简单金属元素及其金属间化合物高压物理性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单质元素金属是物质世界的基本构成之一,其高压研究倍受关注。近期研究发现单质元素金属及其金属间化合物在高压下发生了复杂的结构相变,并呈现出一系列新奇的物理现象(如超导电性,超硬、电阻上升、熔点下降等等)。对这些体系的研究不仅能为天文和地球物理的研究提供知识储备,还可以揭示新的物理现象和物理规律。本文利用基于密度泛函理论的第一性原理方法系统的研究了Ca-Li(CaLi2)和Li-H(LiH2、LiH6和LiH8)合金化合物,以及单质钠在高压下的结构相变和高压新相的奇异物理行为,获得了以下创新性结果:
     1.预言CaLi2在高压下先后相变为具有C2/c和P21/c空间群的单斜结构,以CaLi2为例首次在二元化合物中发现了压致分解--聚合--再分解的奇异高压行为。电子-声子相互作用的计算表明,CaLi2在高压下转变为超导体,其超导电性产生的物理根源在于Ca原子的低频振动模式与电子之间的强烈耦合。
     2.发现LiH2只有在高压下由于杂化能级的出现才转变为金属,但由于费米能级态密度非常小,没有超导电性。H原子在LiH6和LiH8中以“H2”单元的形式存在,由于Li原子与“H2”单元之间的电荷转移,LiH6和LiH8在常压下就已经是金属,在高压下转变为超导体。LiH6的超导温度随压力的升高而增强,在300万大气压(GPa)下达到了81.6开尔文(K),超导温度升高主要是由于H原子费米能级附近态密度的增强导致。
     3.发现在200 GPa下金属钠转变为透明绝缘体。理论预言金属钠在超高压下形成c轴极度压缩的双六角密堆hP4结构,该结构首次在单质中发现,是宽带隙绝缘体,其带隙随压力升高而增加,在600 GPa下带隙增大为6.5电子伏特(eV)。超高压下钠的绝缘特性来自于价电子在晶格空隙中的强烈束缚,是钠原子的核内电子强烈交叠的结果。
High pressure, which has been considered as an extreme condition, can change the properties of materials dramatically. Under high pressure, the volume of materials will be compressed and the distance between atoms will be reduced, so that the crystal structure of the materials will be rearranged and the phase transition will be occurred. As a result of the reduced atomic distance, the orbitals of two nearest neighbor atoms will be overlapped and the bonding properties will be changed then the electronic structure transformation of the materials will be induced. Newly formed crystal structure and electronic structure will bring new physical phenomena and behaviors. Thus, high pressure not only can cause various phase transitions, but also can lead us to the new functional materials. High pressure physics, as one of the emerging discipline of condensed matter physics, has attracted many attentions from both experimentalists and theorists.
     Simple elemental metal is one of the hottest topics among high pressure physics. At high pressure, simple elemental metals exhibit many exotic properties, such as low symmetric low coordination structures, enhanced supercondictivity, ultra-low melting point, increased electric resistivity, and narrowed valance band width. These behaviors are quite counterintuitive, because at sufficiently high pressure all materials must become free-electron metals; the expected behavior is an increasing tendency to the free-electron limit under pressure. The reasons why simple element metals and their intermetallics have such nontrivial properties are still open questions.
     Most recently, with the help of improved theory and computational capability, the first principle method base on the density functional theory has been used widely in the computational condensed matter physics, quantum chemistry, and material science. And it has been successfully solved many applications. The newly developed crystal structure prediction method extended the reseach field for theorist once again. From that on, theory studies are more independent to experiment than before.
     Within this thesis, we studied the high pressure properties of three typical materlias, Na, CaLi2 and Li-H alloys, by using first principle method. We first determined their high pressure crystal structures based on the crystal structure prediction method; then we studied their physical properties by analyzing their electronic properties and lattice dynamics behaviors.
