用户名: 密码: 验证码:
氨基酸同位素标记技术在肝癌疾病蛋白质组学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是世界上发生最广的癌症之一,在我国也是一种常发生的恶性肿瘤。肝癌早期症状隐匿,不容易察觉,绝大部分患者一旦确诊往往已属于晚期,或者在手术后较短时间内转移到其他器官,导致死亡。探讨肝癌相关分子及分子机制,寻找肝癌的生物标记物和治疗的靶分子,对于恶性肿瘤的诊断和治疗具有重要的理论指导和临床应用意义。利用定量蛋白质组技术从全基因组水平来研究生物学现象,比较肝癌细胞系和肝细胞系以及比较具有不同转移潜能的肝癌细胞系的蛋白质组差异,将有助于对肝癌机理的理解,最终指导肝癌诊断和治疗。
     本论文以氨基酸同位素标记技术(AACT/SILAC)为技术平台,首先发展了一种判断标记肽假阳性的方法,剔除假阳性标记肽对定量的影响,改进了氨基酸同位素标记技术。最后选择了具有相同遗传学背景的两对细胞系,研究了肝癌及转移过程中蛋白质组的差异,获得一批潜在的肝癌分子标志物。此外本论文初步研究了不同搜索软件对定量结果的影响,为定量蛋白质组研究选择搜索软件提供依据(见附录)。
     本论文的第一部分综述了定量蛋白质组研究的发展情况,首先对质谱仪器做了介绍,然后介绍了各种定量方法,比较了各个方法的优缺点。
     本论文的第二部分改进了氨基酸同位素标记技术,并研究了同肝癌及转移有关的差异蛋白质组,具体包括:
     (一)标记肽假阳性的判断
     本部分发展了一种判断氨基酸同位素标记方法中标记肽假阳性的方法,计算出不同标记效率下的理论同位素分布,利用最小二乘法拟合得到标记肽的标记效率,根据假阳性阈值来判断标记肽的假阳性。本方法经实际应用,证明简单易行可靠。
     (二)高转移肝癌细胞系的表达谱
     蛋白质表达谱是了解肝癌的分子基础,在本实验中,利用SDS-PAGE分离结合LC-MALDI-MS鉴定技术,获得了高转移肝癌细胞系MHCC97H的蛋白质表达谱,系统分析了MHCC97H的蛋白质表达谱特点。本部分研究首先分析了表达谱的分子量和pI等,显示了本方法在鉴定具有极端分子量和pI的蛋白质方面具有的优势,发现蛋白质的细胞定位和其pI之间有一定的关联,利用GeneOntology在三个方面对表达谱蛋白做了GO注释,并利用InterPro数据库分析了表达谱的蛋白质家族特性。根据KEGG的数据和HPRD中的蛋白质相互作用数据,分析了表达谱蛋白所涉及的KEGG通路和蛋白质相互作用。
     (三)肝癌差异谱的研究
     本部分试验比较了肝癌细胞系QGY-7703和肝细胞系QSG-7701的蛋白质组差异,鉴定到一批和肝癌有关的蛋白质分子,这些蛋白质分子在细胞凋亡、增殖和细胞移动中发挥着重要的作用,借助Western blotting和免疫组化验证了定量结果的准确性和在临床样本中差异蛋白的表现。同时本部分研究利用GeneOntology、KEGG、蛋白质相互作用分析了差异蛋白的生物学功能,发现多个差异蛋白参与糖酵解和三羧酸循环等能量代谢,差异蛋白在MAPK、钙离子通路、Wnt等信号通路中也发挥作用。此外讨论了热激蛋白、过氧化物还原蛋白、膜联蛋白、角蛋白等在肝癌中的生物学功能。
     (四)肝癌转移差异谱的研究
     本部分试验利用AACT/SILAC技术比较了具有高转移能力的肝癌细胞系MHCC97H和低转移能力的肝癌细胞系MHCC97L的蛋白质组差异。利用Western blotting技术,在5个具有不同转移能力的肝癌细胞系中,检验了差异蛋白和肝癌转移能力的关系,同时也比较了差异蛋白在肝癌临床样本和癌旁组织的表达差异。利用生物信息工具,分析了差异蛋白的GeneOntology、KEGG通路和蛋白质相互作用,并在细胞增殖和凋亡、细胞移动及血管生成等方面讨论了差异蛋白的生物学功能,揭示他们在肝癌转移过程的作用。
     本论文改进了氨基酸同位素标记技术,利用AACT/SILAC技术全面系统的分析了肝癌及转移过程中的蛋白质组变化,在蛋白质水平研究了肝癌中发生的一系列分子事件,探讨了肝癌的分子机制,研究和发掘一批与肝癌密切相关的蛋白质分子,必将有利于深入、系统的理解肝癌机制,促进肝癌生物标志物的发掘和临床诊断应用。
Hepatocellular carcinoma (HCC) is known as a one of difficultly curable diseases in the world and in China. Surgery remains the primary treatment of choice, but only approximately 6% of patients survive more than five years after resection. The major obstacle for the prolonging survival of HCC patients is metastasis after resection. Meanwhile the molecular mechanism underlying the HCC still has yet to be completely understood. Efforts to assess proteins involved in HCC are critical to elucidate potential biomarkers and therapy targets in HCC. Quantitative proteomics or comparative proteomics aims to screen the proteome differences associated with disease phenotype, and discovers the proteins functioning in the process of HCC. Systematic understanding using quantitative proteomics by comparing the HCC cell line versus liver cell line or by comparing HCC cell lines with different metastasis potential will show light on the molecular mechanisms of HCC and provide potential biomarkers for early diagnosis and therapy.
     The present works developed one method to determine the false positive of labeled peptide in amino acid-coded mass tagging/stable isotope labeling with amino acids in cultured cell (AACT/SILAC). The works also comprehensively profiled the differential protein expression pattern using AACT/SILAC in HCC, and provided many useful biomarker candidates for HCC.
     Firstly the work provided a brief summary about the development of quantitative proteomics, introducing the MS instrument and quantification methods such as 2DE、ICAT、iTRAQ and AACT/SILAC.
     Secondly the work improved the AACT/SILAC technology and focused on the differential proteome of HCC, and was illustrated as following.
     (1) Evaluation of the false positive of labeled peptide in AACT/SILAC
     Stable isotope labeling became the chief technology in quantitative proteomics and false positive of peptide labeled was not well studied yet for the present. This article developed a method to judge the false positive of labeled peptide. Based on the probability model of isotope distribution, theoretical isotope distribution with different label efficiency were calculated, the label efficiency of peptide labeled was evaluated by comparing the experimental and theoretical isotope distribution using the least-square method. The peptide was determined as a false-positive one when its label efficiency was below the threshold. This judgment method would facilitate the precisely quantification of AACT/SILAC in proteomics.
     (2) Proteome expression profile of HCC cell line with high metastasis potential
     Proteome expression profile was the basis to understand the HCC mechanism and therapy. Proteins identified in HCC cell lines with high metastasis potential were put into biological context with various annotation sources followed by a bioinformatics analysis. The profile was annotated in genomic context and characterized the correlation between subcellular location and the pI. Proteins were further annotated with GeneOntology, grouped into proteins families in InterPro database and mapped to KEGG pathways they were involved. Advantages of AACT/SILAC over 2DE in identifying the proteins with high molecular weight and pI or membrane proteins were demonstrated. The protein-protein interaction network derived from HPRD was also examined.
     (3) Differential proteome profile between a HCC cell line and liver cell line
     Proteome alteration between two cell lines derived from HCC tissue and its adjacent tissue were screened using AACT/SILAC and differential proteome profile containing 224 proteins were obtained. Western blotting and immune histochemistry also validated the accuracy of the quantification results and the expression alteration of representative proteins in clinical HCC tissues. Biological functions of differentially expressed proteins were annotated by GeneOntology, KEGG and protein-protein interaction. These proteins were mapped to MAPK, calcium, Wnt signal pathway which regulated the cell proliferation and cell migration and functioned in HCC. Functions of annexin family, heat shock proteins and cytokeratin family in HCC were also disscused.
     (4) Differential proteome profile between HCC cell lines with different metastasis potential
     Proteome profile of two HCC cell lines with high and low metastasis potential, respectively, were compared using AACT/SILAC coupled with SDS-PAGE-LC-MALDI -MS and a nonredundant dataset of 360 proteins were quantified as metastasis-related proteins. Expression differences were further validated by Western blotting in a series of HCC cell types with progressively increasing trend of metastasis and in clinical samples. Function annotations were also analyzed by GeneOntology, KEGG and protein-protein interactions, illustrating their biological roles in cell proliferation, apoptosis, cell migration and tumor angiogenesis.
     Overall, proteome alteration in HCC and metastasis in HCC were systematically screened using AACT/SILAC, and a nonredundant protein dataset involved in HCC was identified here. The dataset contained a set of proteins related with HCC development, facilitating our understanding on the molecular mechanism of HCC and metastasis, and would benefit the early diagnosis and clinical treatment in HCC patients.
引文
[1] Olson M V. The Human Genome Project [J]. Proc. Natl. Acad. Sci. USA. 1993, 90(10):4338-4344.
    [2] Gygi S P, Corthals G L, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology [J]. Proc. Natl. Acad. Sci. USA. 2000, 97(17):9390-9395.
    [3] Bienvenut W V, Sanchez J C, Karmime A, et al. Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot [J]. Anal Chem. 1999, 71(21):4800-4807.
    [4] Giddings J C. Two-dimensional separation: concept and promise [J]. Anal Chem. 1984, 56(1258A-1270A.
    [5] Bushey M M, and Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography/capillary zone electrophoresis [J]. Anal. Chem. 1990, 62(10):978-984.
    [6] Liu Y M, and Sweedler J V. Two-Dimensional Separations: Capillary Electrophoresis Coupled to Channel Gel Electrophoresis [J]. Anal. Chem. 1996, 68(22):3928-3933.
    [7] Wall D B, Kachman M T, Gong S, et al. Isoelectric Focusing Nonporous RP HPLC: A Two-Dimensional Liquid-Phase Separation Method for Mapping of Cellular Proteins with Identification Using MALDI-TOF Mass Spectrometry [J]. Anal. Chem. 2000, 72(6):1099-1111.
