水稻重要穗部性状QTLs的定位和克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻理想株型是高产形成的基础。继水稻矮化育种和杂种优势利用获得成功以来,直立穗、半直立穗粳稻的培育和大面积应用,被认为是我国水稻育种史上的第三个里程碑。直立穗品种表现出耐肥抗倒,较好的群体通风透光条件,较高的光合效率和增产潜力,因此,探明直立穗形成的分子机理,不仅能使我们更多地了解水稻穗部发育机制,而且便于我们通过分子设计改良株型。
     水稻粒型与产量密切相关,同时也决定稻米的品质。因此,水稻粒型的遗传和分子基础研究对水稻品种的改良至关重要。
     本研究通过选育直立穗基因qPE9-1与粒型基因qGS7-1的近等基因系,利用分子标记进行相关基因的精细定位和克隆研究,主要研究结果如下:
     一、水稻直立穗基因qPE9-1的图位克隆
     1、通过杂交回交和分子标记辅助选择,分别构建了qPE9-1位点在三个背景下(R6547、武育粳3和武运粳8)的近等基因系,系统分析该位点对穗型、株型和产量的影响。来源于弯曲穗品种的等位基因对穗弯曲度、穗长、粒长、千粒重、叶片长度和单株产量的增加有显著的正效应,表现出多效性,来源于直立穗品种的等位基因有显著的负效应;qPE9-1对主穗粒数、结实率、一次枝梗数和二次枝梗数没有影响;
     2、利用以R6547为背景的BC3F2分离群体对穗弯曲度、穗长、粒长和千粒重进行遗传分析。结果表明,穗弯曲度、穗长、粒长和千粒重受一个不完全显性基因控制;
     3、将qPE9-1基因精细定位在PAC克隆AP005419上的分子标记S919和S927之间约32-Kb的物理距离内。根据TIGR网站水稻基因注释系统,在此区间内共有三个注释的开放阅读框,分别为Os09g26999,Os09g27010和Os09g27020,由于对粒长有明显的遗传效应,把Os09g26999确定为qPE9-1的候选基因。通过互补试验、RNAi和过量表达试验证明了Os09g26999就是qPE9-1基因,而且来源于R6547和日本晴的等位基因qpE9-1是功能基因,来源于武运粳8的功能缺失基因qpe9-1导致了直立穗表型;
     4、来源于R6547的qPE9-1基因包含5个外显子和4个内含子,编码一个426氨基酸的蛋白质,该蛋白包含3个Von Willebrand Factor Type C (VWFC)结构域,1个跨膜结构域,1个4-disulfide-core结构域。与R6547的等位基因进行比较,发现武运粳8的等位基因存在17处变异,包括13个单核苷酸变异(SNPs)和4个插入缺失变异(InDels),分别命名为SNP1-SNP13和InDe11-InDe14。但SNP1-SNP12和InDe11-InDe13均位于内含子内,没有造成二者在氨基酸水平上的差异。SNP13和InDe14位于第5个外显子内,并且都造成氨基酸变异。SNP13导致了一个氨基酸的替换,InDe14使武运粳8在第5外显子缺失了637个核苷酸,并有12个核苷酸的插入,在突变位点后形成一个蛋白质翻译终止密码子,造成武运粳8的等位基因编码的蛋白缺失了C端231个氨基酸。通过序列分析和转基因试验证明InDel4造成了直立穗表型;
     5、qPE9-1基因在茎和茎节中表达最高,在根中表达最弱,在叶和穗中也能检测到表达;在近等基因系的相同组织中表达量没有差异,基因组水平的变异没有对表达水平造成影响。将qPE9-1-GFP融合蛋白在水稻原生质体中瞬时表达显示,qPE9-1蛋白是一个膜蛋白。
     二、水稻粒型主效QTL qGS7-1的鉴定和精细定位
     1、从132个以日本晴为供体和广陆矮4为受体构建的染色体片段代换系中鉴定了一个粒型与轮回亲本有很大差异的株系C1044。该株系表现为粒型细长,而且两年两地的粒长数据非常一致,受环境影响很小,性状表达稳定。另外,C1044和轮回亲本广陆矮4相比,在株高、主穗长和主穗粒数有显著差异,但单株穗数、结实率和抽穗期没有显著差异;
     2、将C1044和广陆矮4杂交自交,构建一个衍生的F2群体,利用该分离群体对粒型性状进行了遗传分析。结果表明,粒长、粒宽和长宽比表现为单个孟德尔因子的遗传模式,F3株系分析也支持这一结论。QTL分析表明,qGS7-1对粒长、粒宽、长宽比和粒厚的贡献率分别为40.80%、53.1%、60.2%和8.1%,均以加性效应为主,来源于日本晴的等位基因有使粒长和长宽比增大,使粒宽和粒厚减小的效应。这说明qGS7-1是一个对水稻粒长、粒宽和长宽比影响较大,而对粒厚和千粒重影响较小的QTL
     3、此外,粒长、长宽比和粒宽、粒厚之间分别存在极显著负相关,但粒长和长宽比呈极显著正相关,粒宽和粒厚呈极显著正相关。这说明籽粒越长,宽度越窄,长宽比越大,厚度越小;籽粒越短,宽度越宽,长宽比越小,厚度越大。这可能也是对籽粒千粒重影响较小的原因。
     4、利用C1044/广陆矮4衍生F2/F3分离群体中表现极端短粒的隐性个体,将qGS7-1精细定位在AP005198上标记S7-45和S7-115之间大约87.6-kb的物理距离内,与标记S7-179共分离。
The ideotype is the foundation for rice high-yielding. The development and cultivation of varieties with erect or semierect panicles is considered as the third landmark after dwarfing breeding and hybrid rice in the history of Chinese rice breeding. PE (Panicle erectness) varieties show increased lodging and fertilizer resistance, benefit ventilation and light penetration of population, higher photosynthetic rates and grain yield. Therefore, the nature of panicle erect not only makes us deeply understand the mechanisms of panicle development, but also facilitate the plant architecture improvement by molecular design breeding.