     First of all, we found two novel high pressure structures for CaLi2 with space groups C2/c and P21/c, stable at pressure ranges of 35–54 GPa and 54–105 GPa, respectively. It is found that decomposition into pure elements is energetically favorable at pressures of 20–35 GPa and above 105 GPa. Such oscillatory decomposition-recombination-decomposition behavior is known, for instance, for MgAl2O4, but to our knowledge, this is the first report of such phenomenon for a binary compound. In C2/c structure, Ca atoms form topologically the same (save for a symmetry- breaking distortion) arrangement as the Si-sublattice in ?-ThSi2, a known superconductor. The two inequivalent Li atoms form Li2 pairs, stuffing the Ca framework. Contrary to the three-dimensional C2/c structure, the P21/c structure has a flavor of 2D geometry. The structure can be viewed as a slight distortion of a trigonal P-3m1 structure or a strong distortion of a hexagonal P6/mmm structure. The Ca and one of the inequivalent Li atoms form alternating graphene layers stacked on top of each other; the another Li atoms adopt linear chains running through centers of hexagonal channels. By comparing the theory and experiment X-ray diffraction spectra, our predict structures are not excluded. After analyzing the details of the crystal structures and related phonon dispersion, we found that the decomposition could happen. However, the solid-state reactions, such as decomposition and crystallization, usually have high activation energies, and thus a high temperature experiment might be necessary to conquer the kinetic barrier of the decomposition/ crystallization of CaLi2. The valence band width and the density of states on Fermi level of CaLi2 decrease as pressure increased. By calculation the electron localization function, it is shown that under high pressure, the wavefunctions of valence electrons and core electrons are overlapped, resulting in a localization of valence electrons in the interstices. The localized valence electrons lost their mobility and induced an increase of the electric resistivity, which is consistent with the observation of experiment. We also found both structures are superconductors; the calculated superconducting temperature is ~ 15 K at 50 GPa, which is in good agreement with experiment data. The electron phonon coupling calculations have shown that the low energy Ca vibrations have the most contributions to superconductivity. And the enhanced superconductivity of CaLi2 under high pressure is strongly related to the phonon softening. Comparing to elemental Li, the superconductivity of CaLi2 at high pressure has the similar behaviors, and the smaller logarithmic average phonon frequency of CaLi2 maybe the reason why CaLi2 has a lower superconducting temperature than Li.
     Later on, we studied the high pressure superconductivity of LiH2, LiH6, and LiH8 by calculating their electron phonon coupling strength. It is shown that the insulating LiH2 became a metal under high pressure by band overlapping. But LiH2 is not a superconductor because the rather small density of states near Fermi level. In LiH6, and LiH8, H atoms are forming the H2 units. Both of LiH6 and LiH8 have odd number of valence electrons, and the electron charge transfer between Li and H2 unit partially filled the H orbital, thus they are metals even at ambient pressure. Under high pressure, both of them are superconductors; the superconducting temperatures are 38.34 and 31.04 K at 150 and 100 GPa, respectively. The superconducting temperature of LiH6 increased rapidly under pressure and reached 81.04 K at 300 GPa. In contrary, the superconducting temperature of LiH8 is not changed much, at 200 GPa, the superconducting temperature is 36.54 K. From the Eliashberg phonon spectral function, we found that the vibrations between H2 units are the biggest contributor for the superconductivity. The increased density of states near Fermi level in LiH6 is the reason of the enhanced superconductivity of LiH6. Our results are helpful for the searching of potential high temperature superconductor among hydrogen dense materials. It will be a great success if we can find a hydrogen dense material with odd number of valence electrons and can survive at ultra-low pressure. Finally, we studied the crystal structures of Na under high pressure. We found two new structures with space group Pnma (oP8) and P63/mmc (hP4) stable at pressure ranges of 152-260 GPa and above 260 GPa, respectively. Especially, the hP4 can be viewed as a double-hexagonal close-packed (d.h.c.p.) structure squeezed along the c-axis. By calculating the electronic properties, it is clear that Na becomes an insulator under high pressure; the band gap is 1.3 eV at 200 GPa. The bad gap becomes even bigger at higher pressure. Thus, Na is a wide gap insulator at high pressure. Our calculations reveal that an insulating electronic state emerges because compression causes the 3d bands to rapidly drop in energy relative to the 3p bands and increasingly hybridize with them. This hybridization is the key to strong electron localization: a marked charge accumulation occurs only in the open interstitial regions. Under high pressure the distance between two atoms in Na is reduced dramatically. At 300 GPa, the shortest Na–Na distance is 1.89 ? at 300GPa, which implies strong core-valence overlap (the 3s and 2p orbital radii in Na are 1.71 and 0.28 ?, respectively) and even significant core-core overlap between neighboring Na atoms (the ionic radius of Na+ is 1.02 ?). The afterwards high pressure optic experiment has proved that Na becomes transparent at 200 GPa, thus it is an insulator under high pressure. The X-ray diffraction and Raman spectrum experiments have revealed that the crystal structure of the insulating Na is indeed the hP4 structure. We also noticed that the mechanism we for the insulation is much different from what proposed by Neaton and Ashcroft. Furthermore, if we consider the Na ions as cations and the interstitial electron density maxima as anions, then the Na-hP4 is an analogue of electrides in Ni2In-type structures. Our finding has brought some fresh air for the high pressure physics; it will be very helpful for us to study the internal of Earth and other planets.
