用户名: 密码: 验证码:
超富集植物龙葵(Solanumnigrum L.)对镉胁迫的生理响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉作为一种毒性较强的重金属污染物,由于长期施用磷肥、金属电镀和塑料工业发展等原因而在农田长时间残留,对人类健康造成潜在的威胁。针对目前日益严重的镉污染,植物修复是一种绿色廉价、被人们广泛认可的有效的原位治理措施,其核心技术在于利用极少数镉超富集植物来去除土壤中的镉以达到修复和治理环境的目的。本文以新型镉超富集植物龙葵为研究对象,通过营养液培养方法深入研究了系列镉处理浓度下苗期龙葵植株生长、抗氧化系统、氮代谢、光合作用参数等生理特性和镉吸收积累特性,探讨镉胁迫下超富集植物龙葵的生理响应机制。在此基础上,研究了镉在龙葵体内的移动性及其在龙葵不同叶位叶片间亚细胞分布、化学赋存形态的差异性,部分揭示龙葵的镉耐性机制。并且,对镉、锌单一和复合污染条件下龙葵和茄子对锌、镉的吸收和积累特性的差异性进行了研究,同时通过人工模拟镉污染土壤研究了镉对大量元素及微量营养元素吸收的影响,以探讨元素互作的内在机制。另外,本研究通过外源添加水杨酸考察其对龙葵幼苗叶片镉毒害的缓解效应,通过外源添加壳聚糖考察其对土壤镉的钝化效应。主要研究内容和结果如下:
     ①镉胁迫对龙葵幼苗生长、部分生理特性及镉积累的影响
     镉处理使龙葵和茄子幼苗生长受到不同程度影响,并且具有明显的浓度效应和时间效应。龙葵在镉浓度低于50μM条件下,地上部干物质量仅下降15.48%,根系则有所增加,低浓度镉(25μM)处理显著促进龙葵幼苗根系活力,而高浓度(150μM)镉处理10 d后达到峰值;茄子地上部干物质量和根系活力在所有镉处理下均呈下降趋势。镉胁迫还导致龙葵和茄子幼苗叶片色素含量降低。龙葵体内的SOD、POD、CAT对镉胁迫起到较强的抗氧化保护作用。随着镉浓度的升高和胁迫时间的延长,龙葵幼苗叶片相对电导率、MDA含量均显著上升,而可溶性糖和脯氨酸含量也相应上升,起到一定的渗透调节作用。
     ②镉胁迫对龙葵幼苗叶片抗坏血酸-谷胱甘肽循环的影响及外源水杨酸对镉毒害的缓解效应
     通过营养液培养方法,研究龙葵叶片GSH-AsA循环及其相关酶对Cd胁迫的响应,并且通过外源添加水杨酸(SA)考察其对龙葵幼苗叶片镉毒害的缓解效应。结果表明:镉处理显著影响龙葵幼苗叶片还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)、还原型抗坏血酸(AsA)、脱氢抗坏血酸(DHA)含量和谷胱甘肽还原酶(GR)和抗坏血酸过氧化物酶(APX)活性,且具有浓度效应和时间效应。镉处理3 d后,GSH和GSSG含量首先小幅下降。镉处理9 d后GSH含量达到峰值。GSSG含量在25μM镉处理下表现为“降-升-降”的变化规律,12 d后含量最低,而150μM镉处理下则表现为“升-降-升”,6 d后达到峰值。25μM镉处理下,AsA含量随时间延长先升后降,平均含量较CK均值提高48.58%,而150μM镉处理下则呈现“降-升-降”的变化规律,6 d后含量最低,但平均含量较CK均值提高40.88%。DHA含量随镉浓度提高和处理时间的延长逐渐增加,25μM镉处理9 d和150μM镉处理12 d后均达最大值。GR活性随镉处理时间的延长先升后降,9 d时达到峰值。同时,25μM和150μM镉处理下平均GR活性分别较CK提高30.90%和51.67%。APX活性变化规律与GR有所不同。25μM镉处理下,APX随处理时间的延长呈现“升-降-升”的变化规律,平均活性较CK升高47.37%,而150μM镉处理下表现为“降-升-降”,3 d时达到峰值,较对照增加37.81% (P<0.05)。
     外源SA的添加可以显著提高龙葵叶片色素、GSH、AsA和DHA含量,降低MDA含量,也能显著提高GR和APX活性,SA处理3 d和6 d后,GR活性分别较未添加SA的T2 (150μM)镉处理增加27.50%和32.08% (P<0.05),APX增加23.74%和22.48% (P<0.05)。
     ③镉胁迫对龙葵幼苗光合特性、氮代谢的影响
     采用模拟镉污染土壤培养法研究了镉对龙葵光合特性及营养元素吸收的影响。结果表明:随镉处理浓度的增加,龙葵幼苗叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈下降趋势,而胞间CO2浓度(Ci)则增加。同时,可变荧光和最大荧光之比(Fv/ Fm)显著降低。
     采用营养液培养方法,研究了系列镉浓度处理对龙葵幼苗氮代谢的影响。结果表明:龙葵根系可溶性蛋白质较叶片受Cd影响更大。龙葵植株叶片和根系NO3--N含量、硝酸还原酶(NR)、谷氨酰胺合成酶(GS)活性均随镉浓度提高而先增后降,且随处理时间的延长而逐渐下降。叶片NO3--N含量和NR活性均在25μM镉处理8 d后达到峰值,而根系NO3--N则在50μM镉处理8 d后最高。叶片NO3--N含量受镉处理影响较根系稍大。然而,龙葵叶片中NH4+-N含量随镉浓度升高和时间延长逐渐升高,100μM镉处理16 d后最高,表明镉胁迫下龙葵叶片铵态氮富集效应明显。龙葵叶片和根系中谷氨酸脱氢酶(GDH)活性随镉处理浓度提高和处理时间延长而逐渐升高,100μM镉处理16 d后达到峰值。
     ④镉在超富集植物龙葵体内的移动性及其在龙葵不同叶位叶片中的亚细胞分布及赋存形态研究
     从积累部位来看,镉主要积累在龙葵幼苗地上部,镉含量由高到低依次为叶片>茎>根系。同时,龙葵幼苗叶片镉含量依叶位不同呈相应变化,本试验结果表明第7片叶镉含量最高,且叶脉部分镉含量较叶片边缘和叶脉间隙部分高。限制蒸腾处理24 h使第7片叶镉含量下降76.73%,而未影响其他叶片镉含量分布情况。将龙葵植株移至去镉营养液中继续处理后发现新展开2片新叶镉含量极低。通过比较加镉-去镉两种处理下龙葵植株各部位镉含量和镉积累量差异,用以考察镉在龙葵体内的移动性。去镉处理后,各老叶的镉含量均较对照下降,而镉积累量却有所上升。然而,加镉-去镉两种处理下植株总体镉积累量保持不变,去镉处理并未改变镉在龙葵体内的分布模式。去镉处理使龙葵根系中约37.78%的镉转运至地上部。因此,可以推断在龙葵体内镉离子随蒸腾流较易转运至地上部,一旦进入叶片,镉离子很难通过韧皮部转运至其他组织器官。
     镉在龙葵不同叶位叶片中的亚细胞分布模式基本相同,主要分布在细胞壁部分,占62%~66%,其次是细胞质可溶部分,而在细胞器组分的分布较少,仅占5%~7%。提高镉处理水平,镉向叶片细胞壁部分和细胞器部分的分配比例增加,而向细胞质可溶部分的分配比例相对减少。同时,镉向下位叶细胞器的分配比例增加幅度较上位叶更大。龙葵叶片中镉主要以氯化钠提取态和醋酸提取态存在,尤其是氯化钠提取态,占40.09%~56.09%。即主要是果胶酸、蛋白质结合态或吸附态及难溶于水的磷酸盐类镉,进一步表明龙葵叶片中镉主要分布在细胞壁。
     ⑤镉、锌单一或复合胁迫对龙葵和茄子幼苗生长及镉、锌积累的影响
     镉、锌单一和复合污染条件下龙葵和茄子幼苗生长反应及其对锌、镉的吸收和积累特性的研究结果表明:高浓度镉锌使苗期龙葵和茄子植株生长受到不同程度的抑制,而低浓度镉处理和部分低浓度镉锌复合处理却具有促进作用。不同锌浓度处理均能大幅度提高苗期龙葵根、叶的镉含量,并随锌浓度的提高先升后降,均在100μM时达到峰值。龙葵和茄子各器官镉含量高低主要由溶液中的镉浓度决定,镉锌互作的影响有限,但相同镉浓度下龙葵均以100μM锌处理组合最高,而茄子以50μM锌处理组合最高。从植株整体的镉积累量来看,龙葵地上部镉积累量是根系的7~16倍多,而茄子主要积累在根系。
     龙葵各器官的平均锌含量均以50μM镉浓度时最高,尤其当Cd/ Zn为50/ 500μM时,地上部锌积累量高达445.9μg·株-1,而茄子地上部锌积累量在Cd/ Zn为25/ 500μM时达到最大值,仅为48.3μg·株-1。龙葵和茄子各器官锌含量高低主要由溶液中的锌浓度决定,镉锌互作对龙葵作用有限,而对茄子具有一定的互作效应。从植株整体的锌积累量来看,锌主要积累在龙葵幼苗地上部,叶片锌积累量是根系的7~17倍多,而对于茄子而言,锌在叶片中积累量较根系稍高。
     镉处理还导致龙葵植株营养元素吸收紊乱。镉促进龙葵叶片和根系K吸收,对Na吸收影响不显著。同时,镉促进根系Mg吸收,但抑制其向地上部转运。低浓度镉处理促进叶片Ca吸收。龙葵根、茎、叶Zn含量随镉处理浓度的提高均表现为低促高抑。根系Cu吸收随镉浓度提高而增加,叶片先增后降,各器官Fe含量随镉浓度提高逐渐降低,而根系Mn含量受镉抑制。
     ⑥壳聚糖对土壤镉离子的钝化效应
     外源壳聚糖对镉污染土壤中有效态镉含量及其垂直分布的研究结果表明,壳聚糖对土壤中Cd2+含量有较大的影响。施入壳聚糖后,土壤中的有效Cd2+含量明显降低,并且随壳聚糖施用量的增加而进一步降低,0.9 g kg-1 DW壳聚糖施用量钝化效应最佳。壳聚糖对土壤中重金属离子的作用主要是发生在处理后的7d内。同时,壳聚糖还影响镉离子在土壤中的垂直分布。
Cadmium (Cd), accumulated in soils as a consequence of agricultural activities (excessive phosphatic fertilizers application) and industrial activities (mining and smelting of metalliferous ores, electroplating, etc.) is becoming a major problem due to the great toxicity, high mobility from soil to plant, long half-life of Cd and further entry into food chain. Phytoremediation of Cd polluted soils has attracted world-wide attention and research, and in which the hyperaccumulation of Cd in the shoots by plants is the main technique to remove Cd in the contaminated soils. In the present study, the newly discovered Cd hyperaccumulator plant Solanum nigrum L. was grown in hydroponics with increasing Cd concentrations to study the growth, antioxidant system, Nitrogen metabolism, photosynthetic parameters, and Cd accumulation characteristics. Based these, distribution and mobility of Cd in the S. nigrum plant, and subcellular distribution and chemical forms of Cd in the leaves of different position were investigated. Further, the difference of Cd, Zn accumulation between S. nigrum and S. melongena plants subjected to Cd, Zn, and Cd-Zn complex stress was studied by hydroponic culture method. Moreover, the interactions between Cd and macro- and micro-nutrient elements were investigated through a pot experiment. In addition, exogenous SA was applied in the hydroponic system to study the alleviating effects to Cd toxicity in the leaves of Solanum nigrum L.; exogenous chitosan was applied in different textural soils to study the effects on the available contents and vertical distribution of Cd2+. The main results were indicated as follows:
     ①The growth status, physiological characteristics, and Cd accumulation in the hyperaccumulator plant Solanum nigrum L seedlings subjected to Cd stress.
     Physiological responses of S. nigrum and S. melongena seedlings to Cd stress were investigated by nutrient solution culture method. The results showed that Cd could affect the growth of S. nigrum and S. melongena seedlings, with concentration-dependent and time-dependent manners. Dry shoot biomass of S. nigrum decreased 15.48% when Cd concentration was below 50μM (P > 0.05), but dry root biomass increased 111.11% with the application of Cd (≤100μM, P < 0.05). Root activities of S. nigrum increased at low Cd concentrations (≤50μM) and then decreased. However, dry shoot biomass and root activities of S. melongena decreased significantly in all Cd treatments. The leaves pigment contents of S. nigrum and S. melongena seedlings decreased with the increase of Cd concentration. SOD, POD, and CAT in the leaves of S. nigrum played an important role against Cd stress. With increasing Cd concentration in the solution and along with treatment time, the relative elective conductivities, malondialdehyde (MDA) contents increased, soluble sugar and proline contents also increased, which played an important role of osmotic adjustment.
     ②Response of the ascorbate-glutathione cycle and the alleviating effects of exogenous SA to Cd toxicity in the hyperaccumulator plant Solanum nigrum L.
     Response of the ascorbate-glutathione cycle and the alleviating effects of exogenous SA to Cd toxicity in the hyperaccumulator plant S. nigrum seedlings under Cd stress were investigated by nutrient solution culture method. The results showed that Cd stress significantly influenced the contents of GSH, GSSG, AsA, DHA and the activities of GR and APX in the leaves of S. nigrum, and have concentration-dependent and time-dependent effects. After 3 d of Cd exposure, the contents of GSH and GSSG decreased with a little extent firstly, and reached maximum after 9 d of Cd exposure. GSSG content presented a rule of“decrease-increase-decrease”subjected to 25μM of Cd, and reached minimum after 12 d of Cd exposure, but when treated with 150μM of Cd, GSSG content presented a reverse rule-“increase-decrease-increase”, and reached maximum after 6 d of Cd exposure. And, AsA content increased firstly and decreased along with treatment time subjected to 25μM of Cd, average content increased 48.58% compared to the control. However, AsA content presented a rule of“decrease-increase-decrease”subjected to 150μM of Cd, and reached minimum after 6 d of Cd exposure, but the average content increased 40.88% than the control. DHA content increased with increasing Cd concentration and along with treatment time, and reached maximum after 9 d of 25μM Cd and 12 d of 150μM Cd exposures. GR activity increased firstly and decreased along with exposure time, and reached peak values after 9 d of Cd exposure, further, average GR activities increased 30.90% and 51.67% subjected to 25 and 150μM of Cd, respectively. APX activity presented a different rule with GR activity, and a rule of“increase-decrease-increase”was found when the seedlings subjected to 25μM of Cd, average activity increased 47.37% compared to the control, however, APX activity presented the rule of“decrease-increase-decrease”, and reached maximum after 3 d of 150μM Cd exposure, increased 37.81% compared to the control (P < 0.05).
     Application of exogenous SA significantly increased the contents of leaf pigments, GSH, AsA, and DHA, decreased the MDA contents. Furthermore, increased the activities of GR and APX, after 3 d and 6 d of SA application, GR activities increased 27.50% and 32.08% compared to that of T2 (no SA application, 150μM Cd, P < 0.05), and APX activities increased 23.74% and 22.48%, respectively (P < 0.05).
     ③Effects of Cd stress on the leaf photosynthesis, Nitrogen metabolism, and uptake of nutrient elements in the hyperaccumulator plant Solanum nigrum L.
     Effects of Cd stress on the leaf photosynthesis and macro- and micro-nutrient elements uptake in the hyperaccumulator plant S. nigrum were investigated through a soil pot experiment. The results showed that net photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) decreased with increasing Cd concentrations, but intercellular CO2 concentration (Ci) increased. And, Fv/ Fm ratios decreased significantly.
     Nitrogen metabolism in S. nigrum seedlings under Cd stress were investigated by nutrient solution culture method. The results showed that NO3--N and soluble protein contents, NR and GS activities in the leaves and roots increased firstly and decreased with increasing Cd concentrations in the solutions, and decreased along with treatment time. And, soluble protein contents in the roots decreased with more extent. After 8 d of Cd exposure (25μM), NO3--N content and NR activity in the leaves of S. nigrum reached peak values, but root NO3--N contents reached maximum after 8 d of 50μM Cd exposure, and leaf NO3--N contents were more sensitive to root. However, NH4+-N contents in the leaves of S. nigrum increased with increasing Cd concentrations and along with treatment time, and reached maximum after 16 d of 100μM Cd exposure, which suggested significant NH4+-N accumulation in the leaves of S. nigrum subjected to Cd stress. Furthermore, GDH activities in the leaves and roots increased with increasing Cd concentrations and along with exposure time, and reached peak values after 16 d of 100μM Cd exposure.
     ④Subcellular distribution, chemical forms, and mobility of Cadmium in the hyperaccumulator plant Solanum nigrum L.