     Grain shape is closely connected with rice yield and directly determines rice quality. The genetics and molecular basis is essential for the improvement of rice varieties.
     In this study, the genetic effects of panicle erectness gene (qPE9-1) and grain shape gene (qGS7-1) were analyzed with near-isogenic lines. Map-based cloning of qPE9-1 and fine mapping of qGS7-1 was conducted. The main results are as follows:
     Part 1:Map-based cloning of qPE9-1 for rice panicle erectness.
     1. Three pairs of near-isogenic lines (NILs) with different backgrounds (R6547, Wuyujing 3 and Wuyunjing 8) were constructed by cross, backcross and MAS. An array of panicle architecture, plant architecture and yield traits were systematically analyzed using the NILs. The allele from panicle drooping variety had positive effects on panicle curvature, panicle length, grain length, length of leaf,1,000-grain weight and grain yield per plant, but had no effect on the number of spikelets on the main panicle, number of primary branch and secondary branch. The allele from PE varieties had negative effects.
     2. The bimodal distributions of the panicle curvature, panicle length, and grain length and 1,000-grain weight in the BC3F2 population with R6547 background suggested that these traits were likely controlled by a semi-dominant QTL.
     3. Fine mapping allowed us to delimit qPE9-1 within a~32-kb window defined by the markers S919 and S927 on PAC AP005419. Three genes, Os09g26999, Os09g27010 and Os09g27020, located in this region according to the TIGR Rice genome Annotation Database. And Os09g26999 was considered as the strongest candidate gene for qPE9-1 because of its large genetic effect on grain length. The hypothesis that Os09g26999 equaled to qPE9-1 was further confirmed by complementary test, RNAi and overexpression experiments. The allele from R6547 (qPE9-1) is functional, and the loss-of-function allele in Wuyunjing 8 (qpe9-1) resulted in the PE trait.
     4. The qPE9-1 allele from R6547 contains five exons and four introns and encodes a protein of 426 amino acid residues. The qPE9-1 protein contains three Von Willebrand Factor Type C (VWFC) domains, a transmembrane domain and a one 4-disulfide-core domain (http://www.ebi.ac.uk/InterProScan/). Thirteen single nucleotide polymorphisms (SNP1-SNP13) and four insertion-deletion polymorphisms (InDel1-InDe14) were found on qPE9-1 locus between R6547 and Wuyunjing 8. Except for SNP13 and InDe14, all the sequence polymorphisms were found in non-coding regions. SNP13 results in a Cystine to Tyrosine substitution at the site 105 (C105Y). The Wuyunjing 8 allele, due to its InDe14 (637-bp deletion and 12-bp insertion) in exon 5, encodes a presumably truncated protein that lacks 231 C-terminal residues. The recessive allele at qPE9-1 locus is a loss-of-function mutation that leads to the PE trait.
