Oppenheimer NJ and Hauschildt S (2004) Extracellular NAD+regulates intracellular free calcium concentration in human monocytes. Biochem J.382:849-856.
    67. Corda D and Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. Embo J.22:1953-1958.
    68. Seman M, Adriouch S, Haag F and Koch-Nolte F (2004) Ecto-ADP-ribosyltransferases (ARTs):emerging actors in cell communication and signaling. Curr Med Chem.11:857-872.
    69. Kawamura H, Aswad F, Minagawa M, Malone K, Kaslow H, Koch-Nolte F:Schott WH. Leiter EH and Dennert G (2005) P2X7 receptor-dependent and-independent T cell death is induced by nicotinamide adenine dinucleotide. J Immunol.174:1971-1979.
    70. Bai N, Lee HC and Laher I (2005) Emerging role of cyclic ADP-ribose (cADPR) in smooth muscle. Pharmacol Ther.105:189-207.
    71. De Flora A, Zocchi E, Guida L, Franco L and Bruzzone S (2004) Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann N Y Acad Sci.1028: 176-191.
    72. Lee HC (2004) Multiplicity of Ca2+messengers and Ca2+stores:a perspective from cyclic ADP-ribose and NAADP. Curr Mol Med.4:227-237.
    73. Guse AH (2004) Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr Mol Med.4:239-248.
    74. Kuhn FJ, Heiner I and Luckhoff A (2005) TRPM2:a calcium influx pathway regulated by
    oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch.
    75. Kolisek M, Beck A, Fleig A and Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell.18:61-69.
    76. Berridge MJ, Bootman MD and Roderick HL (2003) Calcium signalling:dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol.4:517-529.
    77. Genazzani AA and Thorn P (2002) Calcium signalling:calcium goes global. Curr Biol.12: R432-433.
    78. Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA and Kannan MS (2005) CD38/cyclic ADP-ribose signaling:role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol.288:L773-788.
    79. Demaurex N and Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science.300:65-67.
    80. Macrez N and Mironneau J (2004) Local Ca2+signals in cellular signalling. Curr Mol Med.4: 263-275.
    81. Rutter GA (2003) Calcium signalling:NAADP comes out of the shadows. Biochem J.373: e3-4.
    82. Lee HC (2005) NAADP-mediated calcium signaling. J Biol Chem.
    83. Liu ZX, Azhipa O, Okamoto S, Govindarajan S and Dennert G (2001) Extracellular nicotinamide adenine dinucleotide induces t cell apoptosis in vivo and in vitro. J Immunol. 167:4942-4947.
    84. Di Lisa F and Ziegler M (2001) Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett 492:4-8.
    85. Scovassi AI (2004) Mitochondrial poly(ADP-ribosyiation):from old data to new perspectives. Faseb J.18:1487-1488.
    86. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C and Clark RS (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+depletion and cell death induced by oxidative stress. J Biol Chem.278:18426-18433.
    87. Onyango P, Celic I, McCaffery JM, Boeke JD and Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A.99:13653-13658.
    88. Schwer B, North BJ, Frye RA, Ott M and Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dimicleotide-dependent deacetylase. J Cell Biol.158:647-657.
    89. Di Lisa F, Menabo R, Canton M, Barile M and Bemardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem.276:2571-2575.
    90. Choug ZZ, Lin SH and Maiese K (2004) The NAD+precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cereb Blood Flow Metab.24:728-743.
    91. Crowley CL, Payne CM, Bernstein H, Bernstein C and Roe D (2000) The NAD+precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer deoxycholate. Cell Death Differ.7:314-326.
    92. Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, Schemainda I, Hasmann M. Saltz LB and Koutcher JA (2005) Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res.11:3503-3513.
    93. Szabo C (2005) Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 52:34-43
    94. Strosznajder RP, Jesko H and Zambrzycka A (2005) Poly(ADP-Ribose) Polymerase:The Nuclear Target in Signal Transduction and Its Role in Brain Ischemia-Reperfusion Injury. Mol Neurobiol.31:149-168.
    95. Nakajima H. Kakui N, Ohkuma K, Isbikawa M and Hasegawa T (2005) A newly synthesized poly(ADP-ribose) polymerase inhibitor, DR2313 [2-methyl-3,57,8-tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]:pharmacological profiles, neuroprotective effects, and therapeutic time window in cerebral ischemia in rats. J Pharmacol Exp Ther 312:472-481.
    96. Komjati K, Besson VC and Szabo C (2005) Poly (adp-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS Neurol Disord. 4:179-194.
    97. Devalaraja-Narashimha K, Singaravelu K and Padanilam BJ (2005) Poly(ADP-ribose) porymerase-mediated cell injury in acute renal failure. Pharmacol Res.52:44-59.
    98. Ying W, Sevigny MB. Chen Y and Swanson RA (2001) Poly(ADP-ribose) glycohy drolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci U S A.98: 12227-12232.
    99. Patel NS, Cortes U, Di Poala R Mazzon E, Mota-Filipe H, Cuzzocrea S, Wang ZQ and Thiemermann C (2005) Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. J Am Soc Nephrol.16: 712-719.