     Cd mainly accumulated in the shoot of S. nigrum seedlings, and Cd concentrations in the plant tissues could be drawn as followed: leaf﹥stem﹥root. The Cd concentrations in leaves of S. nigrum varied with leaf position, the highest concentration was found in the 7th leaf (2373.51μg Cd g-1 DW). And, an increase in Cd concentration from the marginal leaf to the midrib part was observed. When the 7th leaf was wrapped in a transparent plastic bag for 24 h, the Cd concentration of this leaf decreased 76.73% than that in the corresponding leaf of no wrapping. And, the treatment did not affect the distribution of Cd in other leaves. Cd concentrations in the two new leaves (11th and 12th leaves), which had appeared after the cessation of Cd treatment, were extremely low. The mobility of Cd in S. nigrum was investigated in this study by firstly growing seedlings in one-half-strength Hoagland nutrient solution containing Cd, followed by a further growth period in a nutrient solution without Cd. After the plant has been transplanted into Cd-free nutrient solution, Cd concentrations in the older leaves decreased compared to the control, but Cd contents increased. And, the total Cd contents of seedlings remained stable after the two treatments. The distribution pattern of Cd in the S. nigrum did not change, and approximately 37.78% of the Cd content in the roots was translocated to shoots after the external Cd source was removed. Therefore, we suggest that Cd could be readily translocated from roots to shoots along with transpiration stream; however, once it reached the leaves, it could not be remobilized through the phloem to other organs.
     Subcellular fractionation of Cd-containing tissues indicated that about 62%~66% of Cd was localized in cell walls and 26%~32% in soluble fraction, and the lowest in cellular organelles. The distribution rates of Cd in the cell walls and cellular organelles increased with increasing external Cd levels, and larger distribution rates in the leaves of lower position than upper leaves, but decreased in the soluble fraction. And, results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, particularly 1 M NaCl (40.09%~56.09%), which suggested that Cd in the leaves of S. nigrum mainly detoxified as the combination of protein and phosphates, further suggested that Cd mainly localized in cell walls.
     ⑤Cadmium uptake and interactions with Zinc in two species of Solanum --Solanum nigrum L and Solanum melongena L: A short-time hydroponic study.
     In the present study, the growth status and metal accumulation of S. nigrum and S. melongena were examined under Cd, Zn, and Cd-Zn complex polluted conditions using nutrient solution culture method. The results showed that high concentrations of Cd (200μM Cd) and Zn (500μM Zn) greatly affected the growth of S. nigrum and S. melongena seedlings, but dry biomass of part Cd-Zn treated plants were higher compared with the control plants under low concentrations of Cd-Zn. With the application of Zn in the nutrient solution, Cd concentration in the roots and leaves of S. nigrum and S. melongena seedlings increased firstly, then decreased, and reached maximum when 100μM Zn and 50μM Zn were applied, respectively (P < 0.05). Cd concentrations in the roots and shoots of S. nigrum and S. melongena seedlings were mainly determined by the Cd concentrations in the Hoagland solution, the effect of Cd-Zn interaction was limited. From the view of total heavy metal contents, shoot Cd contents of S. nigrum were 7~16-fold of roots, but Cd mainly accumulated in the roots of S. melongena seedlings.
     Cd application significantly influenced the shoots and roots Zn contents of S. nigrum and S. melongena seedlings, shoot Zn contents reached maximum when applied 50μM Cd, especially reached peak value 445.9μg·Plant-1 when Cd/ Zn ratio was 50/ 500μM, however, shoot Zn contents reached peak value 48.3μg·Plant-1 when Cd/ Zn ratio was 25/ 500μM. Zn concentrations in the roots and shoots of S. nigrum and S. melongena seedlings were mainly determined by the Zn concentrations in the Hoagland solution, the effect of Cd-Zn interaction on the Zn concentration of S. nigrum was limited, but significant interaction was found in the S. melongena seedlings. From the view of total heavy metal contents, shoots Zn contents of S. nigrum were 7~17-fold of roots, but shoots Zn contents were slightly higher than roots in the S. melongena seedlings.
     Moreover, Cd application led to a disturbance of macro- and micro-nutrient elements uptake. Cd increased K uptake in the root and shoot of S. nigrum, but had no significant effect on Na. And, Cd increased root Mg uptake, but decreased the transport of Mg from root to shoot. Moreover, low concentration of Cd increased Ca uptake in the leaves of S. nigrum. Low Cd increased Zn concentrations in the roots, stems, and leaves, but high Cd decreased them. Cu concentration in the root increased, but leaf Cu concentration increased firstly, then decreased. Furthermore, Fe concentrations in the root, stem, and leaf decreased with increasing Cd concentration in the soils; however, Cd decreased Mn concentration in the root of S. nigrum significantly.
     ⑥Effect of Chitosan on the available contents and vertical distribution of Cd2+ in different textural soils
     In this study, an environment-friendly biopolymer- chitosan, has been adopted to remedy contaminated soils by heavy metals of Cd2+. Experimental results demonstrated that, within the first 7 d, available Cd2+ contents in three textural soils (clay, loam, and sandy soil) decreased significantly after chitosan application. Moreover, the available Cd2+ contents in soil layers of 14-16 cm and 24-26 cm were significantly reduced than that in 4-6 cm after 7 d of chitosan application. Our investigation suggested that application of 0.9 g chitosan kg-1 DW soil for 7 d could be perfect for the remediation of the soil contaminated by Cd2+.
引文
[1] Nriagu, JO. 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere [J]. Nature, 279: 409-411.
    [2] Adriano DC. Trace elements in the terrestrial environment [M]. New York: Springer, 2001.
    [3]周乃元,王仁武.植物修复--治理土壤重金属污染的新途径[J].中国生物工程杂志, 2002, 22(5): 53-57.
    [4] Zhang Y, Peng BZ, Gao X, Yang H. Degradation of soil properties due to erosion on sloping land in southern Jiangsu Province, China [J]. Pedosphere, 2004, 14(1): 17-26.
    [5] Glass DJ. 1999. U.S. and International Markets for Phytoremediation, 1999-2000.
    [6] Elizabeth Pilon-Smits. Phytoremediation [J]. Annu Rev Plant Biol, 2005, 56:15-39.
    [7] EPA. Introduction of phytoremediation, 2000.
    [8] Susarla S, Medina VF, McCutcheon SC. Phytoremediation: An ecological solution to organic chemical contamination [J]. Ecological Engineering, 2002, 18(5): 647-658.
    [9]周国华,黄怀曾,何红蓼.重金属污染土壤植物修复及进展[J].环境污染治理技术与设备, 2002, 3(6): 33-39.
    [10] Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigeous plant species for the phytormediation of arsenic contaminated land [J]. Environ Pollut, 2002, 118: 453-461.
    [11] Olson PE, Reardon KF, Pilon-Smits EAH. Ecology of rhizosphere bioremediation. In: SC McCutcheon and JL Schnoor, Editors, Phytoremediation: transformation and control of contaminants, Wiley and Sons, New York, 2003, pp. 317-354.
    [12] Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation [J]. Chemosphere, 2000, 41: 197-207.
    [13] Brooks RR, Lee J, Reeves RD, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J]. Journal of Geochemical Exploration, 1977, 7: 49-57.
    [14] Baker AJM, Brooks RR, Pease AJ, et al. Studies on copper and cobalt tolerance in three closy related taxa within the denus Silence L. (Caryophyllaceae) from Zaire [J]. Plant and Soil, 1983, 73: 377-385.
    [15] Baker AJM, Whiting SN. In search of the Holy Grail-a further step in understanding metal hyperaccumulation? [J]. New Phytologist, 2002, 155: 1-4.
    [16]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7): 1196-1203.
    [17] Cunningham SD, Berti WR, Huang JW. Phytoremediation of contaminated soils [J]. Trends Biotechnol, 1995, 13: 393-397.
    [18] Reeves RD, Brooks RR. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe [J]. Environ Pollut, 1983, 31: 277-285.
    [19]杨肖娥,龙新宪,倪吾钟,傅承新.东南景天(Sedum alfredii H)--一种新的锌超积累植物[J].科学通报, 2002, 47(13): 1003-1006.
    [20]何冰,杨肖娥,等.一种新的铅富集植物--富集生态型东南景天[J].植物学报:英文版, 2002, 44(11): 1365-1370.
    [21]吴箐,杜锁军,曾晓雯,方晓航,于方明,仇荣亮.锌在长柔毛委陵菜细胞内的分布和化学形态研究[J].生态环境, 2006, 15(1): 40-44.
    [22]汤叶涛,仇荣亮,曾晓雯,方晓航.一种新的多金属超富集植物---圆锥南芥(Arabis Paniculata L.)[J].中山大学学报(自然科学版), 2005, 44(4): 135-136.
    [23] Yang XE, Shi WY, Fu CX, et al. Copper-hyporaccumulators of Chinese plants characterstics and possible use for phyto-remediation [C]. In: Bassam NE. eds. Sustainable agriculture for food, energy and industry. James& James. Science Publishers Ltd, London. 1998, 484-489.
    [24]束文圣,杨开颜,张志权,杨兵,蓝崇钰.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报, 2001, 7(1): 7-12.
    [25]郑洁敏,楼丽萍,王世恒,唐世荣.一种新发现的铜超积累植物—密毛蕨[J].应用生态学报, 2006, 17(3): 507-511.