     5. GUS activity was detected mainly in elongating and dividing tissues, including the shoot apical meristem, the divisional and elongating zones of stem and knot. Real-time PCR analysis was consistent with GUS staining and suggested that the genomic sequence changes did not affect expression level.
     Part 2:Identification and fine mapping of a major quantitative trait loci, qGS7-1, controlling grain shape in rice.
     1. C1044 is a chromosome segment substitution line derived from 132 introgression lines by introgressing chromosomal segments from a japonica doner cultivar, Nipponbare, into an indica recurrent cultivar, Guangluai 4. This line displayed obviously large grain length than Guangluai 4 based on phenotypic examination at two sites in two years. There were significant differences in plant height, main panicle length and grains per main panicle, while no significant difference in number of panicles per plant, seed set rate and days to heading between them.
     2. An F2 population was generated for genetic analysis by selfing the F1 plants of C1044 and Guangluai 4. Grain length, grain width and grain length-width ratio simultaneously showed as a single locus Mendelian segregation. F3 family analysis also supported this conclusion. QTL analysis indicated that qGS7-1 had effects on grain length, grain width, grain length-width ratio and grain thickness, and contributed 40.8%, 53.1%,60.2% and 8.1%of the phenotypic variation to these traits, respectively. The Nipponbare allele increases grain length and length-width ratio, but decreases grain width and grain thickness. Thus, QTL qGS7-1 was a major QTL for grain length, width and length-width ratio but a minor QTL for grain thickness and weight.
     3. In addition, grain length and length-width ratio showed significantly negative correlation with grain width and thickness, respectively. But grain length-width ratio showed positive correlation with grain length. Grain width and grain thickness was also highly significant positive correlation. Long grains were more narrow and thinner than short grains, or vice visa. That is reason why the grain weight did not change with grain shape.
     4. Using excessive plants with extreme short grains in F2/F3 populations, the qGS7-1 was finally delimited to a 87.6-Kb genomic DNA region between S7-45 and S7-115 and co-segregated with S7-179.
引文
[1]袁隆平.杂交水稻学[M].2002.北京:中国农业出版社.
    [2]徐正进,陈温福,张文忠.水稻的产量潜力与株型演变[J].沈阳农业大学学报,2000,31(6):534-536
    [3]陈温福,徐正进,张龙步.水稻超高产育种-从理论到实践[J].沈阳农业大学学报,2003,34(5):324-327
    [4]Tsunoda S A. Developmental analysis of yielding ability in varieties of field crops[J]. Japan Journal of Breeding,,1959,9(2-3):161-168
    [5]Donald C M. The breeding of crop ideotypes[J]. Euphyica,1968,17385-403
    [6]松岛省三.水稻栽培新技术[M].1973.长春:吉林人民出版社.
    [7]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:Rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis [J]. DNA Research,2002,9(1):11-17
    [8]Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, et al.'Green revolution'genes encode mutant gibberellin response modulators[J]. Nature,1999,400(6741):256-261
    [9]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution:a mutant gibberellin-synthesis gene in rice[J]. Nature,2002,416(6882):701-702
    [10]Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proc Natl Acad Sci USA,2002,99(13):9043-9048
    [11]黄耀祥.半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程[J].广东农业科学,2001,32-6
    [12]杨守仁,张龙步,王进民.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,36-12
    [13]周开达,汪旭东,李仕贵.亚种间重穗型杂交稻研究[J].中国农业科学,1997,30(5):91-93
    [14]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6
    [15]Chen W F, Xu Z J, Zhang L B. Creation of new plant type and breeding rice for super high yield[J]. Acta Agronomica Sinica,2001,27(5):665-672
    [16]陈温福,徐正进,张龙步.水稻超高产育种研究进展与前景[J].中国工程科学,2002,4(1):31-35
    [17]殷宏章.稻麦群体研究论文集[M].1961.上海:上海科学技术出版社.