引文
[1]张令通.计算机在材料模拟计算与设计中的应用[J]大理学院学报, 2002, 4 (1).
    [2]吴兴惠,项金钟.现代材料计算与设计教程[M] 2002:电子工业出版社, 2002.
    [3] COHEN M L. Calculation of bulk moduli of diamond and zinc-blende solids[J] Physical Review B, 1985, 32 (12): 7988.
    [4] LIU A Y, COHEN M L. Structural properties and electronic structure of low-compressibility materials: ?-Si3N4 and hypothetical ?-C3N4[J] Physical Review B, 1990, 41 (15): 10727.
    [5] LIEBER C M, ZHANG Z J. Synthesis of covalent carbon—nitride solids: Alternatives to diamond?[J] Advanced Materials, 1994, 6 (6): 497-499.
    [6] YU K M, COHEN M L, HALLER E E, et al. Observation of crystalline C3N4[J] Physical Review B, 1994, 49 (7): 5034.
    [7] RIE K T, AHN H. Evidence for mixed-phase crystallineβ-C3N4 and c-BN films[J] Materialwissenschaft und Werkstofftechnik, 1996, 27 (2): 107-108.
    [8] OGANOV A R, ONO S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D'' layer[J] Nature, 2004, 430 (6998): 445-448.
    [9] OGANOV A R, MARTONAK R, LAIO A, et al. Anisotropy of Earth's D'' layer and stacking faults in the MgSiO3 post-perovskite phase[J] Nature, 2005, 438 (7071): 1142-1144.
    [10] OGANOV A, GLASS C, ONO S. High-pressure phases of CaCO3: crystal structure prediction and experiment[J] Earth and Planetary Science Letters, 2006, 241 (1-2): 95-103.
    [11] IITAKA T, HIROSE K, KAWAMURA K, et al. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle[J] Nature, 2004, 430 (6998): 442-445.
    [12] VAN DER HILST R D, DE HOOP M V, WANG P, et al. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region[J] Science, 2007, 315 (5820): 1813-1817.
    [13] GARNERO E J, MCNAMARA A K. Structure and dynamics of Earth's lower mantle[J] Science, 2008, 320 (5876): 626-628.
    [14] MERKEL S, KUBO A, MIYAGI L, et al. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures[J] Science, 2006, 311 (5761): 644-646.
    [15] SHAITAN K, ANTONOV M, TOURLEIGH Y, et al. Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition[J] Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology, 2008, 2 (1): 73-81.
    [16] ELBER R, KARPLUS M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin[J] Journal of the American Chemical Society, 1990, 112 (25): 9161-9175.
    [17] RYCKAERT J, BELLEMANS A. Molecular dynamics of liquid n-butane near its boiling point[J] Chemical Physics Letters, 1975, 30 (1): 123-125.
    [18] STEINFELD J, FRANCISCO J, HASE W. Chemical kinetics and dynamics[J], 1989.
    [19] BIRD R. Transport phenomena[J] Applied Mechanics Reviews, 2002, 55: R1.
    [20] AMIRJALAYER S, TAFIPOLSKY M, SCHMID R. Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics[J] Angewandte Chemie International Edition, 2007, 46 (3): 463-466.
    [21] SKOULIDAS A, SHOLL D. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations[J] J. Phys. Chem. B, 2005, 109 (33): 15760-15768.
    [22] DONG L, SMITH R, SROLOVITZ D. A two dimensional molecular dynamics simulation of thin film growth by oblique deposition[J] Journal of Applied Physics, 2009, 80 (10): 5682-5690.
    [23] BERNEVIG B A, HUGHES T L, ZHANG S-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J] Science, 2006, 314 (5806): 1757-1761.
    [24] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J] Science, 2007, 318 (5851): 766-770.
    [25] FU L, KANE C L. Topological insulators with inversion symmetry[J] Physical Review B, 2007, 76 (4): 045302.
    [26] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J] Nature, 2008, 452 (7190): 970-974.
    [27] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J] Nat Phys, 2009, 5 (6): 398-402.
    [28] CHEN Y L, ANALYTIS J G, CHU J-H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J] Science, 2009, 325 (5937): 178-181.
    [29] HSIEH D, XIA Y, WRAY L, et al. Observation of Unconventional Quantum Spin Textures in Topological Insulators[J] Science, 2009, 323 (5916): 919-922.