    [8] Kinter M, and Sherman N E. Protein Sequencing and Identification using Tandem Mass Spectrometry. New York: John Wiley. 2000.
    [9]杨芃原,钱晓红,盛龙生.生物质谱技术与方法.北京:科学出版社. 2003
    [10] Fernandez de la Mora J. Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism [J]. Analytica Chimica Acta. 2000, 406(1):93-104.
    [11] Iribarne J V, and . B A T. On the evaporation of small ions from charged droplets [J]. J.Chem.Phys. 1976, 64(6):2287-2294.
    [12] J.B. F. Ion Formation from charged droplets-roles of geometry,engergy and time [J]. Journal of the American Society for Mass Spectrometry. 1993, 4(7):524.
    [13] Yamashita M, and J.B.Fenn. Electrospray ion source:Another variation on the free-jet theme [J]. Journal fo Physical Chemistry. 1984, 88(4451-4459.
    [14] J.B.Fenn, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science. 1989, 246(4926):64.
    [15] F. H, Karas M, Beavis R C, et al. Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry of Biopolymers [J]. Anal Chem. 1991, 63(24):A1193-A1202.
    [16] Tanaka K, Waki H, Ido Y, et al. Protein and polymer analysis up to m/z 10000 by laser ionisation time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry. 1988, 2(20):151-153.
    [17] M K, and F H. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. [J]. Anal Chem. 1988, 60(20):2299-2301.
    [18]杨芃原.四极杆、离子阱、离子回旋共振和飞行时间质谱技术.见:杨芃原,钱晓红,盛龙生,主编.生物质谱技术与方法.北京:科学出版社, 2003. 6-31
    [19] Yates J R. Protein Structure Analysis by Mass Spectrometry [J]. Methods in Enzymology. 1996, 271(351.
    [20] Michael G. Principles and instrumentation in time-of-flight mass spectrometry. Physical and instrumental concepts [J]. Journal of Mass Spectrometry. 1995, 30(11):1519-1532.
    [21] Dodonov A, Kozlovsky V, Loboda A, et al. A new technique for decomposition of selected ions in molecule ion reactor coupled with ortho-time-of-flight mass spectrometry [J]. Rapid Commun Mass Spectrom. 1997, 11(15):1649-1656.
    [22] Raznikov V V, Pikhtelev A R, Dodonov A F, et al. A new approach to data reduction and evaluation in high-resolution time-of-flight mass spectrometry using a time-to-digital convertor data-recording system [J]. Rapid Commun Mass Spectrom. 2001, 15(8):570-578.
    [23] A.F. Dodonov, V.I. Kozlovski, Soulimenkov I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer [J]. European Journal of Mass Spectrometry. 2000, 6(6):481-490.
    [24] Butt R H, and Coorssen J R. Postfractionation for enhanced proteomic analyses: routine electrophoretic methods increase the resolution of standard 2D-PAGE [J]. J Proteome Res. 2005, 4(3):982-991.
    [25] Pierre Lescuyer D F H J-C S. Comprehensive proteome analysis by chromatographic protein prefractionation [J]. Electrophoresis. 2004, 25(7-8):1125-1135.
    [26]于雁灵,比较蛋白质组定量分析及其在疾病研究中的应用,[博士],上海,复旦大学,2004
    [27] Pietrogrande M C, Marchetti N, Dondi F, et al. Decoding 2D-PAGE complex maps: relevance to proteomics [J]. J Chromatogr B Analyt Technol Biomed Life Sci. 2006, 833(1):51-62.
    [28] Giometti C S, Gemmell M A, Tollaksen S L, et al. Quantitation of human leukocyte proteins after silver staining: a study with two-dimensional electrophoresis [J]. Electrophoresis. 1991, 12(7-8):536-543.
    [29] Molloy M P, Brzezinski E E, Hang J, et al. Overcoming technical variation and biological variation in quantitative proteomics [J]. Proteomics. 2003, 3(10):1912-1919.
    [30] Hunt S M N, Thomas M R, Sebastian L T, et al. Optimal Replication and the Importance of Experimental Design for Gel-Based Quantitative Proteomics [J]. J. Proteome Res. 2005, 4(3):809-819.
    [31] Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology [J]. Proteomics. 2001, 1(3):377-396.
    [32] Gharbi S, Gaffney P, Yang A, et al. Evaluation of Two-dimensional Differential Gel Electrophoresis for Proteomic Expression Analysis of a Model Breast Cancer Cell System [J]. Mol Cell Proteomics. 2002, 1(2):91-98.
    [33] Morten Krogh Y L S W B V P J. Analysis of DIGE data using a linear mixed model allowing for protein-specific dye effects [J]. Proteomics. 2007, 7(23):4235-4244.
    [34] Chen X, Sun L, Yu Y, et al. Amino acid-coded tagging approaches in quantitative proteomics [J]. Expert Review of Proteomics. 2007, 4(1):25-37.
    [35] Yao X, Freas A, Ramirez J, et al. Proteolytic 18O Labeling for Comparative Proteomics: Model Studies with Two Serotypes of Adenovirus [J]. Anal. Chem. 2001, 73(13):2836-2842.
    [36] Schnolzer M, Jedrzejewski P, and Lehmann W D. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry [J]. Electrophoresis. 1996, 17(5):945-953.
    [37] Yao X, Afonso C, and Fenselau C. Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates [J]. J Proteome Res. 2003, 2(2):147-152.
    [38] Ian I Stewart T T D F. 18O Labeling: a tool for proteomics [J]. Rapid Communications in Mass Spectrometry. 2001, 15(24):2456-2465.
    [39] Mason C J, Therneau T M, Eckel-Passow J E, et al. A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters [J]. Mol Cell Proteomics. 2007, 6(2):305-318.
    [40] Gygi S P, Rist B, Gerber S A, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol. 1999, 17(10):994-999.
    [41] Zhang R, Sioma C S, Wang S, et al. Fractionation of Isotopically Labeled Peptides in Quantitative Proteomics [J]. Anal. Chem. 2001, 73(21):5142-5149.
    [42] Hansen K C, Schmitt-Ulms G, Chalkley R J, et al. Mass Spectrometric Analysis of Protein Mixtures at Low Levels Using Cleavable 13C-Isotope-coded Affinity Tag andMultidimensional Chromatography [J]. Mol Cell Proteomics. 2003, 2(5):299-314.
    [43] Ross P L, Huang Y N, Marchese J N, et al. Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents [J]. Mol Cell Proteomics. 2004, 3(12):1154-1169.
    [44] Gu S, Du Y, Chen J, et al. Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging [J]. J Proteome Res. 2004, 3(6):1191-1200.
    [45] Uitto P M, Lance B K, Wood G R, et al. Comparing SILAC and two-dimensional gel electrophoresis image analysis for profiling urokinase plasminogen activator signaling in ovarian cancer cells [J]. J Proteome Res. 2007, 6(6):2105-2112.
    [46] Chen X, Smith L M, and Bradbury E M. Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification [J]. Anal Chem. 2000, 72(6):1134-1143.
    [47] Ong S-E, Blagoev B, Kratchmarova I, et al. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics [J]. Mol Cell Proteomics. 2002, 1(5):376-386.
    [48]水文箐,氨基酸标记、新型纳米材料等在蛋白质组学中的应用,[硕士],上海,复旦大学,2004
    [49] Frank S, Margarita S, Sandra S, et al. Rapid determination of amino acid incorporation by stable isotope labeling with amino acids in cell culture (SILAC) [J]. Rapid Communications in Mass Spectrometry. 2007, 21(23):3919-3926.
    [50] Tsumoto H, Murata C, Miyata N, et al. Efficient identification and quantification of proteins using isotope-coded 1-(6-methylnicotinoyloxy)succinimides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Rapid Commun Mass Spectrom. 2007, 21(23):3815-3824.
    [51] Panchaud A, Hansson J, Affolter M, et al. ANIBAL, Stable Isotope-based Quantitative Proteomics by Aniline and Benzoic Acid Labeling of Amino and Carboxylic Groups [J]. Mol Cell Proteomics. 2008, 7(4):800-812.
    [52] Parkin D M, Bray F, Ferlay J, et al. Global Cancer Statistics, 2002 [J]. CA Cancer J Clin. 2005, 55(2):74-108.
    [53]张思维,李连弟,鲁凤珠,等.中国1990-1992年原发性肝癌死亡调查分析[J].中华肿瘤杂志. 1999, 21(4):245-249.
    [54] Tang Z Y, Ye S L, Liu Y K, et al. A decade's studies on metastasis of hepatocellular carcinoma [J]. J Cancer Res Clin Oncol. 2004, 130(4):187-196.
    [55] Lai CL, Wu PC, Chan GC, et al. Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. [J]. Cancer. 1989,62(3):479-483.
    [56] Shiina S, Tagawa K, Unuma T, et al. Percutaneous ethanol injection therapy for hepatocellular carcinoma. A histopathologic study [J]. Cancer Res. 1991, 68(7):1524-1530.
    [57] Lin DY, Lin SM, and YF L. Non-surgical treatment of hepatocellular carcinoma [J]. J Gastroenterol Hepatol. 1997, 12((9-10)):s319-s328.
    [58] Manesis EK, Giannoulis G, Zoumboulis P, et al. Treatment of hepatocellular carcinoma with combined suppression and inhibition of sex hormones: a randomized, controlled trial [J]. Hepatology. 1995, 21(6):1535-1542.
    [59] Liu C-L, Fan S-T, Ng I O-L, et al. Treatment of advanced hepatocellular carcinoma with tamoxifen and the correlation with expression of hormone receptors: a prospective randomized study [J]. The American Journal of Gastroenterology. 2000, 95(1):218-222.
    [60] Colleoni M, Audisio RA, De Braud F, et al. Practical considerations in the treatment of hepatocellular carcinoma [J]. Drugs. 1998, 55(3):367-382.
    [61] Dalgic A, Mirza DF, Gunson BK, et al. Role of total hepatectomy and transplantation in hepatocellular carcinoma [J]. Transplant Proc. . 1994, 26(6):564-3565.