    [18]杨守仁.籼粳稻杂交育种的进展与前景[J].中国农业科学,1986,19(5):15-18
    [19]徐正进,张龙步,陈温福.不同穗型水稻抽穗后物质生产特性比较[J].辽宁农业科学,1988,438-40
    [20]徐正进,陈温福,张龙步,杨守仁.水稻不同穗型群体冠层光分布的比较研究[J].中国农业科学,1990,4(1):10-16
    [21]徐正进,陈温福,周洪飞,张龙步,杨守仁.直立穗型水稻群体生理生态特性及其利用前景[J].科学通报,1996,41(12):1122-1126
    [22]张文忠.水稻直立穗型遗传及生理生态特性的研究.2001.沈阳,沈阳农业大学
    [23]冯永祥,徐正进,谢立勇.水稻穗型对群体光环境及生产影响的模拟研究[J].辽宁农业科学,2003,29-11
    [24]高士杰,张龙步,陈温福.直立穗型水稻群体小气候环境研究[J].中国农业气象,2000,21(3):23-26
    [25]王嘉宇,徐正进,张世春.水稻直立穗型研究进展与应用前景[J].种子,2005,24(8):58-61
    [26]李雪梅,樊金娟,徐正进.不同穗型水稻品种灌浆期生理特性的差异[J].沈阳农业大学学报,2003,34(5):347-350
    [27]张三元,李彻,张俊国.吉林省水稻超高产育种研究[J].吉林农业科学,2001,26(6):3-10
    [28]刘宛,徐正进,陈温福.氮素水平对不同穗型水稻品种植株衰老和产量的影响[J].沈阳农业大学学报,2001,21(4):243-246
    [29]金雪花.水稻直立穗性状与其它形态性状关系的研究.2001.沈阳,沈阳农业大学
    [30]邓文,青先国,马国辉,艾治勇.水稻抗倒伏研究进展[J].杂交水稻,2006,21(6):6-10
    [31]Ookawa T, Ishihara K. Varietal difference of physical characteristic of the culm related to lodging resistance inpaddy rice[J]. Crop Science,1992,61(3):419-425
    [32]Yoshida S. Physiological aspect of grain yield[J]. Ann Rev Plant Physiology,1972,23437-464
    [33]孙旭初.水稻茎秆抗倒性的研究[J].中国农业科学,1987,20(4):32-37
    [34]杨惠杰,杨仁崔,李义珍.水稻茎秆性状与抗倒性的关系[J].福建农业学报,2000,15(2):1-7
    [35]大川泰一郎,石原邦.影响水稻抗倒伏性的茎杆物理性状的品种间差异[J].日本作物学会纪事,1993,3
    [36]张忠旭.水稻抗倒伏能力与茎杆物理性状的关系及其对产量的影响.沈阳农业大学.1997.沈阳
    [37]都兴林,方秀琴,刘忱,姜亚伦.水稻直立穗型与抗倒伏性关系的理论分析与模拟测定[J].吉林农业科学,2004 29(2):3-4
    [38]徐正进,张树林,周淑清,刘丽霞.水稻穗型与抗倒伏性关系的初步分析[J].植物生理学通讯,2004,40(5):561-563
    [39]张文忠,徐正进,张龙步,陈温福,孙国才,吴淑琴.水稻直立穗型遗传特性及其综合评价利用[J].辽宁农业科学,2002,524-27
    [40]徐正进,陈温福,张龙步.水稻直立穗性状的遗传与其它性状的关系[J].沈阳农业大学学报,1995,26(1):1-7
    [41]徐正进,陈温福,张龙步,杨守仁.水稻直立穗性状评价与利用研究进展[J].沈阳农业大学学报,1995,12(26):335-341
    [42]贾宝艳,蒋文春,王术,赵新华,王伯伦.粳稻品质与穗部性状关系的研究[J].沈阳农业大学学报,2004,35(4):340-345
    [43]徐正进,陈温福,张龙步.水稻直立穗型的初步观察[J].沈阳农业大学学报,1989,20(2):150-153
    [44]徐正进,陈温福,张龙步.水稻品质性状的品种间差异及产量关系[J].沈阳农业大学学报,1993,23(3):217-223
    [45]徐正进,陈温福,张龙步.水稻直立穗型的初步观察[J].沈阳农业大学学报,1989,20(2):150-153
    [46]周维永,白德朗,杨新庆,李小勇,刘宇锋,陈英之,韦鹏霄,岑秀芬,冯斗,李容柏.水稻直立穗型的遗传及其对籼稻农艺性状的影响[J].广西农业科学,2006,37(5):490-403
    [47]陈英之,韦绍丽,刘驰,周维永,马增凤,陈乔,杨新庆,杨朗,白德朗,黄大辉,刘亚利,李容柏.稻直立穗型性状分子标记开发及籼稻直立穗型育种探讨[J].西南农业学报,2008,21(1):6-11
    [48]Masayuki M, Masashi I. Effects of major genes controlling morphology of panicle in rice[J]. Breeding science 1994,44247-255
    [49]西北农学院.作物育种学[M].1981.北京:农业出版社.