    [26] Baker AJM, Reeves RD, Hajar ASM. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae) [J]. New Phytologist, 1994, 127: 61-68.
    [27] Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W and Verbruggen N. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri [J]. Plant and Soil, 2003, 249: 9-18.
    [28] Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance) [J]. Plant and Soil, 2004, 259: 181-189.
    [29]魏树和,周启星,王新,张凯松,郭观林.一种新发现的镉超积累植物龙葵(Solanum nigrum L) [J].科学通报, 2004, 49(24): 2568-2573.
    [30]蓝崇钰,束文圣,刘威.宝山堇菜(Viola baoshanensis)--一种新的镉超富集植物[J].科学通报, 2003, 48(19): 2046-2049.
    [31]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境, 2006, 15(2): 303-306.
    [32] Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metal elements--A review of their distribution, ecology, and photochemistry [J]. Biorecovery, 1989, 1: 81-126.
    [33]苏德纯,黄焕忠.油菜作为超累积植物修复镉污染土壤的潜力[J].中国环境科学, 2002, 22(1): 48-51.
    [34] Wei SH, Zhou QX. Phytoremdiation of cadmium contaminated soils by Rorippa globosa using two-phase planting [J]. Environ Sci Pollut Res, 2006, 13 (3) : 151-155.
    [35]李玉双,孙丽娜,孙铁珩,王洪.超富集植物叶用红菾菜(Beta vulgaris var.cicla L.)及其对Cd的富集特征[J].农业环境科学学报, 2007, 26(4): 1386- 1389.
    [36]王红旗,陆泗进,陈延君.污染土壤植物修复中螯合诱导和转基因技术的应用现状与前景[J].地学前缘, 2005, 12(Suppl): 36-42.
    [37] Taiz L, Zeiger E. Plant Physiology. Sunderland, MA: Sinauer. 2002, pp. 690.
    [38] Wenzel WW, Bunkowski M, Puschenreiter M, Horak O. Rhizosphere characteristic of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil [J]. Environ Pollut, 2003, 123: 131-138.
    [39] Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, 1992, 365.
    [40] Sims JL, Patrick WH. The Distribution of Micronutrient Cations in Soil Under Conditions of Varying Redox Potential and pH [J]. Soil Science Society of America, 1978, 42: 258-262.
    [41] Ryan PR, Delhaize E. Function and mechanism of organic anion exudation from plant roots [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527-560.
    [42]刘芷宇等.根际研究法[M],江苏科学技术出版社, 1987.
    [43]旷远文,温达志,周国逸.根系分泌物及其在植物修复中的意义[J].植物生态学报, 2003, 27(5): 709-717.
    [44] Marschner H. Mineral Nutrition of Higher Plants [M]. San Diego: Academic Press. 1995, pp. 889.
    [45] Lopez BJ, Nieto JMF, Ramfrez RV, et al. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extrema soils [J]. Plant Sci, 2000, 160: 1-13.
    [46] Diatloff E, Harper SM, Asher CJ. Effects of fulvic acid on the rhizotoxicity of lanthanum and aluminum to corn [J]. Australian Journal of Soil Research, 1998, 36(6): 913-919.
    [47] Pellet DM, Grunes DL, Kochian LV. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.) [J]. Planta, 1995, 196: 788-795.
    [48] Jones DL, Darrah PR, Dochian LV. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake [J]. Plant Soil, 1996, 180: 57-66.
    [49] Krishnamurti GSR., Cieslinski G, Huang PM, Van Rees KCJ. Kinetics of Cadmium Release from Soils as Influenced by Organic Acids: Implication in Cadmium Availability [J]. J Environ Qual, 1997, 26: 271-277.
    [50] Hammer D, Keller C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants [J]. Journal of Environmental Quality, 2002, 31(5): 1561-1569.
    [51] Bernal MP, Mcgrath SP, Miller AJ. Comparision of chemical changes in the rhizosphere of the Nickel hyperaccumulater Alyssum murale and the non-accumulator Raphanus sativus [J]. Plant Soil, 1994, 164(4): 251-259.
    [52]陈华癸,李阜棣,陈文新,等.土壤微生物学[M].上海:上海科学技术出版社, 1981.
    [53] Prikryl Z, Vancura V. Root exudates of plants VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria [J]. Plant and Soil, 1980, 57: 69-83.
    [54] Frey B, Zierold K, Brunner I. Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies—Hebeloma crustuliniforme ectomycorrhizas [J]. Plant Cell Environ, 2000, 23: 1257-1265.
    [55] Rufyikiri G, Declerck S, Dufey JE, Delvaux B. Arbuscular mycorrhizal fungi might alleviate aluminum toxicity in banana plants [J]. New Phytol, 2000, 148: 343-352.
    [56] Sheng XF, Xia JJ. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria [J]. Chemosphere, 2006, 64: 1036-1042.
    [57] Kapulnik Y. Plant growth promotion by rhizosphere bacteria. In Plant Roots-The Hidden Half, ed. YWaisel, A Eshel, U Kaffkafi, 1996, pp. 769-781. New York: Marcel Dekker.
    [58] De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis [J]. Science, 1997, 276: 1566-1268.
    [59]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社, 2003.
    [60]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报, 2002, 8(1): 8-15.
    [61] Axelsen KB, Palmgren MG. Inventory of the Superfamily of P-Type Ion Pumps in Arabidopsis [J]. Plant Physiol, 2001, 126: 696-706.
    [62] Nies DH, Silver S. Ion efflux systems involved in bacterial metal resistances [J]. Journal of Industrial Microbiology, 1995, 14: 186-199.
    [63] Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport [J]. Biochem J, 2000, 347: 749-755.
    [64] Guerinot ML. The ZIP family of metal transporters [J]. Biochimica et Biophysica Acta (BBA), 2000, 1465: 190-198.
    [65] Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel [J]. Nature, 1996, 379: 635-638.
    [66] Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE. Reduction and coordination of arsenic in Indian mustard [J]. Plant Physiol, 2000, 122: 1171-1177.
    [67] Stephan UW, Schmidke I, Stephan VW, Scholz G. The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants [J]. Biometals, 1996, 9: 84-90.
    [68] Von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shiori T, et al. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants [J]. Plant Physiol, 1999, 119: 1107-1114.
    [69] Klassen SP, McLean JE, Grossl PR, Sims RC. Fate and behavior of lead in soils planted with metal-resistant species (river birch and smallwing sedge) [J]. J Environ Qual, 2000, 29: 1826-1834.
    [70] Grifferty A, Barrington S. Zinc Uptake by Young Wheat Plants under Two Transpiration Regimes [J]. J Environ Qual, 2000, 29: 443-446.
    [71]杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志, 1994, 13(6): 20-26.
    [72] Verkleij JAC, Schat H. Mechanisms of metal tolerance in higher plants. In: Haevy metal Tolerance in Plants: evolutionary aspects (Ed. by Shaw AJ), 1990, pp. 179-194. CRC Press, Boca Raton.
    [73] Brune A, Urbach W, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance [J]. Plant, Cell & Environment, 1994, 17: 153-162.
    [74] Allan DL, Jarrell WM. Proton and Copper Adsorption to Maize and Soybean Root Cell Walls [J]. Plant Physiology, 1989, 89: 823-832.
    [75] Rauser WE. Structure and function of metal chelators produced by plants-The case for organic acids, amino acids, phytin, and metallothioneins [J]. Cell Biochemistry and Biophysics, 1999, 31: 19-48.
    [76] Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ. Zinc ligands in the metal hy peraccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy [J]. Environ Sci Technol, 1999, 33: 713-717.
    [77] Nedelkoska TV, Doran PM. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens [J]. Biotechnol Bioeng, 2000, 67: 607-615.
    [78]郎明林,张玉秀,柴团耀.植物重金属超富集机理研究进展[J].西北植物学报, 2003, 23(11): 2021-2030.
    [79] Ross SM. Sources and forms of potentially toxic metals in soil-plant systems, AGRIS Record, Availability No. 9414768, Chichester, United Kingdom, 1994.
    [80] Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores [J]. Plant Physiol, 1999, 119: 471-479.
    [81] Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends in Plant Science, 2001, 6, 273-278.
    [82] Nigam R, Srivastava S, Prakash S, et al. Cadmium mobilization and plant availability-the impact of organic acids commonly exuded from root [J]. Plant and Soil, 2001, 230: 107-113.
    [83] Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck MH. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by x-ray absorption spectroscopy [J]. Plant Physiol, 2004, 134: 748-757.
    [84] Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants [J]. Biotechnology, 1995, 13: 468-474.
    [85] Cobbett CS. Phytochelatins and Their Roles in Heavy Metal Detoxification [J]. Plant Physiol, 2000, 123: 825-832.
    [86] Burken JG. Uptake and metabolism of organic compounds: green-liver model. In: Phytoremediation:Transformation and Control of Contaminants, ed. McCutcheon SC, Schnoor JL, 2003, pp. 59-84. New York: Wiley.