    [62] Tang ZY, Yu YQ, XD, Z, et al. Subclinical hepatocellular carcinoma: an analysis of 391 patients [J]. J Surg Oncol. 1993, 3(55-58.
    [63]汤钊猷.概述.见:汤钊猷,主编.肝癌转移复发的基础与临床.上海:上海科技教育出版社, 2003. 1-16
    [64]陈主初.绪论.见:陈主初,主编.肿瘤蛋白质组学.长沙:湖南科学技术出版社, 2002. 1-7
    [65] Lim S O, Park S J, Kim W, et al. Proteome analysis of hepatocellular carcinoma [J]. Biochem Biophys Res Commun. 2002, 291(4):1031-1037.
    [66] Sun W, Xing B, Sun Y, et al. Proteome Analysis of Hepatocellular Carcinoma by Two-dimensional Difference Gel Electrophoresis: Novel Protein Markers in Hepatocellular Carcinoma Tissues [J]. Mol Cell Proteomics. 2007, 6(10):1798-1808.
    [67] Li C, Hong Y, Tan Y-X, et al. Accurate Qualitative and Quantitative Proteomic Analysis of Clinical Hepatocellular Carcinoma Using Laser Capture Microdissection Coupled with Isotope-coded Affinity Tag and Two-dimensional Liquid Chromatography Mass Spectrometry [J]. Mol Cell Proteomics. 2004, 3(4):399-409.
    [68] Kim W, Oe Lim S, Kim J-S, et al. Comparison of Proteome between Hepatitis B Virus- and Hepatitis C Virus-Associated Hepatocellular Carcinoma [J]. Clin Cancer Res. 2003, 9(15):5493-5500.
    [69] Rygaard J. Immunobiology of the mouse mutant "Nude":preliminary investigations [J]. Acta Pathol Microbiol Scand. 1969, 77(761-762.
    [70] Rygaard J, and CO P. Heterotransplantation of human malignant tumor to nude mice[J]. Acta Pathol Microbiol Scand. 1969, 77(758-760.
    [71] Shimosato Y, Kameya T, and Nagai K. Transplantation of human tumors in nude mice [J]. J Natl Cancer Inst. 1976, 56(1251-1260.
    [72] Sun F X, Tang Z Y, Lui K D, et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues [J]. Int J Cancer. 1996, 66(2):239-243.
    [73]李雁,孙昉宪,田健,等.肝癌转移复发的模型研究.见:汤钊猷,主编.肝癌转移复发的基础与临床.上海:上海科学技术出版社, 2003.
    [74]贺斌,刘银坤,汤钊猷,等.人肝癌裸鼠原位移植模型基因突变和表达[J].中华肝脏病杂志. 1997, 5(245.
    [75] Shao D M, Wang Q H, Chen C, et al. N-acetylglucosaminyltransferase V activity in metastatic models of human hepatocellular carcinoma in nude mice [J]. J Exp Clin Cancer Res. 1999, 18(3):331-335.
    [76] Zheng Q, Tang Z Y, Xue Q, et al. Invasion and metastasis of hepatocellular carcinoma in relation to urokinase-type plasminogen activator, its receptor and inhibitor [J]. J Cancer Res Clin Oncol. 2000, 126(11):641-646.
    [77] Sun J J, Zhou X D, Liu Y K, et al. Invasion and metastasis of liver cancer: expression of intercellular adhesion molecule 1 [J]. J Cancer Res Clin Oncol. 1999, 125(1):28-34.
    [78] Liao Y, Tang Z Y, Ye S L, et al. Modulation of apoptosis, tumorigenesity and metastatic potential with antisense H-ras oligodeoxynucleotides in a high metastatic tumor model of hepatoma: LCI-D20 [J]. Hepatogastroenterology. 2000, 47(32):365-370.
    [79] Wang L, Tang Z Y, Qin L X, et al. High-dose and long-term therapy with interferon-alfa inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential [J]. Hepatology. 2000, 32(1):43-48.
    [80] Tian J, Tang Z Y, Ye S L, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis [J]. Br J Cancer. 1999, 81(5):814-821.
    [81] Mann M. Functional and quantitative proteomics using SILAC [J]. Nat Rev Mol Cell Biol. 2006, 7(12):952-958.
    [82] Chen X, Sun L, Yu Y, et al. Amino acid-coded tagging approaches in quantitative proteomics [J]. Expert Rev Proteomics. 2007, 4(1):25-37.
    [83] Gu S, Liu Z, Pan S, et al. Global Investigation of p53-induced Apoptosis Through Quantitative Proteomic Profiling Using Comparative Amino Acid-coded Tagging [J]. Mol Cell Proteomics. 2004, 3(10):998-1008.
    [84] Gu S, Pan S, Bradbury E M, et al. Precise peptide sequencing and proteinquantification in the human proteome through in vivo lysine-specific mass tagging [J]. J Am Soc Mass Spectrom. 2003, 14(1):1-7.
    [85] McLafferty F W, and Turecek F. Interpretation of Mass Spectra. Mill Valley, CA University Science Books. 1993.
    [86] Yamamoto H, and McCloskey J A. Calculations of isotopic distribution in molecules extensively labeled with heavy isotopes [J]. Anal. Chem. 1977, 49(2):281-283.
    [87] Choudhary K, Spicer V L, Donald L J, et al. Method for Estimating the Isotopic Distributions of Metabolically Labeled Proteins by MALDI-TOFMS: Application to NMR Samples [J]. Anal. Chem. 2006, 78(15):5419-5423.
    [88] MacCoss M J, Wu C C, Matthews D E, et al. Measurement of the Isotope Enrichment of Stable Isotope-Labeled Proteins Using High-Resolution Mass Spectra of Peptides [J]. Anal. Chem. 2005, 77(23):7646-7653.
    [89]贠栋,基于生物质谱的蛋白质组学数据处理及检索质量控制研究,[博士],上海,复旦大学,2007
    [90] Randolph T W, Mitchell B L, McLerran D F, et al. Quantifying Peptide Signal in MALDI-TOF Mass Spectrometry Data [J]. Mol Cell Proteomics. 2005, 4(12):1990-1999.
    [91] Gilbert S O. Exploring the Human Plasma Proteome [J]. Proteomics. 2005, 5(13):3223-3225.
    [92] Omenn G S, States D J, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database [J]. Proteomics. 2005, 5(13):3226-3245.
    [93] Hamacher M, Apweiler R, Arnold G, et al. HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy [J]. Proteomics. 2006, 6(18):4890-4898.
    [94] Mueller M, Martens L, Reidegeld K A, et al. Functional annotation of proteins identified in human brain during the HUPO Brain Proteome Project pilot study [J]. Proteomics. 2006, 6(18):5059-5075.
    [95] He F. Human Liver Proteome Project: Plan, Progress, and Perspectives [J]. Mol Cell Proteomics. 2005, 4(12):1841-1848.
    [96] Shui W, Liu Y, Fan H, et al. Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging [J]. J Proteome Res. 2005, 4(1):83-90.
    [97] Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucl. Acids Res. 2008, 36:D480-484.
    [98] Mulder N J, Apweiler R, Attwood T K, et al. InterPro, progress and status in 2005 [J].Nucl. Acids Res. 2005, 33(suppl_1):D201-205.
    [99] Peri S, Navarro J D, Amanchy R, et al. Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans [J]. Genome Res. 2003, 13(10):2363-2371.
    [100] Breitkreutz B J, Stark C, and Tyers M. Osprey: a network visualization system [J]. Genome Biol. 2003, 4(3):R22.
    [101] Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet. 2000, 25(1):25-29.
    [102] Camon E, Magrane M, Barrell D, et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology [J]. Nucl. Acids Res. 2004, 32(suppl_1):D262-266.
    [103] Schwartz R, Ting C S, and King J. Whole Proteome pI Values Correlate with Subcellular Localizations of Proteins for Organisms within the Three Domains of Life [J]. Genome Res. 2001, 11(5):703-709.
    [104] Shen H, Cheng G, Fan H, et al. Expressed proteome analysis of human hepatocellular carcinoma in nude mice (LCI-D20) with high metastasis potential [J]. Proteomics. 2006, 6(2):528-537.
    [105] Kawasaki H, Emori Y, and Suzuki K. Production and separation of peptides from proteins stained with Coomassie brilliant blue R-250 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [J]. Anal Biochem. 1990, 191(2):332-336.
    [106] Schulz-Knappe P, Zucht H D, Heine G, et al. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures [J]. Comb Chem High Throughput Screen. 2001, 4(2):207-217.
    [107] Petricoin E F, Ardekani A M, Hitt B A, et al. Use of proteomic patterns in serum to identify ovarian cancer [J]. Lancet. 2002, 359(9306):572-577.
    [108] Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry [J]. Anal Chem. 2004, 76(6):1560-1570.
    [109] Harald T, Imke S, Rudiger H, et al. Peptidomic analysis of human blood specimens: Comparison between plasma specimens and serum by differential peptide display [J]. Proteomics. 2005, 5(13):3414-3422.
    [110] Spudich G, Fernandez-Suarez X M, and Birney E. Genome browsing with Ensembl: a practical overview [J]. Brief Funct Genomic Proteomic. 2007, 6(3):202-219.
    [111] Flicek P, Aken B L, Beal K, et al. Ensembl 2008 [J]. Nucl. Acids Res. 2007:gkm988.
    [112] Gene Ontology C. The Gene Ontology (GO) project in 2006 [J]. Nucl. Acids Res. 2006, 34(suppl_1):D322-326.
    [113] Robinson P N, Bohme U, Lopez R, et al. Gene-Ontology analysis reveals association of tissue-specific 5' CpG-island genes with development and embryogenesis [J]. Hum. Mol. Genet. 2004, 13(17):1969-1978.
    [114] Wheeler D L, Barrett T, Benson D A, et al. Database resources of the National Center for Biotechnology Information [J]. Nucl. Acids Res. 2005, 33(suppl_1):D39-45.
    [115] The UniProt C. The Universal Protein Resource (UniProt) [J]. Nucl. Acids Res. 2008, 36:D190-D195.