    [30] ZHANG H, LIU C-X, QI X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J] Nat Phys, 2009, 5 (6): 438-442.
    [31] GREGORYANZ E, LUNDEGAARD L, MCMAHON M, et al. Structural diversity of sodium[J] Science, 2008, 320 (5879): 1054.
    [32] LUNDEGAARD L F, GREGORYANZ E, MCMAHON M I, et al. Single-crystal studies of incommensurate Na to 1.5 Mbar[J] Physical Review B, 2009, 79 (6): 064105.
    [33] MCMAHON M I, NELMES R J, SCHWARZ U, et al. Composite incommensurate K-III and a commensurate form: Study of a high-pressure phase of potassium[J] Physical Review B, 2006, 74 (14): 140102.
    [34] MCMAHON M I, REKHI S, NELMES R J. Pressure Dependent Incommensuration in Rb-IV[J] Physical Review Letters, 2001, 87 (5): 055501.
    [35] NELMES R J, ALLAN D R, MCMAHON M I, et al. Self-Hosting Incommensurate Structure of Barium IV[J] Physical Review Letters, 1999, 83 (20): 4081.
    [36] MCMAHON M I, BOVORNRATANARAKS T, ALLAN D R, et al. Observation of the incommensurate barium-IV structure in strontium phase V[J] Physical Review B, 2000, 61 (5): 3135.
    [37] TUORINIEMI J, JUNTUNEN-NURMILAUKAS K, UUSVUORI J, et al. Superconductivity in lithium below 0.4 millikelvin at ambient pressure[J] Nature, 2007, 447 (7141): 187-189.
    [38] WITTIG J. Pressure-induced superconductivity in cesium and yttrium[J] Physical Review Letters, 1970, 24 (15): 812-815.
    [39] STRUZHKIN V V, EREMETS M I, GAN W, et al. Superconductivity in Dense Lithium[J] Science, 2002, 298 (5596): 1213-1215.
    [40] SHIMIZU K, ISHIKAWA H, TAKAO D, et al. Superconductivity in compressed lithium at 20 K[J] Nature, 2002, 419 (6907): 597-599.
    [41] OKADA S, SHIMIZU K, KOBAYASHI T, et al. Superconductivity of calcium under high pressures[J] Journal of the Physical Society of Japan, 1996, 65 (7): 1924-1926.
    [42] YABUUCHI T, MATSUOKA T, NAKAMOTO Y, et al. Superconductivity of Ca exceeding 25 K at megabar pressures[J] J. Phys. Soc. Japan, 2006, 75: 083703.
    [43] LAZICKI A, FEI Y, HEMLEY R J. High-pressure differential thermal analysis measurements of the melting curve of lithium[J] Solid State Communications, 2010, 150 (13-14): 625-627.
    [44] GREGORYANZ E, DEGTYAREVA O, SOMAYAZULU M, et al. Melting of Dense Sodium[J] Physical Review Letters, 2005, 94 (18): 185502.
    [45] BOEHLER R, ZHA C. Systematics in the melting behavior of the alkali metals from DAC measurements[J] Physica B+ C, 1986, 139: 233-236.
    [46] BOEHLER R, YOUNG D A. Melting and adiabats of the alkali metals at high compressions[J] Journal of Non-Crystalline Solids, 1984, 61-62 (Part 1): 141-146.
    [47] DASS N. Melting maximum in alkali metals[J] Physical Review B, 1995, 52 (5): 3023.
    [48] MATSUOKA T, SHIMIZU K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium[J] Nature, 2009, 458 (7235): 186-189.
    [49] FORTOV V, MOLODETS A, POSTNOV V, et al. Electrophysical properties of calcium at high pressures and temperatures[J] JETP letters, 2004, 79 (7): 346-351.
    [50] LIN T, DUNN K. High-pressure and low-temperature study of electrical resistance of lithium[J] Physical Review B, 1986, 33 (2): 807-811.
    [51] STAGER R, DRICKAMER H. Effect of temperature and pressure on the electrical resistance of four alkaline earth metals[J] Physical Review, 1963, 131 (6): 2524-2527.
    [52] NEATON J B, ASHCROFT N W. On the Constitution of Sodium at Higher Densities[J] Physical Review Letters, 2001, 86 (13): 2830.
    [53] FLEISCHER R, DIMIDUK D, LIPSITT H. Intermetallic compounds for strong high-temperature materials: status and potential[J] Annual Review of Materials Science, 1989, 19 (1): 231-263.
    [54] BUSCHOW K. Intermetallic compounds of rare-earth and 3d transition metals[J] Reports on Progress in Physics, 1977, 40: 1179.