    [87] Cobbett CS, Goldsbrough PB. Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment, ed. Raskin I, Ensley BD, 2000, pp. 247-271. New York: Wiley.
    [88] Hale KL, McGrath S, Lombi E, Stack S, Terry N, et al. Molybdenum sequestration in Brassica: a role for anthocyanins? [J]. Plant Physiol, 2001, 126: 1391-1402.
    [89] Kupper H, Zhao F, McGrath SP. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens [J]. Plant Physiol, 1999, 119: 305-311.
    [90] Lu YP, Li ZS, Rea PA. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene [J]. Proc Nat Acad Sci USA, 1997, 94: 8243-8248.
    [91] Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms [J]. Annu Rev Biochem, 1987, 56: 289-315.
    [92] Hirschi KD, Korenkov VD,Wilganowski NL,Wagner GJ. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance [J]. Plant Physiol, 2000, 124: 125-133.
    [93] Song W, Sohn EJ, Martinoia E, Lee YJ, Yang YY, et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants [J]. Nat Biotechnol, 2003, 21: 914-919.
    [94] Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation [J]. Plant Physiol, 1999, 119: 1047-1055.
    [95] Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene [J]. Nature Biotechnol, 1999, 17: 282-286.
    [96] Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, et al. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1) [J]. Plant Soil, 1997, 196: 277-281.
    [97] Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N. Overexpression of glutathione synthetase in Indian Mustard enhances cadmium tolerance and accumulation [J]. Plant Physiol, 1999, 119: 73-80.
    [98] Di Toppi LS, Lambardi M, Pazzagli L, et al. Response to cadmium in carrot in vitro plants and cell suspension cultures [J]. Plant Sci, 1999, 137: 119-129.
    [99]张玉秀,柴团耀, BURKARD G.植物耐重金属机理研究进展[J].植物学报, 1999, 41(5): 453-457.
    [100] Alscher RG, Hess JL. Antioxidants in higher plants [M]. CRC Press: Boca Raton, FL, 1993.
    [101] Assche FV, Clijsters H. Effects of metals on enzyme activity in plants [J]. Plant Cell Environ, 1990, 13: 195-206.
    [102] Camp WV, Capiau K, Montagu MV, Inze D, and Slooten L. Enhencement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe - superoxide dismutase in chloroplasts [J]. Plant physiol, 1996, 112: 1703-1714.
    [103] Noctor G, Aris ACM, Jouanin L, et al. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants [J]. J Exp Botany, 1998, 49 (321): 623-647.
    [104]严重玲,傅舜珍,杨先科,等.土壤中Pb、Hg及其相互作用对烟草叶片抗氧化酶的影响[J].环境科学学报, 1997, 17 (4): 469-473.
    [105] Jablonski PP, Anderson JW. Light-dependent reduction of dehydroascorbate by raptured pea chloroplasts [J]. Plant Physiol, 1981, 67: 1239-1244.
    [106] Schützendübel A, Schwanz P, Teichmann T, et al. Cadmium- induced changes in antioxidant systems, hydrogen peroxide content, and differentiation in scots pine roots [J]. Plant Physiol, 2001, 127: 887-898.
    [107] Schützendübel A, Polle A. Plant response to abiotic stresses: heavy metal - induced oxidative stress and protection by mycorrhization [J]. J Exp Bot, 2002, 53 (372): 1351-1365.
    [108] Shah K, Kumar R G, Verma S, et al. Effects of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci, 2001, 161: 1135-1144.
    [109] Iannelli M A, Pietrini F, Fiore L, et al. Antioxidant response to cadmium in Phragmites australis plants [J]. Plant Physiol Biochem, 2002, 40: 977-982.
    [110] Sandalio LM, Dalurzo HC, Gomez M, et al. Cadmium–induced changes in the growth and oxidative metabolism of pea plants [J]. J Exp Bot, 2001, 52: 2115-2212.
    [111] Zhang FQ, Shi WY, Jin ZX, et al. Response of antioxitive enzymes in cucmber chloroplasts to cadmium toxicity [J]. J Plant Nutrition, 2003, 26 (9): 1779-1788.
    [112] Milone MT, Sgherri C, Clijsters H, et al. Antioxidative responses of wheat treated with realistic concentration of cadmium [J]. Environ Exp Bot, 2003, 50: 265-276.
    [113] Zhao ZQ, Kneer R, Zhu YG, et al. Alleviating effect of Zn on Cd toxicity- induced oxidative stress in winter wheat (Triticum aestivum L.) seedlings [J]. Journal of Plant Nutrition, 2005.
    [114] Gallego SM, benavides MP, Pomaro ML. Effect of heavy metals ions excess on sunflower leaves: evidence for involvement of oxidative stress [J]. Plant Sci, 1996, 121: 151-159.
    [115] Schützendübel A, Nikolova P, Rudolf C, et al. Cadmium and H2O2 - induced oxidative stress in Populus canescens roots [J]. Plant Physiol Biochem, 2002, 40: 577-584.
    [116] Shaw BP. Effects of mercury and cadmium on the activities of antioxidant enzymes in seedlings of Phaseolus aures [J]. Biol Plant, 1995, 37: 587-596.
    [117] Karpinski S, Reynolds H, Karpinska B, et al. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis [J]. Science, 1999, 284: 654-657.
    [118] Morita S, kaminaka H, Masumura T, et al. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress signaling [J]. Plant Cell Physiol, 1999, 40: 417-422.
    [119] Xiang C, Oliver DJ. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis [J]. Plant Cell, 1998, 10: 1539-1550.
    [120]罗立新,孙铁珩,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学, 1998, 18 (1): 72-75.
    [121] Olmos E, Martínez- Solano JR, Piqueras A, Hellín E. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line) [J]. J Exp Bot, 2003, 54: 291-301.
    [122] Bergmann L, Rennenberg H. Glutathione metabolism in plants. In: LJ De Kok, I Stulen, H Rennenberg, C Brunnold, WE Rauser, eds. Sulfur Nutrition and Assimilation in Higher Plants [M]. SPB Academic Publishing, the Hague, the Netherlands. 1993, pp. 61-75.
    [123] Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control [J]. Annu rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
    [124] Foyer CH, Lopez-Delgado H, Dat JF, et al. Hydrogen peroxide and glutathione - associated mechanisms of acclamatory stress tolerance and signaling [J]. Physiol Plant, 1997, 100: 241-254.
    [125] Rauser WE. Phytochelatins and related peptides: structure, biosynthesis, and function [J]. Plant Physiol, 1995, 109: 1141-1149.
    [126] Mehra RK, Tripathi RD. Phytochelatins and metal tolerance. In: SB Agrawal, M Agrawal, eds. Environmental Pollution and Plant Response [M]. CRC press, boca Raton, FL, 2000, 367-382.
    [127]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报, 1995, 37(1): 14-24.
    [128]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报, 1998, 18(3): 320-328.
    [129]丁小余,施国新,常福辰,等. Cd污染对莼菜叶片形态学伤害反应的研究[J].西北植物学报, 1998, 18 (3): 417-422.
    [130]李荣春. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报, 2000, 24(2): 238-242.
    [131]倪才英,李华,骆永明,陈英旭.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境科学学报, 2004, 24(2): 343-348.
    [132] Zhao FJ, Lombi E, Breedon T, McGrath SP. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri [J]. Plant Cell Environ, 2000, 23, 507-514.
    [133]施国新,杜开和,解凯彬,丁小余,常福辰,陈国祥.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报, 2000, 42(4): 373-378.
    [134]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea mays L)幼苗细胞超微结构的变化[J].中国环境科学, 1991, 11(6): 426-431.
    [135]张义贤.重金属对大麦(Hordeum vulgate)毒性的研究[J].环境科学学报, 1997, 17(2): 199-205.
    [136] Maruthi SBB, Diehl SV, Han FX, Monts DL, Su Y. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea) [J]. Environ Exp Bot, 2005, 54: 131-141.
    [137] Vollenweider P, Cosio C, Gunthardt-Goerg MS, Keller C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.); PartⅡMicrolocalization and cellular effects of cadmium [J]. Environ Exp Bot, 2005, 55: 1-16.
    [138] Maksymiec W. Effect of copper on cellular processes in higher plants [J]. Photosynthetica, 1997, 34: 321-342.
    [139] Rama Deli S, Prasad MNV. Membrane lipid alterations in heavy metal exposed plants, in: M.N.V. Prasad, J. Hagemeyer (Eds.), Heavy Metal Stress in Plants-From Molecules to Ecosystems, Springer, Berlin, 1999, pp. 99-117.
    [140] Peixoto PHP, Cambraia J, SantAnna R, Mosquim PR, Moreira MA. Aluminium effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars [J]. J Plant Nutr, 2001, 24: 1061-1070.