    [116] Gerdes D, Wehling M, Leube B, et al. Cloning and tissue expression of two putative steroid membrane receptors [J]. Biol Chem. 1998, 379(7):907-911.
    [117] Kusakabe T, Maeda M, Hoshi N, et al. Fatty Acid Synthase Is Expressed Mainly in Adult Hormone-sensitive Cells or Cells with High Lipid Metabolism and in Proliferating Fetal Cells [J]. J. Histochem. Cytochem. 2000, 48(5):613-622.
    [118] Jayakumar A, Tai M, Huang W, et al. Human Fatty Acid Synthase: Properties and Molecular Cloning [J]. Proceedings of the National Academy of Sciences. 1995, 92(19):8695-8699.
    [119] Semenkovich C F, Coleman T, and Fiedorek F T, Jr. Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation [J]. J. Lipid Res. 1995, 36(7):1507-1521.
    [120] Camassei F D, Cozza R, Acquaviva A, et al. Expression of the Lipogenic Enzyme Fatty Acid Synthase (FAS) in Retinoblastoma and Its Correlation with Tumor Aggressiveness [J]. Invest. Ophthalmol. Vis. Sci. 2003, 44(6):2399-2403.
    [121] Nomura H, Turco A E, Pei Y, et al. Identification of PKDL, a Novel Polycystic Kidney Disease 2-Like Gene Whose Murine Homologue Is Deleted in Mice with Kidney and Retinal Defects [J]. J. Biol. Chem. 1998, 273(40):25967-25973.
    [122] Duke-Cohan J S, Gu J, McLaughlin D F, et al. Attractin (DPPT-L), a member of the CUB family of cell adhesion and guidance proteins, is secreted by activated human T lymphocytes and modulates immune cell interactions [J]. Proceedings of the National Academy of Sciences. 1998, 95(19):11336-11341.
    [123] Takeshita F, Leifer C A, Gursel I, et al. Cutting Edge: Role of Toll-Like Receptor 9 in CpG DNA-Induced Activation of Human Cells [J]. J Immunol. 2001, 167(7):3555-3558.
    [124] Lopez-Lazaro M. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? [J]. Anticancer Agents Med Chem. 2008, 8(3):305-312.
    [125] Altenberg B, and Greulich K O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes [J]. Genomics. 2004, 84(6):1014-1020.
    [126] Sener A, Blachier F, and Malaisse W J. Crabtree effect in tumoral pancreatic isletcells [J]. J. Biol. Chem. 1988, 263(4):1904-1909.
    [127] Briere J-J, Favier J, Gimenez-Roqueplo A-P, et al. Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation [J]. Am J Physiol Cell Physiol. 2006, 291(6):C1114-1120.
    [128] Cheon K W, and Baek K H. HAUSP as a therapeutic target for hematopoietic tumors (review) [J]. Int J Oncol. 2006, 28(5):1209-1215.
    [129] Xu G, Bernaudo S, Fu G, et al. Cyclin G2 Is Degraded through the Ubiquitin-Proteasome Pathway and Mediates the Antiproliferative Effect of Activin Receptor-like Kinase 7 [J]. Mol. Biol. Cell. 2008:E08-03-0259.
    [130] Papatsoris A G, Karamouzis M V, and Papavassiliou A G. The power and promise of "rewiring" the mitogen-activated protein kinase network in prostate cancer therapeutics [J]. Mol Cancer Ther. 2007, 6(3):811-819.
    [131] Junttila M R, Li S-P, and Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival [J]. FASEB J. 2008, 22(4):954-965.
    [132] Matheu A, Maraver A, and Serrano M. The Arf/p53 Pathway in Cancer and Aging [J]. Cancer Res. 2008, 68(15):6031-6034.
    [133] Rodier F, Campisi J, and Bhaumik D. Two faces of p53: aging and tumor suppression [J]. Nucl. Acids Res. 2007, 35(22):7475-7484.
    [134] DiGiovanna M P, Stern D F, Edgerton S M, et al. Relationship of Epidermal Growth Factor Receptor Expression to ErbB-2 Signaling Activity and Prognosis in Breast Cancer Patients [J]. J Clin Oncol. 2005, 23(6):1152-1160.
    [135] Lodge A J, Anderson J J, Gullick W J, et al. Type 1 growth factor receptor expression in node positive breast cancer: adverse prognostic significance of c-erbB-4 [J]. J Clin Pathol. 2003, 56(4):300-304.
    [136] Evangelista M, Tian H, and de Sauvage F J. The Hedgehog Signaling Pathway in Cancer [J]. Clin Cancer Res. 2006, 12(20):5924-5928.
    [137] Thayer S P, di Magliano M P, Heiser P W, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis [J]. Nature. 2003, 425(6960):851-856.
    [138] Stylianou S, Clarke R B, and Brennan K. Aberrant Activation of Notch Signaling in Human Breast Cancer [J]. Cancer Res. 2006, 66(3):1517-1525.
    [139] Sriuranpong V, Borges M W, Ravi R K, et al. Notch Signaling Induces Cell Cycle Arrest in Small Cell Lung Cancer Cells [J]. Cancer Res. 2001, 61(7):3200-3205.
    [140] Mulder N J, Apweiler R, Attwood T K, et al. New developments in the InterPro database [J]. Nucl. Acids Res. 2007, 35(suppl_1):D224-228.
    [141] Geissler S, Siegers K, and Schiebel E. A novel protein complex promoting formationof functional alpha- and gamma-tubulin [J]. EMBO J. 1998, 17(4):952-966.
    [142] Fuh G, Pisabarro M T, Li Y, et al. Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display [J]. J Biol Chem. 2000, 275(28):21486-21491.
    [143] Ranganathan R, and Ross E M. PDZ domain proteins: scaffolds for signaling complexes [J]. Curr Biol. 1997, 7(12):R770-R773.
    [144] Tang Z Y, Ye S L, Liu Y K, et al. A decade's studies on metastasis of hepatocellular carcinoma [J]. Journal of Cancer Research and Clinical Oncology. 2004, 130(4):187-196.
    [145]汤钊猷.概述.见:汤钊猷,主编.肿瘤转移复发的基础与临床.上海:上海科技出版社, 2003. 1-24
    [146]钦伦秀.肿瘤标志物的发展与应用.见:钦伦秀,主编.肿瘤的分子诊断与预测.上海:上海科技教育出版社, 2004. 3-62
    [147]李春海.加强肿瘤生物学标志的研究和评价[J].中华检验医学杂志. 2000, 23):6-8.
    [148] Blanc J F, Lalanne C, Plomion C, et al. Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C [J]. Proteomics. 2005, 5(14):3778-3789.
    [149] Liang C R, Leow C K, Neo J C, et al. Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics. 2005, 5(8):2258-2271.
    [150] Feng J T, Liu Y K, Song H Y, et al. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis [J]. Proteomics. 2005, 5(17):4581-4588.
    [151] Zhu D, and Wang J. The culture of the liver cell line QSG-7701, from a hepatoma donor, and its comparison with other hepatoma cell lines [J]. Cancer Res. Prev. Treat. 1979, 6(7-9.
    [152] Wang J., Zhu D., Ye X., et al. Establishment and some characteristics of a hepatoma cell line QGY-7703 [J]. Chin. J. Oncol. 1981, 3(241-244.
    [153] Fang C, Yi Z, Liu F, et al. Proteome analysis of human liver carcinoma Huh7 cells harboring hepatitis C virus subgenomic replicon [J]. Proteomics. 2006, 6(2):519-527.
    [154]宋海燕,肝癌相关分子的蛋白质组学研究及HSP27的功能验证,[博士],上海,复旦大学,2005
    [155] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0 [J]. Bioinformatics. 2007, 23(21):2947-2948.
    [156] Gu S, Liu Z, Pan S, et al. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging [J]. Mol CellProteomics. 2004, 3(10):998-1008.
    [157] Gu S, Chen J, Dobos K M, et al. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain [J]. Molecular & Cellular Proteomics. 2003, 2(12):1284-1296.
    [158]包慧敏,AACT技术用于QSG-7701/QGY-7703定量蛋白质组研究并寻找肝癌发生相关分子标志物,[博士],上海,复旦大学,2008
    [159]史景泉,仇玉福.肿瘤细胞的生物化学特性.见:陈景生,史景泉,主编.肿瘤分子细胞生物学.北京:人民军医出版社, 2002. 42-49
    [160] Cerwenka H, Aigner R, Bacher H, et al. TUM2-PK (pyruvate kinase type tumor M2), CA19-9 and CEA in patients with benign, malignant and metastasizing pancreatic lesions [J]. Anticancer Res. 1999, 19(1B):849-851.
    [161] Wechsel H W, Petri E, Bichler K H, et al. Marker for renal cell carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu M2-PK) [J]. Anticancer Res. 1999, 19(4A):2583-2590.
    [162] Gudermann T, and Roelle S. Calcium-dependent growth regulation of small cell lung cancer cells by neuropeptides [J]. Endocr Relat Cancer. 2006, 13(4):1069-1084.
    [163] Chow J Y C, Dong H, Quach K T, et al. TGF-{beta} mediates PTEN suppression and cell motility through calcium-dependent PKC-{alpha} activation in pancreatic cancer cells [J]. Am J Physiol Gastrointest Liver Physiol. 2008, 294(4):G899-905.
    [164] Bush C R, Havens J M, Necela B M, et al. Functional Genomic Analysis Reveals Cross-talk between Peroxisome Proliferator-activated Receptor {gamma} and Calcium Signaling in Human Colorectal Cancer Cells [J]. J. Biol. Chem. 2007, 282(32):23387-23401.
    [165] Kahl C R, and Means A R. Regulation of Cell Cycle Progression by Calcium/Calmodulin-Dependent Pathways [J]. Endocr Rev. 2003, 24(6):719-736.
    [166] Baines C P, Kaiser R A, Sheiko T, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death [J]. Nat Cell Biol. 2007, 9(5):550-555.
    [167] Shimizu S, Narita M, and Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [J]. Nature. 1999, 399(6735):483-487.