    [55] STOLOFF N, LIU C, DEEVI S. Emerging applications of intermetallics[J] Intermetallics, 2000, 8 (9-11): 1313-1320.
    [56] DEEVI S, SIKKA V. Nickel and iron aluminides: an overview on properties, processing, and applications[J] Intermetallics, 1996, 4 (5): 357-375.
    [57] WINTER M, BESENHARD J. Electrochemical lithiation of tin and tin-based intermetallics and composites[J] Electrochimica Acta, 1999, 45 (1-2): 31-50.
    [58] SHEN G J, DUGGAN B J. Texture Development in a Cold-Rolled and Annealed Body-Centered-Cubic Mg-Li Alloy[J] Metallurgical and Materials Transactions A, 2007, 38 (10): 2593-2601.
    [59] COUNTS W A, FRI K M, RAABE D, et al. Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications[J] Acta Materialia, 2009,57 (1): 69-76.
    [60] TAYLOR R H, CURTAROLO S, HART G L W. Ordered magnesium-lithium alloys: First-principles predictions[J] Physical Review B, 2010, 81 (2): 024112.
    [61] ZHANG X, ZUNGER A. Altered Reactivity and the Emergence of Ionic Metal Ordered Structures in Li-Cs at High Pressures[J] Physical Review Letters, 2010, 104 (24): 245501.
    [62] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39[thinsp]K in magnesium diboride[J] Nature, 2001, 410 (6824): 63-64.
    [63] SANFILIPPO S, ELSINGER H, UACUTE, et al. Superconducting high pressure CaSi2 phase with Tc up to 14 K[J] Physical Review B, 2000, 61 (6): R3800.
    [64] IMAI M, ABE E, YE J, et al. Superconductivity of Ternary Silicide with the AlB2-Type Structure Sr(Ga0.37,Si0.63)2[J] Physical Review Letters, 2001, 87 (7): 077003.
    [65] IMAI M, NISHIDA K, KIMURA T, et al. Superconductivity of Ca(Al0.5,Si0.5)2, a ternary silicide with the AlB2-type structure[J] Applied Physics Letters, 2002, 80 (6): 1019-1021.
    [66] WELLER T E, ELLERBY M, SAXENA S S, et al. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca[J] Nat Phys, 2005, 1 (1): 39-41.
    [67] EMERY N, EACUTE, ROLD C, et al. Superconductivity of Bulk CaC6[J] Physical Review Letters, 2005, 95 (8): 087003.
    [68] FENG J, ASHCROFT N W, HOFFMANN R. Theoretical Indications of Singular Structural and Electronic Features of Laves-Phase CaLi2 Under Pressure[J] Physical Review Letters, 2007, 98 (24): 247002.
    [69] FENG J, HENNIG R G, ASHCROFT N W, et al. Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys[J] Nature, 2008, 451 (7177): 445-448.
    [70] MATSUOKA T, DEBESSAI M, HAMLIN J J, et al. Pressure-Induced Superconductivity in CaLi2[J] Physical Review Letters, 2008, 100 (19): 197003.
    [71] DEBESSAI M, MATSUOKA T, HAMLIN J J, et al. Superconductivity underhigh pressure in the binary compound CaLi2[J] Physical Review B, 2008, 78 (21): 214517.
    [72] ERREA I, MARTINEZ-CANALES M, BERGARA A. Ab initio study of superconducting hexagonal Be2Li under pressure[J] Physical Review B, 2008, 78 (17): 172501.
    [73] ASHCROFT N. Metallic hydrogen: A high-temperature superconductor?[J] Physical Review Letters, 1968, 21 (26): 1748-1749.
    [74] CUDAZZO P, PROFETA G, SANNA A, et al. Ab initio description of high-temperature superconductivity in dense molecular hydrogen[J] Physical Review Letters, 2008, 100 (25): 257001.
    [75] ZHANG L, NIU Y, LI Q, et al. Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure[J] Solid State Communications, 2007, 141 (11): 610-614.
    [76] NARAYANA C, LUO H, ORLOFF J, et al. Solid hydrogen at 342 GPa: no evidence for an alkali metal[J] Nature, 1998, 393 (6680): 46-49.
    [77] ASHCROFT N. Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?[J] Physical Review Letters, 2004, 92 (18): 187002.
    [78] EREMETS M, TROJAN I, MEDVEDEV S, et al. Superconductivity in hydrogen dominant materials: Silane[J] Science, 2008, 319 (5869): 1506.