    [141] Hall JL, Cellular mechanisms for heavy metal detoxification and tolerance [J], J Exp Bot, 2002, 53: 1-11.
    [142] Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat [J]. Physiol Plant, 2000, 108: 87-93.
    [143] Harwood JL. Environmental effects on plant lipid biochemistry, in: J.L.Harwood (Ed.), Plant Lipid Biosynthesis--Fundamentals and Agricul-tural Applications, Cambridge University Press, Cambridge, 1998, pp. 305-363.
    [144] Issam Nouairi, Wided Ben Ammar, Nabil Ben Youssef, Douja Ben Miled Daoud, Mohamed Habib Ghorbal, Mokhtar Zarrouk. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves [J]. Plant Sci, 2006, 170: 511-519.
    [145] Boussama N, Ouariti O, Suzuki A, et al. Cd stress on nitrogen assimilation [J]. J Plant Physiol, 1999, 155: 310-317.
    [146] Devriese M, Tsakaloudi V, Garbayo I, et al. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamy domonas reinhardtii [J]. Plant Physiol Biochem, 2001, 39: 443-448.
    [147] Chien HF, Kao CH. Accumulation of ammonium in rice leaves in response to excess cadmium [J]. Plant Sci, 2000, 156: 111-115.
    [148] Verma DPS. Control of Plant Gene Expression, Boca Ratom: CRC Press, 1993, 443- 458.
    [149]柴小清,印莉萍,刘祥林,等.不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J].植物学报, 1996, 38 (10): 803-808.
    [150]黄勤妮,印莉萍,柴小清,等.不同氮源对小麦幼苗谷氨酰胺合成酶的影响[J].植物学报, 1995, 37(11): 856-862.
    [151] Gouia H, Ghorbal MH, Meyer C. Effects of cadmium on activity of nitrate reductase and onother enzymes of the nitrate assimilation pathway in bean [J]. Plant Physiol Biochem, 2000, 38: 629-638.
    [152] Chugh LK, Gupta VK, Sawhney SK. Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings [J]. Phytochemistry, 1992, 31: 395-400.
    [153] Sanchez E, Rivero RM, Ruiz JM, et al. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L.cv. Strike) under high NH4NO3 application rates [J]. Scientific Horticulture, 2004, 99: 237-248.
    [154] Becker TW, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport [J]. Planta, 2000, 211: 800-806.
    [155] Hernandez LE, Carpena-Ruiz R, Garate A. Alteration in the mineral nutrition of pea seedlings exposed to cadmium [J]. J Plant Nutr, 1996, 19(12): 1581-1598.
    [156] Hernandez LE, Garate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum [J]. Plant Soil, 1997, 189: 97-106.
    [157] Petrovic N, Kastori R, Rajcan I. The effect of cadmium on nitrate reductase activity in sugar beet (Beta vulgaris). In: van Beusichem M L. Plant Nutrition Physiology and Applications. Kluwer Academic Publishers. 107-109: 1990.
    [158] Ouariti O, Gouia H, Ghorbal MH. Responses of bean and tomato plants to cadmium: Growth, mineral nutrition, and nitrate reduction [J]. Plant Physiol Biochem, 1997, 35: 347-354.
    [159] Daniel-Vedele F, Filleur S, Caboche M. Nitrate transport: a key step in nitrate assimilation [J]. Curr Opin Plant Biol, 1998, 1: 235-239.
    [160] Fodor E, Szabo-Nagy A, Erdei L. The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots [J]. J Plant Physiol, 1995, 147: 87-92.
    [161] Ivanova AP, Stefanov KL, Yordanov IT. Effect of cytokinin 4-PU-30 on the lipid composition of water stressed bean plants [J]. Biologia Plantarum, 1998, 41: 155-159.
    [162]王绍辉,张福墁.不同水分处理对日光温室黄瓜多胺与激素的影响[J].生态学报, 2004, 24(12): 2848-2852.
    [163]廖祥儒,贺普超,朱新产.玉米素对盐滞下葡萄叶片H2O2清除系统的影响[J].植物学报, 1997, 39(7): 641-646.
    [164]王三根.细胞分裂素在植物抗逆和延衰中的作用[J].植物学通报, 2000, 17(2): 121-126.
    [165]刘瑞香,杨劼,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报, 2005, 19(3): 148-151.
    [166]周碧燕,李宇彬,陈杰忠,等.低温胁迫和喷施ABA对荔枝内源激素和成花的影响[J].园艺学报, 2002, 29(6): 577-578.
    [167]刘桂丰,刘关君.盐逆境条件下树种的激素变化及抗盐性分析[J].东北林业大学学报,1998, 26(2): 1-4.
    [168]萧浪涛,王三根.植物生理学[M].北京:中国农业出版社, 2003.
    [169]季玉鸣,李振国.镉引起小麦苗逆境乙烯的产生及其和镉的吸收、分布的关系[J].植物生理学报, 1989, 15(2): 159-166.
    [170]周红卫,施国新,陈景耀,等. 6-BA对水花生抗氧化酶系Hg2+毒害的缓解作用[J].生态学报, 2003, 23(2): 387-392.
    [171]郭栋生,席玉英,王爱英,等.植物激素类除草剂对玉米幼苗吸收重金属的影响[J].农业环境保护, 1999, 18(4): 182-184.
    [172] Monni S, Uhlig C, Hansen E, Magel E. Ecophysiological responses of Empetrum nigrum to heavy metal pollution [J]. Environ Pollut, 2001, 112: 121-129.
    [173]刘素纯,萧浪涛,廖柏寒,王克勤,胡茂丰.铅胁迫与黄瓜幼苗生长及内源激素关系的研究.农业环境科学学报, 2006, 25(3): 592-596.
    [174]黄运湘,廖柏寒,肖浪涛,刘素纯,王志坤.镉处理对大豆幼苗生长及激素含量的影响[J].环境科学, 2006, 27(7): 1398-1401.
    [175]邵国胜,谢志奎,张国平.杂草稻和栽培稻氮代谢对镉胁迫反应的差异[J].中国水稻科学, 2006, 20(2): 189-193.
    [178]杨居荣,贺建群,张国祥,毛显强.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学, 1996, 16(2): 113-117.
    [179]严重玲,洪业汤,付舜珍,等. Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报, 1997, 17(5): 488-492.
    [180] Tschuschke S, Schmitt-Wrede HP, Greven H, Wunderlich F. Cadmium resistance conferred to yeast by a non-metallothionein-encoding gene of the earthworm Enchytraeus [J]. J Biol Chem, 2002, 277(7): 5120-5125.
    [181] Raskin I, Ensley BD, eds. Phytoremediation of toxic metals: Using plants to clean up the environment[C]. New York: John Wiley & Sons Inc, 2000.
    [182] Gupta UC, Gupta SC. Trace element toxicity relationships to crop production and livestock and human health: Implications for management [J]. Communications in Soil Science and Plant Analysis, 1998, 29: 1491-1522.
    [183]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报, 2006, 32(1): 1-8.
    [184] Foyer CH, Hansen B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism [J]. Planta, 1976, 133: 21-25.
    [185] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 1981, 22: 867-880.
    [186] Asada K. Ascorbate peroxidase- a hydrogen peroxide scavenging enzyme in plants [J]. Physiol Plant, 1992, 85: 235-241.
    [187] Dat J, Vandanabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses [J]. Cell Mol Life Sci, 2000, 57: 779-795.
    [188] Zenk MH. Heavy metal detoxification in higher plants [J]. Gene, 1996, 179:21-30.
    [189] Shen ZG, Zhao FJ, McGrath SP. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum [J]. Plant Cell Environ, 1997, 20: 898-906.
    [190] Kramer U, Pickering IJ, Prince RC, et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species [J]. Plant Physiol, 2000, 122: 1343-1353.
    [191] Ebbs S, Lau I, Ahner B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J&C Presl) [J]. Planta, 2002, 214: 635-640.
    [192] Schat H, Llugany M, Vooijs R, et al. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes [J]. J Exp Bot, 2002, 379: 2381-2392.
    [193] Zhao FJ, Wang JR, Barker JHA, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata [J]. New Phytol, 2003, 159: 403-410.
    [194] Sun Q, Ye ZH, Wang XR, et al. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii [J]. Journal of Plant Physiology. 2007, 164: 1489-1498.
    [195]王欣,刘云国,艾比布·努扎艾提,张东梅,徐卫华,周鸣,柴立元.苎麻对镉毒害的生理耐性机制及外源精胺的缓解效应[J].农业环境科学学报, 2007, 26 (2): 487-493.
    [196] Di Toppi L S, Gabbrieli R. Response to cadmium in higher plants [J]. Environ. Expri. Bot., 1999, 41: 105-130.