    [168] Cheng E H, Sheiko T V, Fisher J K, et al. VDAC2 inhibits BAK activation and mitochondrial apoptosis [J]. Science. 2003, 301(5632):513-517.
    [169] Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels [J]. Nature. 2007, 447(7146):865-869.
    [170] Simamura E, Shimada H, Hatta T, et al. Mitochondrial voltage-dependent anionchannels (VDACs) as novel pharmacological targets for anti-cancer agents [J]. J Bioenerg Biomembr. 2008, 40(3):213-217.
    [171] Meyer A, van Golen C M, Kim B, et al. Integrin expression regulates neuroblastoma attachment and migration [J]. Neoplasia. 2004, 6(4):332-342.
    [172] Jones J, Berkhoff S, Weich E, et al. Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes [J]. J Cell Mol Med. 2007, 11(4):826-838.
    [173] Zhang H, Ozaki I, Mizuta T, et al. Beta 1-integrin protects hepatoma cells from chemotherapy induced apoptosis via a mitogen-activated protein kinase dependent pathway [J]. Cancer. 2002, 95(4):896-906.
    [174] Bhoopathi P, Chetty C, Kunigal S, et al. Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of beta1-integrin, ERK, and NF-kappaB [J]. J Biol Chem. 2008, 283(3):1545-1552.
    [175] Leong K G, Hu X, Li L, et al. Activated Notch4 inhibits angiogenesis: role of beta 1-integrin activation [J]. Mol Cell Biol. 2002, 22(8):2830-2841.
    [176] Davidson B, Goldberg I, Reich R, et al. AlphaV- and beta1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients [J]. Gynecol Oncol. 2003, 90(2):248-257.
    [177] Laidler P, Gil D, Pituch-Noworolska A, et al. Expression of beta1-integrins and N-cadherin in bladder cancer and melanoma cell lines [J]. Acta Biochim Pol. 2000, 47(4):1159-1170.
    [178] Han Z, Xu G, Zhou J, et al. Inhibition of motile and invasive properties of ovarian cancer cells by ASODN against Rho-associated protein kinase [J]. Cell Commun Adhes. 2005, 12(1-2):59-69.
    [179] Kaneko K, Satoh K, Masamune A, et al. Expression of ROCK-1 in human pancreatic cancer: its down-regulation by morpholino oligo antisense can reduce the migration of pancreatic cancer cells in vitro [J]. Pancreas. 2002, 24(3):251-257.
    [180] Schlueter C, Weber H, Meyer B, et al. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule [J]. Am J Pathol. 2005, 166(4):1259-1263.
    [181] Sparatore B, Patrone M, Passalacqua M, et al. Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli [J]. Biochem J. 2005, 389(Pt 1):215-221.
    [182] Brezniceanu M L, Volp K, Bosser S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma [J]. Faseb J. 2003, 17(10):1295-1297.
    [183] Ishiguro H, Nakaigawa N, Miyoshi Y, et al. Receptor for advanced glycation endproducts (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development [J]. Prostate. 2005, 64(1):92-100.
    [184] Inan S, Vatansever S, Celik-Ozenci C, et al. Immunolocalizations of VEGF, its receptors flt-1, KDR and TGF-beta's in epithelial ovarian tumors [J]. Histol Histopathol. 2006, 21(10):1055-1064.
    [185] Conroy S E, Sasieni P D, Amin V, et al. Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer [J]. Br J Cancer. 1998, 77(11):1875-1879.
    [186] Assimakopoulou M, Sotiropoulou-Boni G, Maraziotis T, et al. Prognostic significance of Hsp-27 in astrocytic brain tumors: an immunohistochemical study [J]. Anticancer Res. 1997, 17(4A):2677-2682.
    [187] Tetu B, Lacasse B, Bouchard H-L, et al. Prognostic Influence of HSP-27 Expression in Malignant Fibrous Histiocytoma: A Clinicopathological and Immunohistochemical Study [J]. Cancer Res. 1992, 52(8):2325-2328.
    [188] King K-L, Li A F Y, Chau G-Y, et al. Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival [J]. Cancer. 2000, 88(11):2464-2470.
    [189] Takai S, Matsushima-Nishiw R, Tokuda H, et al. Protein kinase C delta regulates the phosphorylation of heat shock protein 27 in human hepatocellular carcinoma [J]. Life Sci. 2007, 81(7):585-591.
    [190] Zhang D, Wong L L, and Koay E S. Phosphorylation of Ser78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer [J]. Mol Cancer. 2007, 6(52.
    [191] Zhang L, Pelech S, and Uitto V J. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3 [J]. Exp Cell Res. 2004, 292(1):231-240.
    [192] Chan J Y, Cheng H L, Chou J L, et al. Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death [J]. J Biol Chem. 2007, 282(7):4585-4600.
    [193] Castle P E, Ashfaq R, Ansari F, et al. Immunohistochemical evaluation of heat shock proteins in normal and preinvasive lesions of the cervix [J]. Cancer Lett. 2005, 229(2):245-252.
    [194] Cappello F, David S, Rappa F, et al. The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase [J]. BMC Cancer. 2005, 5(139.
    [195] De Simoni S, Goemaere J, and Knoops B. Silencing of peroxiredoxin 3 andperoxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+ [J]. Neuroscience Letters. 2008, 433(3):219-224.
    [196] Lee S-U, Rhee M c, Min Y K, et al. Involvement of peroxiredoxin IV in the 16[alpha]-hydroxyestrone-induced proliferation of human MCF-7 breast cancer cells [J]. Cell Biology International. 2008, 32(4):401-405.
    [197] Chang X-Z, Li D-Q, Hou Y-F, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer [J]. Breast Cancer Research. 2007, 9(6):R76.
    [198] Lim L H K, and Pervaiz S. Annexin 1: the new face of an old molecule [J]. FASEB J. 2007, 21(4):968-975.
    [199] Solito E, de Coupade C, Canaider S, et al. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation [J]. Br J Pharmacol. 2001, 133(2):217-228.
    [200] Wang K L, Wu T-T, Resetkova E, et al. Expression of Annexin A1 in Esophageal and Esophagogastric Junction Adenocarcinomas: Association with Poor Outcome [J]. Clin Cancer Res. 2006, 12(15):4598-4604.
    [201] Cui L, Wang Y, Shi Y, et al. Overexpression of annexin a1 induced by terephthalic acid calculi in rat bladder cancer [J]. Proteomics. 2007, 7(22):4192-4202.
    [202]黄颖锋,赵晓航,王贵齐,等.成束蛋白和膜联蛋白I在食管鳞状细胞癌癌前病变中的表达[J].中国癌症杂志. 2006, 7:18-21.
    [203] Hsiang C-H, Tunoda T, Whang Y E, et al. The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells [J]. The Prostate. 2006, 66(13):1413-1424.
    [204] Silistino-Souza R, Rodrigues-Lisoni F C, Cury P M, et al. Annexin 1: Differential expression in tumor and mast cells in human larynx cancer [J]. International Journal of Cancer. 2007, 120(12):2582-2589.
    [205] Patton K T, Chen H M, Joseph L, et al. Decreased annexin I expression in prostatic adenocarcinoma and in high-grade prostatic intraepithelial neoplasia [J]. Histopathology. 2005, 47(6):597-601.
    [206] Cicek M, Samant R S, Kinter M, et al. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells [J]. Clin Exp Metastasis. 2004, 21(2):149-157.
    [207] Park J E, Lee D H, Lee J A, et al. Annexin A3 is a potential angiogenic mediator [J]. Biochemical and Biophysical Research Communications. 2005, 337(4):1283-1287.
    [208] Shibata S, Sato H, Ota H, et al. Involvement of annexin V in antiproliferative effectsof gonadotropin-releasing hormone agonists on human endometrial cancer cell line [J]. Gynecol Oncol. 1997, 66(2):217-221.
    [209] Skrahina T, Piljic A, and Schultz C. Heterogeneity and timing of translocation and membrane-mediated assembly of different annexins [J]. Experimental Cell Research. 2008, 314(5):1039-1047.
    [210] Guzman-Aranguez A, Olmo N, Turnay J, et al. Differentiation of human colon adenocarcinoma cells alters the expression and intracellular localization of annexins A1, A2, and A5 [J]. J Cell Biochem. 2005, 94(1):178-193.
    [211] Liu Y, Wang H X, Lu N, et al. Translocation of annexin I from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma [J]. World J Gastroenterol. 2003, 9(4):645-649.
    [212] Lin C-Y, Jeng Y-M, Chou H-Y, et al. Nuclear localization of annexin A1 is a prognostic factor in oral squamous cell carcinoma [J]. Journal of Surgical Oncology. 2008, 97(6):544-550.
    [213] Moll R, Franke W W, Schiller D L, et al. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells [J]. Cell. 1982, 31(1):11-24.
    [214] Barak V, Goike H, Panaretakis K W, et al. Clinical utility of cytokeratins as tumor markers [J]. Clin Biochem. 2004, 37(7):529-540.
    [215] van de Rijn M, Perou C M, Tibshirani R, et al. Expression of Cytokeratins 17 and 5 Identifies a Group of Breast Carcinomas with Poor Clinical Outcome [J]. Am J Pathol. 2002, 161(6):1991-1996.
    [216] Durnez A, Verslype C, Nevens F, et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin [J]. Histopathology. 2006, 49(2):138-151.
    [217] Takahiro U, Shoji K, Takatsugu Y, et al. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence [J]. Cancer Science. 2003, 94(10):851-857.
    [218] Krause K-H, and Michalak M. Calreticulin [J]. Cell. 1997, 88(4):439-443.
    [219] Arnaudeau S, Frieden M, Nakamura K, et al. Calreticulin Differentially Modulates Calcium Uptake and Release in the Endoplasmic Reticulum and Mitochondria [J]. J. Biol. Chem. 2002, 277(48):46696-46705.
    [220] Yoon G-S, Lee H, Jung Y, et al. Nuclear Matrix of Calreticulin in Hepatocellular Carcinoma [J]. Cancer Res. 2000, 60(4):1117-1120.
    [221] Gisela Bragel U S R E S R H G. Identification of calreticulin as a nuclear matrix protein associated with human colon cancer [J]. Journal of Cellular Biochemistry. 2003, 89(2):238-243.