    [79] CHEN X, WANG J, STRUZHKIN V, et al. Superconducting Behavior in Compressed Solid SiH4 with a Layered Structure[J] Physical Review Letters, 2008, 101 (7): 77002.
    [80] MARTINEZ-CANALES M, OGANOV A, MA Y, et al. Novel structures and superconductivity of silane under pressure[J] Physical Review Letters, 2009, 102 (8): 87005.
    [81] GAO G, OGANOV A, BERGARA A, et al. Superconducting high pressure phase of germane[J] Physical Review Letters, 2008, 101 (10): 107002.
    [82] GAO G, OGANOV A, LI P, et al. High-pressure crystal structures and superconductivity of Stannane (SnH4)[J] Proceedings of the National Academy ofSciences, 2010, 107 (4): 1317.
    [83] PICKARD C, NEEDS R. Highly compressed ammonia forms an ionic crystal[J] Nature materials, 2008, 7 (10): 775-779.
    [84] GONCHARENKO I, EREMETS M, HANFLAND M, et al. Pressure-induced hydrogen-dominant metallic state in aluminum hydride[J] Physical Review Letters, 2008, 100 (4): 45504.
    [85] KIM D, SCHEICHER R, AHUJA R. Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride YH3 at 40 K and 17.7 GPa[J] Physical Review Letters, 2009, 103 (7): 77002.
    [86] ZUREK E, HOFFMANN R, ASHCROFT N, et al. A little bit of lithium does a lot for hydrogen[J] Proceedings of the National Academy of Sciences, 2009, 106 (42): 17640.
    [87]谢希德,陆栋.固体能带理论[M]:复旦大学出版社, 1998: 27.
    [88] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J] Annalen der Physik, 1927, 389 (20): 457-484.
    [89]徐光宪,黎乐民,王德民.量子化学[M]:科学出版社, 2001.
    [90] KOHN W, BECKE A, PARR R. Density functional theory of electronic structure[J] J. phys. Chem, 1996, 100 (31): 12974-12980.
    [91] KOHN W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals[J] Reviews of Modern Physics, 1999, 71 (5): 1253-1266.
    [92] DREIZLER R, GROSS E. Density functional theory. An approach to the quantum many-body problem[M]: Berlin etc, 1990.
    [93] KOHN W, SHAM L. Self-consistent equations including exchange and correlation effects[J] Phys. Rev, 1965, 140 (4A): A1133-A1138.
    [94] PERDEW J, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J] Physical Review Letters, 1996, 77 (18): 3865-3868.
    [95] PERDEW J, WANG Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J] Physical Review B, 1992, 46 (20): 12947-12954.
    [96]黄昆,韩汝琦.固体物理学[M]:高等教育出版社, 1998.
    [97] BLOCH F.über die quantenmechanik der elektronen in kristallgittern[J] Zeitschrift für Physik A Hadrons and Nuclei, 1929, 52 (7): 555-600.
    [98] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J] Physical Review B, 1976, 13 (12): 5188.
    [99] PHILLIPS J. Covalent bond in crystals. I. Elements of a structural theory[J] Physical Review, 1968, 166 (3): 832-838.
    [100] PHILLIPS J, KLEINMAN L. New method for calculating wave functions in crystals and molecules[J] Physical Review, 1959, 116 (2): 287-294.
    [101] HELLMANN H, GEL AN G. Einführung in die Quantenchemie[M]: F. Deuticke Leipzig, 1937.
    [102] FEYNMAN R. Forces in molecules[J] Physical Review, 1939, 56 (4): 340-343.
    [103] BL CHL P. Projector augmented-wave method[J] Physical Review B, 1994, 50 (24): 17953-17979.
    [104] BORN M, HUANG K. Dynamical theory of crystal lattices[M]: Oxford University Press, USA, 1988.
    [105]张光寅,蓝国祥,王玉芳.晶格振动光谱学[M]:高等教育出版社, 2001.
    [106] PARLINSKI K, LI Z, KAWAZOE Y. First-Principles Determination of the Soft Mode in Cubic ZrO2[J] Physical Review Letters, 1997, 78 (21): 4063-4066.
    [107] FRANK W, ELS SSER C, F HNLE M. Ab initio force-constant method for phonon dispersions in alkali metals[J] Physical Review Letters, 1995, 74 (10): 1791-1794.
    [108] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory[J] Reviews of Modern Physics, 2001, 73 (2): 515-562.
    [109] MARTIN R. Electronic structure: basic theory and practical methods[M]: Cambridge Univ Pr, 2004.
    [110] GONZE X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm[J]Physical Review B, 1997, 55 (16): 10337-10354.