    [197]杨居荣,贺建群,黄翌,蒋婉茹.农作物Cd耐性的种内和种间差异II.种内差[J].应用生态学报, 1995, 6 (增刊): 132-136.
    [198] Stobart AK, Griffiths WT, Ameen-Bukhari I et al . The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley [J]. Physiol. Plant., 1985, 63: 293- 298.
    [199] Somashekaraiah BV, Padmaja K, Prasad ARK. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris)-involvement of lipid peroxides in chlorophyll degradation [J]. Physiol. Plant., 1992, 85: 85- 89.
    [200] Barcelo J, Vazquez M, Poschenrieder C. Structural and ultrastructural disorders in cadmium treated bush bean plants (Phaseolus vulgaris L.) [J]. New Phytol., 1988, 108: 37- 49.
    [201] Baszyński T, Wajda L, Krol M, et al. Photosynthetic activities of cadmium treated tomato plants [J]. Physiol. Plant., 1980, 48: 365-370.
    [202] Siedlecka A, Krupa Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris [J]. Plant Physiol. Biochem., 1996, 34 (6): 833- 841.
    [203] Gussarsson M, Asp H, Adalsteinsson S, et al. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO) [J]. J ExpBot, 1996, 47: 211-215.
    [204]李彩霞,李鹏,苏永发,郑普勤,张芬琴,张勇.水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响[J].植物生理学通讯, 2006, 42(5): 882-884.
    [205] Chen J, Zhu C, Li LP, et al. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress [J]. Joumal of Environmental Sciences, 2007, 19: 44-49.
    [206]张宪政.作物生理研究法[M].北京:农业出版社, 1992: 142.
    [207]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    [208]郝建军,刘延吉.植物生理学实验技术[M].沈阳:辽宁科学技术出版社, 2001.
    [209]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000: 111-114.
    [210]中国科学院上海植物生理研究所编.现代植物生理学实验指南[M].科学出版社, 1999: 314-315.
    [211] Milosevic N, Slusarenko AJ. Active oxygen metabolism and lignification in the hypersensitive response in bean [J]. Physiol Mol Plant Pathol, 1996, 49: 143-158.
    [212] Anderson ME. Determination glutathione and glutathione disulfide in biological samples [J]. Meth. Enzymol, 1985, 113: 548-555.
    [213]王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报, 2002, 28(6): 743-748.
    [214] Loulakakis KA, Roubelakis-Angelakis KA. Intracellular localization and protein of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of the major leaf isoenzyme [J]. J. Exp. Bot, 1990, 41: 1223-1230.
    [215] Yoh-ichi Matsubara, Tokuhisa Ishigaki, Kaneyuki Koshikawa. Changes in free amino acid concentrations in mycorrhizal strawberry plants [J]. Scientia Horticulturae, 2008.
    [216]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    [217]鲍士旦主编.土壤农化分析(第三版).北京:中国农业出版社, 1998.
    [218]严重玲,李瑞智,钟章成.模拟酸雨对绿豆、玉米生理生态特性的影响[J].应用生态学报,1995, 6: 124-131.
    [219]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社, 2001: 152.
    [220] WOOLHOUSE HW. Longevity and senescence in plant[J]. Science progress, 1974, 61: 123-147.
    [221]李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究[J].云南大学学报(自然科学版), 2000, 22(4): 311-317.
    [222]吴旭红.三个苜蓿品种对镉污染的生理生态反应及抗性比较[J].生态环境, 2005, 14(5): 658-661.
    [223]刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响[J].植物学报,2000, 42(5): 461-466.
    [224] BOWLER C, MONTAGU MV, INZE D. Superoxide dismutase and stress tolerance[J]. Annual review of plant physiology and plant molecular biology, 1992, 43: 83-116.
    [225]覃光球,严重玲,韦莉莉.秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量对Cd胁迫的响应[J].生态学报, 2006, 26(10): 3366-3371.
    [226]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报, 2001, 21(2): 215-220.
    [227]杨居荣,贺建群,蒋婉茹. Cd污染对植物生理生化的影响[J].农业环境保护, 1995, 14(5): 193-197.
    [228]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报, 1985, 11(2): 113-121.
    [229] Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot, 2001, 52(38): 1101-1109.
    [230] Vitória AP, Lea PJ, Azevedo RA. Antioxidant enzymes responses to cadmium in radish tissues [J]. Phytochemistry, 2001, 57: 701-710.
    [231]张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯, 1999, 35(1): 29-32.
    [232]刘素纯,萧浪涛,廖柏寒,鲁旭东,匡逢春,王惠群.水杨酸对铅胁迫下黄瓜幼苗叶片膜脂过氧化的影响[J].生态环境, 2006, 15(1): 45-49.
    [233] Yalpani N, Enyedi AJ, Leon J, et al. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogen-related proteins and virus resistance in tobacco [J]. Planta, 1994, 193: 372-376.
    [234] Rao MV, Paliyath G, Ormrod DP, et al. Influence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes: salicylic acid mediated oxidative damage requires H2O2 [J]. Plant Physiol, 1997, 115: 137-149.
    [235] Dat JF, Lopez-Delgado H, Foyer CH, et al. Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings [J]. Plant Physiol, l998, l16: 1351-1357.
    [236] Janda T, Szalai G, Tari I, et a1. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea may L.) plants [J]. Planta, 1999, 208: 175-180.
    [237] Senaratua T, Touchell D, Bunn T, et al. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants [J]. Plant Growth Regul, 2000, 30: 157-161.
    [238]李国婧,周燮.水杨酸与植物抗非生物胁迫[J].植物学通报, 2001, 18(3): 295-302.
    [239]贺志理,王洪春.盐胁迫下苜蓿中盐蛋白的诱导产生[J].植物生理学报, 1991, 17: 71-79.
    [240]洪仁远,杨广笑,刘东华,等.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报, 1991, 6(3): 70-75.
    [241]吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响[J].生态环境, 2006, 15(5): 1003-1008.
    [242]潘瑞炽.植物生理学[M].北京:高等教育出版社, 2004: 274.
    [243]刘强,荣湘民,朱红梅,等.不同水稻品种在不同栽培条件下氮代谢的差异[J].湖南农业大学学报:自然科学版, 2001, 27(6): 415-420.
    [244]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社, 2001.
    [245] Farquhar GD, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann. Rev. Plant Physiol., 1982, 33: 317-345.
    [246] Chugh LK, Sawhney SK. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium [J]. Plant Physiol. Biochem., 1999, 37(4): 297-303.
    [247]李德明,朱祝军,刘永华,王玉清.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版), 2005, 31 (4): 459-464.
    [248]孙光闻,朱祝军,方学智,陈日远,刘厚诚.镉对小白菜光合作用及叶绿素荧光参数的影响[J].植物营养与肥料学报, 2005, 11(5): 700-703.
    [249] Poschenrieder C, Gunse B, Barcelo J. Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves [J]. Plant Physiol., 1989, 90: 1365-1371.
    [250] Bjorkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins [J]. Planta, 1987, 170: 489-504.
    [251] Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances [J]. J. Exp. Bot, 1997, 48: 123-128.
    [252]万敏,周卫,林葆.镉积累不同类型的小麦细胞镉的亚细胞和分子分布[J].中国农业科学, 2003, 36(6): 671-675.
    [253] Ramos I, Esteban E, Lucena JJ, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction [J]. Plant Sci, 2002, 162: 76 l-767.
    [254]于方明,汤叶涛,周小勇,胡鹏杰,曾晓雯,赵璇,仇荣亮.镉在圆锥南芥中的亚细胞分布及其化学形态[J].中山大学学报(自然科学版), 2007, 46(6): 88-92.
    [255] Vogeli LR, Wagner GJ. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves [J]. Plant Physiology, 1990, 92: 1086-1093.
    [256] Ni TH, Wei YZ. Subcellular distribution of cadmium in mining ecotype Sedum alfredii [J]. Acta Botanica Sinica, 2003, 45(5): 925-928.
    [257] Baker AJM. Metal tolerance [J]. New Phytologist, 1987, 106: 93-111.
    [258] Sun RL, Zhou QX, Jin CX. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a new found cadmium hyperaccumulator[J]. Plant soil, 2006, 285: 125-134.
    [259] Perronnet K, Schwartz C, Gerard E, et a1. Distribution of cadmium and zinc in thehyperaccumulator Thlaspi caerulescens grown on multicontaminated soil [J]. Plant and Soil, 2003, 249: 19-25.
    [260] Wu FB, Dong J, Qian QQ, Zhang GP. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes [J]. Chemosphere, 2005, 60: 1437-1446.
    [261]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学, 2005, 26(3): 167-171.
    [262] Weigel HJ, Jager HJ. Subcellular distribution and chemical form of cadmium in bean plant [J]. Plant physiology, 1980, 65: 480-482.