    [222] Zech V F, Dlaska M, Tzankov A, et al. Prognostic and diagnostic relevance of hnRNP A2/B1, hnRNP B1 and S100 A2 in non-small cell lung cancer [J]. Cancer Detect Prev. 2006, 30(5):395-402.
    [223] Wu S L, Sato M, Endo C, et al. hnRNP B1 protein may be a possible prognostic factor in squamous cell carcinoma of the lung [J]. Lung Cancer. 2003, 41(2):179-186.
    [224] Tockman M S. Clinical detection of lung cancer progression markers [J]. J Cell Biochem Suppl. 1996, 25(177-184.
    [225] Morales C R, Lefrancois S, Chennathukuzhi V, et al. A TB-RBP and Ter ATPase Complex Accompanies Specific mRNAs from Nuclei through the Nuclear Pores and into Intercellular Bridges in Mouse Male Germ Cells [J]. Developmental Biology. 2002, 246(2):480-494.
    [226] Keck C L, Zimonjic D B, Yuan B Z, et al. Nonrandom breakpoints of unbalanced chromosome translocations in human hepatocellular carcinoma cell lines [J]. Cancer Genet Cytogenet. 1999, 111(1):37-44.
    [227] Jacob E, Pucshansky L, Zeruya E, et al. The Human Protein Translin Specifically Binds Single-stranded Microsatellite Repeats, d(GT)n, and G-strand Telomeric Repeats, d(TTAGGG)n: A Study of the Binding Parameters [J]. Journal of Molecular Biology. 2004, 344(4):939-950.
    [228] Ishida R, Okado H, Sato H, et al. A role for the octameric ring protein, Translin, in mitotic cell division [J]. FEBS Letters. 2002, 525(1-3):105-110.
    [229] Liaudet-Coopman E, Beaujouin M, Derocq D, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis [J]. Cancer Letters. 2006, 237(2):167-179.
    [230] Vetvicka V, Vetvickova J, and Benes P. Role of enzymatically inactive procathepsin D in lung cancer [J]. Anticancer Res. 2004, 24(5A):2739-2743.
    [231] Vashishta A, Ohri S S, Proctor M, et al. Role of activation peptide of procathepsin D in proliferation and invasion of lung cancer cells [J]. Anticancer Res. 2006, 26(6B):4163-4170.
    [232] Lch A, Schindl M, Kohlberger P, et al. Cathepsin D in ovarian cancer: prognostic value and correlation with p53 expression and microvessel density [J]. Gynecologic Oncology. 2004, 92(2):545-552.
    [233] Leto G, Tumminello F M, Crescimanno M, et al. Cathepsin D expression levels in nongynecological solid tumors: clinical and therapeutic implications [J]. Clin Exp Metastasis. 2004, 21(2):91-106.
    [234] Beaujouin M, Baghdiguian S, Glondu-Lassis M, et al. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependentchemo-sensitivity [J]. Oncogene. 2005, 25(13):1967-1973.
    [235] Maga G, and Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners [J]. J Cell Sci. 2003, 116(15):3051-3060.
    [236] Yue H, Na Y L, Feng X L, et al. Expression of p57kip2, Rb protein and PCNA and their relationships with clinicopathology in human pancreatic cancer [J]. World J Gastroenterol. 2003, 9(2):377-380.
    [237] Raul U, Sawant S, Dange P, et al. Implications of cytokeratin 8/18 filament formation in stratified epithelial cells: induction of transformed phenotype [J]. Int J Cancer. 2004, 111(5):662-668.
    [238] Yue S Q, Yang Y L, Dou K F, et al. Expression of PCNA and CD44mRNA in colorectal cancer with venous invasion and its relationship to liver metastasis [J]. World J Gastroenterol. 2003, 9(12):2863-2865.
    [239] Komrower G M. Community screening programmes for metabolic disorders [J]. Dev Med Child Neurol. 1972, 14(3):397-399.
    [240] Gramantieri L, Trere D, Chieco P, et al. In human hepatocellular carcinoma in cirrhosis proliferating cell nuclear antigen (PCNA) is involved in cell proliferation and cooperates with P21 in DNA repair [J]. J Hepatol. 2003, 39(6):997-1003.
    [241] Bal N, Yildirim S, Nursal T Z, et al. Association of ezrin expression in intestinal and diffuse gastric carcinoma with clinicopathological parameters and tumor type [J]. World J Gastroenterol. 2007, 13(27):3726-3729.
    [242] Valdman A, Fang X, Pang S T, et al. Ezrin expression in prostate cancer and benign prostatic tissue [J]. Eur Urol. 2005, 48(5):852-857.
    [243] Li Q, Wu M, Wang H, et al. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells [J]. Cancer Lett. 2008, 261(1):55-63.
    [244] Gygi S P, Rochon Y, Franza B R, et al. Correlation between Protein and mRNA Abundance in Yeast [J]. Mol. Cell. Biol. 1999, 19(3):1720-1730.
    [245] Futcher B, Latter G I, Monardo P, et al. A Sampling of the Yeast Proteome [J]. Mol. Cell. Biol. 1999, 19(11):7357-7368.
    [246] Gatenby R A, and Gawlinski E T. The Glycolytic Phenotype in Carcinogenesis and Tumor Invasion: Insights through Mathematical Models [J]. Cancer Res. 2003, 63(14):3847-3854.
    [247] Li Y, Tang Z, Ye S, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97 [J]. World J Gastroenterol 2001, 7(6):777-778.
    [248] Ding S J, Li Y, Shao X X, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials [J]. Proteomics.2004, 4(4):982-994.
    [249] Kall L, Krogh A, and Sonnhammer E L. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server [J]. Nucleic Acids Res. 2007, 35(Web Server issue):W429-432.
    [250] Hamosh A, Scott A F, Amberger J S, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders [J]. Nucleic Acids Res. 2005, 33(Database issue):D514-517.
    [251] Zhang G, and Neubert T A. Automated Comparative Proteomics Based on Multiplex Tandem Mass Spectrometry and Stable Isotope Labeling [J]. Mol Cell Proteomics. 2006, 5(2):401-411.
    [252] Shevchenko A, Sunyaev S, Loboda A, et al. Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching [J]. Anal Chem. 2001, 73(9):1917-1926.
    [253] Braun R J, Kinkl N, Beer M, et al. Two-dimensional electrophoresis of membrane proteins [J]. Anal Bioanal Chem. 2007, 389(4):1033-1045.
    [254]沈鸿铭,康勍,方慧生,等.膜蛋白数据库介绍[J].药物生物技术. 2008, 15(1):72-75.
    [255] Kermit K M. Coupling matrix-assisted laser desorption/ionization to liquid separations [J]. Mass Spectrometry Reviews. 1997, 16(5):283-299.
    [256] Thiede B, Kretschmer A, and Rudel T. Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE and MALDI-MS [J]. Proteomics. 2006, 6(2):614-622.
    [257] Li Y, Tian B, Yang J, et al. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics [J]. J Cancer Res Clin Oncol. 2004, V130(8):460-468.
    [258] Spooncer E, Brouard N, Nilsson S K, et al. Developmental Fate Determination and Marker Discovery in Hematopoietic Stem Cell Biology Using Proteomic Fingerprinting [J]. Mol Cell Proteomics. 2008, 7(3):573-581.
    [259] Vasiliev J M. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells [J]. Int J Dev Biol. 2004, 48(5-6):425-439.
    [260] Wiche G. Role of plectin in cytoskeleton organization and dynamics [J]. J Cell Sci. 1998, 111(17):2477-2486.
    [261] Osmanagic-Myers S, Gregor M, Walko G, et al. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration [J]. J Cell Biol. 2006, 174(4):557-568.
    [262] Boczonadi V, McInroy L, and Maatta A. Cytolinker cross-talk: periplakin N-terminus interacts with plectin to regulate keratin organisation and epithelial migration [J]. Exp Cell Res. 2007, 313(16):3579-3591.
    [263] Kaneda A, Kaminishi M, Yanagihara K, et al. Identification of silencing of nine genes in human gastric cancers [J]. Cancer Res. 2002, 62(22):6645-6650.
    [264] Hendrix M J, Seftor E A, Chu Y W, et al. Role of intermediate filaments in migration, invasion and metastasis [J]. Cancer Metastasis Rev. 1996, 15(4):507-525.
    [265] Zhou Y, Wang Y, Kovacs M, et al. Microglial Activation Induced byNeurodegeneration: A Proteomic Analysis [J]. Mol Cell Proteomics. 2005, 4(10):1471-1479.
    [266] Ferrero M, Spyratos F, Le Doussal V, et al. Flow cytometric analysis of DNA content and keratins by using CK7, CK8, CK18, CK19, and KL1 monoclonal antibodies in benign and malignant human breast tumors [J]. Cytometry. 1990, 11(6):716-724.
    [267] Klijanienko J, el-Naggar A, De Braud F, et al. Keratins 6, 13 and 19. Differential expression in squamous cell carcinoma of the head and neck. [J]. Anal Quant Cytol Histol. 1993, 15(5):335-340.
    [268] Goldschmidt-Clermont P J, Machesky L M, Doberstein S K, et al. Mechanism of the interaction of human platelet profilin with actin [J]. J. Cell Biol. 1991, 113(5):1081-1089.
    [269] Inoue A, and Ikebe M. Characterization of the Motor Activity of Mammalian Myosin VIIA [J]. J. Biol. Chem. 2003, 278(7):5478-5487.
    [270] Tuxworth R I, Weber I, Wessels D, et al. A role for myosin VII in dynamic cell adhesion [J]. Current Biology. 2001, 11(5):318-329.
    [271] Udovichenko I P, Gibbs D, and Williams D S. Actin-based motor properties of native myosin VIIa [J]. J Cell Sci. 2002, 115(2):445-450.
    [272] McCartney B M, Dierick H A, Kirkpatrick C, et al. Drosophila APC2 Is a Cytoskeletally-associated Protein that Regulates Wingless Signaling in the Embryonic Epidermis [J]. J. Cell Biol. 1999, 146(6):1303-1318.