    [111] SINANOGLU O. Relation of perturbation theory to variation method[J] The Journal of Chemical Physics, 1961, 34: 1237.
    [112] GONZE X. Perturbation expansion of variational principles at arbitrary order[J] Physical Review A, 1995, 52 (2): 1086-1095.
    [113] BARDEEN J, COOPER L, SCHRIEFFER J. Microscopic theory of superconductivity[J] Physical Review, 1957, 106 (1): 162-164.
    [114] BARDEEN J, COOPER L, SCHRIEFFER J. Theory of superconductivity[J] Physical Review, 1957, 108 (5): 1175-1204.
    [115] ONNES H. On the sudden rate at which the resistance of mercury disappears[J] Akad. van Wetenschappen, 1911, 14 (113): 818.
    [116] FR HLICH H. Theory of the superconducting state. I. The ground state at the absolute zero of temperature[J] Physical Review, 1950, 79 (5): 845-856.
    [117] REYNOLDS C, SERIN B, WRIGHT W, et al. Superconductivity of isotopes of mercury[J] Physical Review, 1950, 78 (4): 487-487.
    [118] MAXWELL E. Superconductivity of Sn124[J] Physical Review, 1950, 79 (1): 173-173.
    [119] GRIMVALL G. The electron-phonon interaction in metals[M]: North-Holland Amsterdam, The Netherlands, 1981.
    [120] MIGDAL A. Interaction between electrons and the lattice vibrations in a normal metal[J] Zhur. Eksptl'. i Teoret. Fiz., 1958, 34.
    [121] GALITSKII V, MIGDAL A. ZhETF 34, 139 (1957)[J] Soviet Phys. JETP, 1958, 7: 96.
    [122] ELIASHBERG G. Interactions between electrons and lattice vibrations in a superconductor[J] Sov. Phys.-JETP (Engl. Transl.);(United States), 1960, 11 (3).
    [123] MCMILLAN W. Transition temperature of strong-coupled superconductors[J] Physical Review, 1968, 167 (2): 331-344.
    [124] ALLEN P, MITROVIC B. Theory of superconducting Tc[J] Solid State Physics, 1983, 37: 1-92.
    [125] ALLEN P, DYNES R. Transition temperature of strong-coupled superconductors reanalyzed[J] Physical Review B, 1975, 12 (3): 905-922.
    [126] HYBERTSEN M, LOUIE S. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies[J] Physical Review B, 1986, 34 (8): 5390-5413.
    [127] ARYASETIAWAN F, GUNNARSSON O. The GW method[J] Reports on Progress in Physics, 1998, 61: 237.
    [128] MAHAN G. Many-particle physics[M]: Plenum Pub Corp, 2000.
    [129] LUNDQVIST B. Single-particle spectrum of the degenerate electron gas[J] Zeitschrift für Physik B Condensed Matter, 1967, 6 (3): 193-205.
    [130] GODBY R, SCHL TER M, SHAM L. Self-energy operators and exchange-correlation potentials in semiconductors[J] Physical Review B, 1988, 37 (17): 10159-10175.
    [131] ROHLFING M, KR GER P, POLLMANN J. Role of semicore d electrons in quasiparticle band-structure calculations[J] Physical Review B, 1998, 57 (11): 6485-6492.
    [132] ARNAUD B, ALOUANI M. All-electron projector-augmented-wave GW approximation: Application to the electronic properties of semiconductors[J] Physical Review B, 2000, 62 (7): 4464-4476.
    [133] KIRKPATRICK S, GELATT C. MP Vecchi Optimization by simulated annealing[J] Science, 1983, 220 (4598): 671-680.
    [134] METROPOLIS N, ROSENBLUTH A, ROSENBLUTH M. aH Teller and E. Teller[J] J. Chem. Phys, 1953, 21 (1087): 188.
    [135] DAS A, CHAKRABARTI B. Quantum Annealing and Related Optimization Methods (Lecture Notes in Physics 679)[M] //. Berlin Heidelberg: Springer, 2005.
    [136] DE VICENTE J, LANCHARES J, HERMIDA R. Placement by thermodynamic simulated annealing[J] Physics Letters A, 2003, 317 (5-6): 415-423.
    [137] DEAVEN D, HO K. Molecular geometry optimization with a genetic algorithm[J] Physical Review Letters, 1995, 75 (2): 288-291.
    [138] GOLDBERG D. Genetic algorithms in search, optimization, and machine learning[M]: Addison-wesley, 1989.