    [263]杨居荣,贺建群,张国祥,毛显强.农作物对Cd毒害的耐性机理探讨[J].应用生态学报, 1995, 6(1): 87-91.
    [264] Shen RF, Ma JF. Distribution and mobility of aluminium in an Al-accumulating plant Fagopyrum esculentum Moench. J. Exp. Bot, 2001, 52: 1683-1687.
    [265] Behling JP, Gabelman WH, Gerloff GC. The distribution and utilization of calcium by two tomato (Lycopersicon esculentum Mill.) lines differing in calcium efficiency when grown under low-Ca stress. Plant Soil, 1989, 113: 189-196.
    [266] Brown PH, Shelp BJ. Boron mobility in plants. Plant Soil, 1997, 193: 85-101.
    [267] Pate JS. Exchange of solutes between phloem and xylem and circulation in the whole plant, In: Zimmermann MH, Mibum JA (eds), Encyclopedia of plant physiology, new series, vol. 1: transport in plant. I. Phoem transport, Springer, Berlin Heidelberg NewYork, 1975, pp. 451-473.
    [268] Xu XH, Shi JY, Chen YX, Chen XC, Wang H, Perera A. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil, 2006, 285: 323-331.
    [269] Cosio C, DeSantis L, Frey B, Diallo S, Keller C. Distribution of cadmium in leaves of Thlaspi caerulescens. J. Exp. Bot, 2005, 56: 765-775.
    [270]王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报, 2002, 22(4): 523-528.
    [271] Neumann D, Nieden U zur. Silicon and heavy metal tolerance of higher plants [J]. Phytochemistry, 2001, 56: 685-692.
    [272] Allen DL, Jarrell WM. Proton and copper adsorption to maize and soybean root cell walls [J]. Plant Physiology, 1989, 89: 823-832.
    [273] Nishzono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant and Siol, 1987, 101: l5-20.
    [274] Molono C, Koeppe DE, Miller RJ. Localization of lead accumulation by corn plants [J]. Plant Physiology, 1974, 3: 388-394.
    [275] Boominathan R, Doran PM. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species [J]. Journal of Biotechnology, 2003, 101: 131-146.
    [276]周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报, 1999, 5 (4): 335-340.
    [277]仇荣亮,汤叶涛,方晓航,等. Phytoremediation of heavy metal contaminated soil and its mechanism [J].中山大学学报:自然科学版, 2004, 43(6): 144-149.
    [278]廖斌,邓冬梅,杨兵,等.铜在鸭跖草细胞内的分布和化学形态研究[J].中山大学学报, 2004, 43: 72-75.
    [279] Grill E, Winnacker EL, Zenk MH. Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells [J]. Federation of European Biochemical Societies, 1986, 197: 115-120.
    [280] Kagi JHR, Schaffer A. Biochemistry of metallothionein [J]. Biochemistry, 1988, 27: 8509-8551.
    [281] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cadmium. Available from U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. CAS No. 7440-43-9, 1999.
    [282] WAGNER GJ. Accumulation of cadmium in crop plants and its consequences to human health [J]. ADV AGRON. 1993, 51: 173-212.
    [283]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报, 1994, 5(4): 438-441.
    [284]朱波,青长乐,牟树森.紫色土Zn、Cd复合污染生态效应研究[J].应用生态学报, 1997, 8(6): 639-644.
    [285] ABDEL-SABOUR MF, MORTVEDT JJ, KELSOE JJ. Cadmium-Zinc interactions in plants and extractable Cadmium and Zinc fractions in soil [J]. SOIL SCI. 1998, 145(6): 424-431.
    [286] WALLACE A. Additive protective and synergistic effects on plants with excess trace elements [J]. SOIL SCI. 1982, 135(5): 319-323.
    [287] TURNER MA. Effect of cadmium treatment on cadmium and zinc uptake by selected vegetable species [J]. J ENVIRON QUAL. 1973, 2: 118-119.
    [288] SMITH GC, BRENNAN EG. Cadmium-zinc interactionship in tomato plants [J]. PHYTOPATHOLOGY. 1983, 73: 879-882.
    [289] ROOT RA, MILLER RJ, KOEPPE DE. Uptake of Cadmium-its toxicity and effect on the iron ratio in hydroponically grown corn [J]. J ENVIRON QUAL. 1975, 4: 473-476.
    [290] CATALDO DA, GARLAND TR, WILDUNG RE. Cadmium uptake kinetics in intact soybean plants [J]. PLANT PHYSIOL. 1983, 73: 844-848.
    [291] JALIL A, SELLES F, CLARKE JM. Effect of cadmium on growth and uptake of cadmium and other elements by Durum wheat [J]. J PLANT NUTR. 1994, 17: 1839-1958.
    [292]郭智,黄苏珍,原海燕. Cd胁迫对马蔺和鸢尾幼苗生长、Cd积累及微量元素吸收的影[J].生态环境, 2008, 17(2): 651-656.
    [293] MARQUES APGC, OLIVERIRA RS, RANGEL AOSS, et al. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi [J]. Chemosphere, 2006,65(7): 1256-1263.
    [294] Gussarson M, Asp H, Adalateeinsson S, Jensen R. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO) [J]. Journal of Experimental Botany, 1996, 47: 2l1-2l5.
    [295] Zhang GP, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage [J]. Field Crop Research, 2002, 77: 93-98.
    [296]方晓航,曾晓雯,于方明,杜锁军,刘雯,仇荣亮. Cd胁迫对白菜生理特征及元素吸收的影响研究[J].农业环境科学学报, 2006, 25 (1): 25-29.
    [297] Zhang GP, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat [J]. J Plant Nutr, 2000, 9: 1337-1350.
    [298] Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS. Correlation between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress [J]. Chemosphere, 2003, 52: 1467-1473.
    [299] ZHAO ZQ, ZHU YG, CAI YL. Effects of Zinc on Cadmium uptake by spring wheat (Triticum aestivum L.): long-time hydroponic study and short-time 109Cd tracing study[J]. Journal of Zhejiang University Science. 2005, 6A(7): 643-648.
    [300]李森林,王焕校,吴玉树.凤眼莲中锌对镉的拮抗作用[J].环境科学学报, 1990, 10(2): 249-254.
    [301]叶海波,杨肖娥,何冰,龙新宪,石伟勇,陈建.东南景天对锌镉复合污染的反应及其对锌镉吸收和积累特性的研究[J].农业环境科学学报, 2003, 22(5): 513-518.
    [302] GRILL E, WINNACKER EL, ZENK MH. Phytochelatins: The principal heavy-metal complexing peptides of higher plants [J]. Science, 1985, 230: 674-676.
    [303]何笃修.用HPLC反相柱层析纯化玉米根镉结合蛋白[J].中国科学B辑, 1991, 21(5): 490-496.
    [304]许嘉琳,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报, 1991, 2(3): 244-248.
    [305] Burzynski M. The uptake and accumulation of phosphorous and nitrates and the activity of nitrate reductase in cucumber seedlings treated with Pb and Cd [J]. Acta Soc Bot Pol, 1988, 57: 349-359.
    [306] Trivedi S, Erdei L. Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status [J]. Physiol Plant, 1992, 84: 94-100.
    [307] Costa G, Morel JL. Efficiency of H+-ATPase activity on cadmium uptake by four cultivars of lettuce [J]. J Plant Nutr, 1994, 17: 627-637.
    [308] Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium [J]. J Plant Nutr, 1997, 20 (1): 97-105.
    [309] Dudka S, Piotrowska M, Terelak H. Transfer of cadmium, lead and zinc from industrially contaminated soil to crop plants: a field study [J]. Environ Pollution, 1996, 94: 181-188.
    [310] Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants [J]. Journal of Experimental Botany, 1996, 47: 259-266.
    [311] Siedlecka A, Kurpa Z. Cd/Fe interaction in higher plants: Its consequences for the photosynthetic appatus [J]. Photosynthetica, 1997, 36: 321-331.
    [312] Zornoza P, Vazquez S, Esteban E, Fernandz-Pascual M, Carpena R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity [J]. Plant Physiology and Biochemistry, 2002, 40: 1003-1009.
    [313] Kim CG, Bell JNB, Power SA. Effects of soil cadmium on Pinus sylvestris L. seedlings [J]. Plant and Soil, 2003, 257: 443-449.
    [314] Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghotbel M H. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum [J]. Journal of Plant Physiology, 2005, 162: 1133-1140.
    [315] Ali NA, Bermal MP, Ater M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays [J]. Plant and Soil, 2002, 239: 103-111.
    [316] M. Bhanoori, G. Venkateswerlu, In vivo chitin-cadmium complexation in cell wall of Neurospora crassa, Biochim. biophys. Acta. 1523 (2000) 21-28.
    [317] R. Schmuhl, H.M. Krieg, K. Keizer, Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies, Water SA. 27 (2001) 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700