    [273] Yu X, and Bienz M. Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localization in cortical actin caps [J]. Mech Dev. 1999, 84(1-2):69-73.
    [274] Yu X, Waltzer L, and Bienz M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells [J]. Nat Cell Biol. 1999, 1(3):144-151.
    [275] Bang M L, Centner T, Fornoff F, et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system [J]. Circ Res. 2001, 89(11):1065-1072.
    [276] Kontrogianni-Konstantopoulos A, Catino D H, Strong J C, et al. Obscurin regulates the organization of myosin into A bands [J]. Am J Physiol Cell Physiol. 2004, 287(1):C209-217.
    [277] Kontrogianni-Konstantopoulos A, Catino D H, Strong J C, et al. Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum [J]. Faseb J. 2006, 20(12):2102-2111.
    [278] Vernon E G, Malik K, Reynolds P, et al. The parathyroid hormone-responsive B1 gene is interrupted by a t(1;7)(q42;p15) breakpoint associated with Wilms' tumour [J]. Oncogene. 2003, 22(9):1371-1380.
    [279] Zhu Y, and Hui D Y. Apolipoprotein E binding to low density lipoprotein receptor-related protein-1 inhibits cell migration via activation of cAMP-dependent protein kinase A [J]. J Biol Chem. 2003, 278(38):36257-36263.
    [280] Sid B, Dedieu S, Delorme N, et al. Human thyroid carcinoma cell invasion is controlled by the low density lipoprotein receptor-related protein-mediated clearance of urokinase plasminogen activator [J]. Int J Biochem Cell Biol. 2006, 38(10):1729-1740.
    [281] Wang X, Lee S R, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator [J]. Nat Med. 2003, 9(10):1313-1317.
    [282] Gaultier A, Salicioni A M, Arandjelovic S, et al. Regulation of the composition of theextracellular matrix by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression [J]. J Biol Chem. 2006, 281(11):7332-7340.
    [283] Toyoshima M, Tanaka N, Aoki J, et al. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and beta-catenin [J]. Cancer Res. 2007, 67(11):5162-5171.
    [284] O'Neill E, Rushworth L, Baccarini M, et al. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1 [J]. Science. 2004, 306(5705):2267-2270.
    [285] Alavi A, Hood J D, Frausto R, et al. Role of Raf in vascular protection from distinct apoptotic stimuli [J]. Science. 2003, 301(5629):94-96.
    [286] Meng F, Ding J, Liu N, et al. Inhibition of gastric cancer angiogenesis by vector-based RNA interference for Raf-1 [J]. Cancer Biol Ther. 2005, 4(1):113-117.
    [287] Takahashi M, Sugiura T, Abe M, et al. Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration [J]. Int J Cancer. 2007, 121(9):1919-1929.
    [288] Ito Y, Yoshida H, Uruno T, et al. KAI1 expression in thyroid neoplasms: its linkage with clinicopathologic features in papillary carcinoma [J]. Pathol Res Pract. 2003, 199(2):79-83.
    [289] Jee B K, Park K M, Surendran S, et al. KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line [J]. Biochem Biophys Res Commun. 2006, 342(2):655-661.
    [290] Chen Z, Mustafa T, Trojanowicz B, et al. CD82, and CD63 in thyroid cancer [J]. Int J Mol Med. 2004, 14(4):517-527.
    [291] Liu L Y, Han Y C, Wu S H, et al. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer [J]. World J Gastroenterol. 2008, 14(13):2110-2114.
    [292] Liu L, Li Z, Feng G, et al. Expression of connective tissue growth factor is in agreement with the expression of VEGF, VEGF-C, -D and associated with shorter survival in gastric cancer [J]. Pathol Int. 2007, 57(11):712-718.
    [293] Page R E, Klein-Szanto A J, Litwin S, et al. Increased expression of the pro-protein convertase furin predicts decreased survival in ovarian cancer [J]. Cell Oncol. 2007, 29(4):289-299.
    [294] Lapierre M, Siegfried G, Scamuffa N, et al. Opposing function of the proprotein convertases furin and PACE4 on breast cancer cells' malignant phenotypes: role of tissue inhibitors of metalloproteinase-1 [J]. Cancer Res. 2007, 67(19):9030-9034.
    [295] Muders M H, Baretton G B, Aust D E, et al. [GIPC: a new target for therapy in pancreatic adenocarcinoma?] [J]. Verh Dtsch Ges Pathol. 2007, 91(286-293.
    [296] Faenza I, Matteucci A, Manzoli L, et al. A Role for Nuclear Phospholipase Cbeta 1 in Cell Cycle Control [J]. J. Biol. Chem. 2000, 275(39):30520-30524.
    [297] Xu A, Suh P-G, Marmy-Conus N, et al. Phosphorylation of Nuclear Phospholipase C {beta}1 by Extracellular Signal-Regulated Kinase Mediates the Mitogenic Action of Insulin-Like Growth Factor I [J]. Mol. Cell. Biol. 2001, 21(9):2981-2990.
    [298] Peter M, Labbe J C, Doree M, et al. A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK [J]. Development. 2002, 129(9):2129-2139.
    [299] Wu J Q, Hansen D V, Guo Y, et al. Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A [J]. Proc Natl Acad Sci U S A. 2007, 104(42):16564-16569.
    [300] Mishra S, Murphy L C, Nyomba B L G, et al. Prohibitin: a potential target for new therapeutics [J]. Trends in Molecular Medicine. 2005, 11(4):192-197.
    [301] Hong S, Pusapati R V, Powers J T, et al. Oncogenes and the DNA damage response: Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis [J]. Cell Cycle. 2006, 5(8):801-803.
    [302] Joshi B, Ko D, Ordonez-Ercan D, et al. A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcription and induce apoptosis [J]. Biochem Biophys Res Commun 2003, 312(2):459-466.
    [303] Fusaro G, Wang S, and Chellappan S. Differential regulation of Rb family proteins and prohibitin during camptothecin-induced apoptosis [J]. Oncogene. 2002, 21 (29):4539-4548.
    [304] Wang S, Fusaro G, Padmanabhan J, et al. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression [J]. Oncogene. 2002, 21(55):8388-8396.
    [305] Rajalingam K, Wunder C, Brinkmann V, et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration [J]. Nat Cell Biol. 2005, 7(8):837-843.
    [306] McClung J K, Jupe E R, Liu X T, et al. Prohibitin: Potential role in senescence, development, and tumor suppression [J]. Experimental Gerontology. 1995, 30(2):99-124.
    [307] Nakagawa H, Murata Y, Koyama K, et al. Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin [J]. Cancer Res. 1998, 58(22):5176-5181.
    [308] Bienz M, and Hamada F. Adenomatous polyposis coli proteins and cell adhesion [J]. Curr Opin Cell Biol. 2004, 16(5):528-535.
    [309] Polakis P. The oncogenic activation of [beta]-catenin [J]. Current Opinion in Genetics & Development. 1999, 9(1):15-21.
    [310] Nakagawa H, Koyama K, Murata Y, et al. APCL, a Central Nervous System-specific Homologue of Adenomatous Polyposis Coli Tumor Suppressor, Binds to p53-binding Protein 2 and Translocates it to the Perinucleus [J]. Cancer Res. 2000, 60(1):101-105.
    [311] Naumovski L, and Cleary M. The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M [J]. Mol Cell Biol. 1996, 16(7):3884-3892.
    [312] Thannickal V J, and Fanburg B L. Reactive oxygen species in cell signaling [J]. Am J Physiol Lung Cell Mol Physiol. 2000, 279(6):L1005-1028.
    [313] Chae H Z, Robison K, Poole L B, et al. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes [J]. Proc. Natl. Acad. Sci. USA. 1994, 91(15):7017-7021.
    [314] Chae H Z, Chung S J, and Rhee S G. Thioredoxin-dependent peroxide reductase from yeast [J]. J. Biol. Chem., . 1994, 269(44):27670-27678.
    [315] Kropotov A, Sedova V, Ivanov V, et al. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repressRNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro [J]. Eur J Biochem. 1999, 260(2):336-346.
    [316] Beere H M. `The stress of dying': the role of heat shock proteins in the regulation of apoptosis [J]. J Cell Sci. 2004, 117(13):2641-2651.
    [317] Paul C, Manero F, Gonin S, et al. Hsp27 as a Negative Regulator of Cytochrome c Release [J]. Mol. Cell. Biol. 2002, 22(3):816-834.
    [318] Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90 [J]. EMBO J. 2000, 19(16):4310-4322.
    [319] Rane M J, Pan Y, Singh S, et al. Heat Shock Protein 27 Controls Apoptosis by Regulating Akt Activation [J]. J. Biol. Chem. 2003, 278(30):27828-27835.
    [320] Charette S J, Lavoie J N, Lambert H, et al. Inhibition of Daxx-Mediated Apoptosis by Heat Shock Protein 27 [J]. Mol. Cell. Biol. 2000, 20(20):7602-7612.
    [321] Lewis J, Devin A, Miller A, et al. Disruption of Hsp90 Function Results in Degradation of the Death Domain Kinase, Receptor-interacting Protein (RIP), and Blockage of Tumor Necrosis Factor-induced Nuclear Factor-kappa B Activation [J]. J. Biol. Chem. 2000, 275(14):10519-10526.
    [322] Fortugno P, Beltrami E, Plescia J, et al. Regulation of survivin function by Hsp90 [J]. PNAS. 2003, 100(24):13791-13796.
    [323] Basso A D, Solit D B, Chiosis G, et al. Akt Forms an Intracellular Complex with Heat Shock Protein 90 (Hsp90) and Cdc37 and Is Destabilized by Inhibitors of Hsp90 Function [J]. J. Biol. Chem. 2002, 277(42):39858-39866.
    [324] Piotrowicz R S, and Levin E G. Basolateral Membrane-associated 27-kDa Heat Shock Protein and Microfilament Polymerization [J]. J. Biol. Chem. 1997, 272(41):25920-25927.
    [325] Piotrowicz R S, Hickey E, and Levin E G. Heat shock protein 27 kDa expression and phosphorylation regulates endothelial cell migration [J]. FASEB J. 1998, 12(14):1481-1490.