    [139] WOODLEY S, BATTLE P, GALE J, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation[J] Physical Chemistry Chemical Physics, 1999, 1 (10): 2535-2542.
    [140] LYAKHOV A, OGANOV A, VALLE M. How to predict very large and complex crystal structures[J] Computer physics communications, 2010.
    [141] OGANOV A, MA Y, GLASS C, et al. Evolutionary crystal structure prediction: overview of the USPEX method and some of its applications[J] Psi-k Newsletter, 2007, 84: 142-171.
    [142] OGANOV A, MA Y, LYAKHOV A, et al. Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials[J] Reviews in Mineralogy and Geochemistry, 2010, 71 (1): 271.
    [143] GLASS C, OGANOV A, HANSEN N. USPEX--Evolutionary crystal structure prediction[J] Computer physics communications, 2006, 175 (11-12): 713-720.
    [144] VALLE M, OGANOV A. Crystal fingerprint space-a novel paradigm for studying crystal-structure sets[J] Acta Crystallographica Section A: Foundations of Crystallography, 2010, 66 (5): 507-517.
    [145] VALLE M, OGANOV A. Crystal structures classifier for an evolutionary algorithm structure predictor[C]: [IEEE].
    [146] NEATON J B, ASHCROFT N W. Pairing in dense lithium[J] Nature, 1999, 400 (6740): 141-144.
    [147] HANFLAND M, SYASSEN K, CHRISTENSEN N E, et al. New high-pressure phases of lithium[J] Nature, 2000, 408 (6809): 174-178.
    [148] OGANOV A, MA Y, XU Y, et al. Exotic behavior and crystal structures of calcium under pressure[J] Proceedings of the National Academy of Sciences, 2010, 107 (17): 7646.
    [149] FISCHER D, JANSEN M. Eine neue Modifikation der Laves-Phase CaLi2[J] Zeitschrift für anorganische und allgemeine Chemie, 2003, 629 (11): 1934-1936.
    [150] HELLNER E, LAVES F. Die Kristallstrukturen von SrMg 2, BaMg 2 und CaLi 2[J] Z. Kristallogr, 1943, 105: 134–143.
    [151] TSE J S, KLUG D D, S. DESGRENIERS, et al. Instability of CaLi2 at high pressure: Theoretical prediction and experimental results[J] EPL (Europhysics Letters), 2009, 85 (5): 56001.
    [152] VALLE M. STM3: a chemistry visualization platform[J] Zeitschrift für Kristallographie, 2005, 220 (5/6/2005): 585-588.
    [153] HUNDT D. Kplot[M/OL], http://www.crystalimpact.com/download/kplot.htm.
    [154] KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J] Physical Review B, 1996, 54 (16): 11169-11186.
    [155] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[J] Journal of Physics: Condensed Matter, 2009, 21: 395502.
    [156] WALTER E J. Opium[M/OL], http://opium.sourceforge.net/index.html.
    [157] IRIFUNE T, FUJINO K, OHTANI E. A new high-pressure form of MgAl2O4[J] Nature, 1991, 349 (6308): 409-411.
    [158] KLEPP K, PARTHE E. RPtSi phases (R = La, Ce, Pr, Nd, Sm and Gd) with an ordered ThSi2 derivative structure[J] Acta Crystallographica Section B, 1982, 38 (4): 1105-1108.
    [159] KASINATHAN D, KUNE? J, LAZICKI A, et al. Superconductivity and lattice instability in compressed lithium from Fermi surface hot spots[J] Physical Review Letters, 2006, 96 (4): 47004.
    [160] PROFETA G, FRANCHINI C, LATHIOTAKIS N N, et al. Superconductivity in Lithium, Potassium, and Aluminum under Extreme Pressure: A First-Principles Study[J] Physical Review Letters, 2006, 96 (4): 047003.
    [161] YAO Y, TSE J S, TANAKA K, et al. Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory[J] Physical Review B, 2009, 79 (5): 054524.
    [162] WIGNER E, HUNTINGTON H. On the possibility of a metallic modification of hydrogen[J] The Journal of Chemical Physics, 1935, 3: 764.
    [163] ALFE D. PHON[M/OL], http://www.homepages.ucl.ac.uk/~ucfbdxa/phon/.
    [164] GONZE X, AMADON B, ANGLADE P, et al. ABINIT: First-principles approach to material and nanosystem properties[J] Computer physics communications, 2009, 180 (12): 2582-2615.
    [165] GONZE X, RIGNANESE G, VERSTRAETE M, et al. A brief introduction to the ABINIT software package[J] Z. Kristallogr, 2005, 220: 558.