    [326] Eustace B K, Sakurai T, Stewart J K, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness [J]. Nat Cell Biol. 2004, 6(6):507-514.
    [327] Rousseau S, Houle F, and Huot J. Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells [J]. Trends Cardiovasc Med. 2000, 10(8):321-327.
    [328] Abe M, Manola J B, Oh W K, et al. Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer [J]. Clin Prostate Cancer. 2004, 3(1):49-53.
    [329] Thanner F, Sutterlin M W, Kapp M, et al. Heat-shock protein 70 as a prognostic marker in node-negative breast cancer [J]. Anticancer Res. 2003, 23(2A):1057-1062.
    [330] Syrigos K N, Harrington K J, Karayiannakis A J, et al. Clinical significance of heat shock protein-70 expression in bladder cancer [J]. Urology. 2003, 61(3):677-680.
    [331] Kanavaros P, Stefanaki K, Rontogianni D, et al. Immunohistochemical expression of p53, p21/waf1, rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus [J]. Histol Histopathol. 2001, 16(4):1005-1012.
    [332] Rui H B, and Su J Z. Co-transfection of p16(INK4a) and p53 genes into the K562cell line inhibits cell proliferation [J]. Haematologica. 2002, 87(2):136-142.
    [333] Hemmati P G, Gillissen B, von Haefen C, et al. Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis [J]. Oncogene. 2002, 21(20):3149-3161.
    [334] Gagnon V, St-Germain M E, Parent S, et al. Akt activity in endometrial cancer cells: regulation of cell survival through cIAP-1 [J]. Int J Oncol. 2003, 23(3):803-810.
    [335] Decraene D, Agostinis P, Bouillon R, et al. Insulin-like growth factor-1-mediated AKT activation postpones the onset of ultraviolet B-induced apoptosis, providing more time for cyclobutane thymine dimer removal in primary human keratinocytes [J]. J Biol Chem. 2002, 277(36):32587-32595.
    [336] Park S, Kim D, Kaneko S, et al. Molecular cloning and characterization of the human AKT1 promoter uncovers its up-regulation by the Src/Stat3 pathway [J]. J Biol Chem. 2005, 280(47):38932-38941.
    [337] He L, Kim B Y, Kim K A, et al. NF-kappaB inhibition enhances caspase-3 degradation of Akt1 and apoptosis in response to camptothecin [J]. Cell Signal. 2007, 19(8):1713-1721.
    [338] Zhou G L, Tucker D F, Bae S S, et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration [J]. J Biol Chem. 2006, 281(47):36443-36453.
    [339] Meng Q, Xia C, Fang J, et al. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway [J]. Cell Signal. 2006, 18(12):2262-2271.
    [340] Fang J, Ding M, Yang L, et al. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis [J]. Cell Signal. 2007, 19(12):2487-2497.
    [341] Kitamura T, Asai N, Enomoto A, et al. Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin [J]. Nat Cell Biol. 2008, 10(3):329-337.
    [342] Chen L Y, and Chen J D. Daxx silencing sensitizes cells to multiple apoptotic pathways [J]. Mol Cell Biol. 2003, 23(20):7108-7121.
    [343] Zhao L Y, Liu J, Sidhu G S, et al. Negative regulation of p53 functions by Daxx and the involvement of MDM2 [J]. J Biol Chem. 2004, 279(48):50566-50579.
    [344] Michaelson J S, and Leder P. RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX [J]. J Cell Sci. 2003, 116(2):345-352.
    [345] Levine A J, Hu W, and Feng Z. The P53 pathway: what questions remain to be explored? [J]. Cell Death Differ. 2006, 13(6):1027-1036.
    [346] Yao Y L, and Yang W M. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity [J]. J Biol Chem. 2003, 278(43):42560-42568.
    [347] Luo J, Su F, Chen D, et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis [J]. Nature. 2000, 408(6810):377-381.
    [348] Moll U M, Erster S, and Zaika A. p53, p63 and p73--solos, alliances and feuds among family members [J]. Biochim Biophys Acta. 2001, 1552(2):47-59.
    [349] Marabese M, Vikhanskaya F, and Broggini M. p73: A chiaroscuro gene in cancer [J]. European Journal of Cancer. 2007, 43(9):1361-1372.
    [350] Moll U M. The Role of p63 and p73 in tumor formation and progression: coming of age toward clinical usefulness. [J]. Clin Cancer Res. 2003, 9(15):5437-5441.
    [351] Zaika A, Irwin M, Sansome C, et al. Oncogenes Induce and Activate Endogenous p73Protein [J]. J. Biol. Chem. 2001, 276(14):11310-11316.
    [352] Stiewe T, Zimmermann S, Frilling A, et al. Transactivation-deficient {Delta}TA-p73 Acts as an Oncogene [J]. Cancer Res. 2002, 62(13):3598-3602.
    [353] Casciano I, Mazzocco K, Boni L, et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients [J]. Cell Death Differ. 2002, 9(3):246-251.
    [354] Dominguez G, Garcia J M, Pena C, et al. {Delta}TAp73 Upregulation Correlates With Poor Prognosis in Human Tumors: Putative In Vivo Network Involving p73 Isoforms, p53, and E2F-1 [J]. J Clin Oncol. 2006, 24(5):805-815.
    [355] Stiewe T, Tuve S, Peter M, et al. Quantitative TP73 Transcript Analysis in Hepatocellular Carcinomas [J]. Clin Cancer Res. 2004, 10(2):626-633.
    [356] Tannapfel A, John K, Mise N, et al. Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73 [J]. Carcinogenesis. 2008, 29(1):211-218.
    [357] Citri A, and Yarden Y. EGF-ERBB signalling: towards the systems level [J]. Nat Rev Mol Cell Biol. 2006, 7(7):505-516.
    [358] Huang D, Ding Y, Luo W M, et al. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo [J]. Cancer Res. 2008, 68(1):81-88.
    [359] Inoue D, Ohe M, Kanemori Y, et al. A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs [J]. Nature. 2007, 446(7139):1100-1104.
    [360] Gu T, Nardone J, Lee K, et al. Tyrosine Phosphoproteomics of FLT3 Signaling [J]. ASH Annual Meeting Abstracts. 2005, 106(11):1227-.
    [361] Papatsoris A G, Karamouzis M V, and Papavassiliou A G. The power and promise of "rewiring" the mitogen-activated protein kinase network in prostate cancer therapeutics [J]. Mol Cancer Ther. 2007, 6(3):811-819.
    [362] Bell H S, and Ryan K M. iASPP inhibition: increased options in targeting the p53 family for cancer therapy [J]. Cancer Res. 2008, 68(13):4959-4962.
    [363] Prives C, and White E. Does control of mutant p53 by Mdm2 complicate cancer therapy? [J]. Genes Dev. 2008, 22(10):1259-1264.
    [364] Boros L G, Puigjaner J, Cascante M, et al. Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation [J]. Cancer Res. 1997, 57(19):4242-4248.
    [365] Comin-Anduix B, Boros L G, Marin S, et al. Fermented Wheat Germ Extract Inhibits Glycolysis/Pentose Cycle Enzymes and Induces Apoptosis through Poly(ADP-ribose) Polymerase Activation in Jurkat T-cell Leukemia Tumor Cells [J]. J. Biol. Chem. 2002, 277(48):46408-46414.
    [366] Boros L G, Bassilian S, Lim S, et al. Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: A new mechanism of controlling tumor growth [J]. Pancreas. 2001, 22(1):1-7.
    [367] Langbein S, Zerilli M, Zur Hausen A, et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted [J]. Br J Cancer. 2006, 94(4):578-585.
    [368] Fischer W H, and Schubert D. Characterization of a Novel Platelet-Derived GrowthFactor-Associated Protein [J]. Journal of Neurochemistry. 1996, 66(5):2213-2216.
    
    [1] Eng J K, McCormack A L, and Yates J R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database [J]. Journal of the American Society for Mass Spectrometry. 1994, 5(11):976-989.
    [2] Perkins D N, Pappin D J, Creasy D M, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data [J]. Electrophoresis. 1999, 20(18):3551-3567.
    [3] Pappin D J, Hojrup P, and Bleasby A J. Rapid identification of proteins by peptide-mass fingerprinting [J]. Curr Biol. 1993, 3(6):327-332.
    [4] Geer L Y, Markey S P, Kowalak J A, et al. Open mass spectrometry search algorithm [J]. J Proteome Res. 2004, 3(5):958-964.
    [5] Craig R, and Beavis R C. TANDEM: matching proteins with tandem mass spectra [J]. Bioinformatics. 2004, 20(9):1466-1467.
    [6] Ioannis A P. The interpretation of collision-induced dissociation tandem mass spectra of peptides [J]. Mass Spectrometry Reviews. 1995, 14(1):49-73.
    [7] Cargile B J, Bundy J L, and Stephenson J L. Potential for false positive identifications from large databases through tandem mass spectrometry [J]. J Proteome Res. 2004, 3(5):1082-1085.
    [8] Omenn G S, States D J, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and apublicly-available database [J]. Proteomics. 2005, 5(13):3226-3245.
    [9] Moore R E, Young M K, and Lee T D. Qscore: an algorithm for evaluating SEQUEST database search results [J]. J Am Soc Mass Spectrom. 2002, 13(4):378-386.
    [10] Keller A, Nesvizhskii A I, Kolker E, et al. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search [J]. Anal Chem. 2002, 74(20):5383-5392.
    [11] Peng J, Elias J E, Thoreen C C, et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome [J]. J Proteome Res. 2003, 2(1):43-50.
    [12] Balgley B M, Laudeman T, Yang L, et al. Comparative Evaluation of Tandem MS Search Algorithms Using a Target-Decoy Search Strategy [J]. Mol Cell Proteomics. 2007, 6(9):1599-1608.
    [13] MacCoss M J, Wu C C, Matthews D E, et al. Measurement of the Isotope Enrichment of Stable Isotope-Labeled Proteins Using High-Resolution Mass Spectra of Peptides [J]. Anal. Chem. 2005, 77(23):7646-7653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700