    [50]谈松,曹炳晨.水稻高产生理与遗传育种[M].沈阳:新农业杂志社.
    [51]Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. LAX and SPA:major regulators of shoot branching in rice[J]. Proc Natl Acad Sci USA,2003, 100(20):11765-11770
    [52]Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J]. Plant J,2009,
    [53]朱立宏,顾铭洪.水稻落粒性的遗传[J].遗传,1979,1(4):17-19
    [54]金雪花,王嘉宇,徐正进,张文忠,陈温福,张龙步.水稻直立穗型基因多效性的研究[J].沈阳农业大学学报,2003,34(5):332-335
    [55]王伯伦,董玉慧,王术.水稻半矮生与穗直立性状遗传规律研究[J].沈阳农业大学学报,1997,28(2):83-87
    [56]刘金波,洪德林.粳稻穗角和每穗颖花数的遗传分析[J].中国水稻科学,2005,19(3):223-230
    [57]陈献功,刘金波,洪德林.粳稻直立穗与弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析[J].作物学报,2006,32(8):1143-1150
    [58]张文忠,徐正进,张龙步,陈温福,邱福林,邵国军,华泽田.直立穗型水稻品种演进状况分析[J].沈阳农业大学学报,2002,33(3):161-166
    [59]Kong F N, Wang J Y, Zou J C, Shi L X, Jin D M, Xu Z J, Wang B. Molecular tagging and mapping of the erect panicle gene in rice[J]. Molecular Breeding,2007,19(4):297-304
    [60]Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.)[J].TheorAppl Genet,2007,115(8):1093-1100
    [61]罗玉坤,朱智伟,能陈,段彬伍,章林平.中国主要稻米的粒型及其品质特性[J].中国水稻科学,2004,18(2):135-139
    [62]Juliano B O, Villareal C P. Grain quality evaluation of world rices.1993. Manila, Philippines
    [63]Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice[J]. Curr Opin Plant Biol,2008,11(2):209-214
    [64]芮重庆,赵安常.籼稻粒重及粒形性状F1遗传特性双列分析[J].中国农业科学,1983,514-20
    [65]Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112(6):1164-1171
    [66]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008, 40(8):1023-1028
    [67]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet,2007,39(5):623-630
    [68]Takite T. Breeding for grain shape in rice[J]. Agricultural science,1989,44(6):39-42
    [69]李欣,莫惠栋,王安民,徐辰武,朱毅华,于恒秀.粳稻杂交稻米几个品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    [70]李成荃,孙明,许克农,程融.杂交粳稻品质性状的遗传研究Ⅰ:碾米品质与籽粒外观性状的相关和通径分析[J].杂交水稻,1988,332-35
    [71]泷田正.水稻籽粒大小的遗传及其与诸性状的关系[J].国外农学,1987,118-20
    [72]泷田正.水稻粒形特性及育种[J].农业技术,1990,44(6):39-42
    [73]鲍根良,王俊敏,富田桂.密穗型水稻品种籽粒垩白性状改良研究[J].植物遗传资源学报,2004,5(4):378-381
    [74]张坚勇,肖应辉,万向元.水稻品种外观性状稳定性分析[J]..作物学报,2004,6548-554
    [75]徐正进,陈温福,马殿荣.稻谷粒形与稻米主要品质的关系[J].作物学报,2004,30(9):894-900
    [76]杨建华,杨春华,李仕贵.杂交水稻品质性状与农艺性状的相关性分析[J].西南师范大学学报(自然科学版),2007,32(5):91-94
    [77]石春海,朱军.水稻植株农艺性状与稻米碾磨品质的遗传相关性分析[J].浙江农业大学学报,1997,23(3):331-337
    [78]杨联松,白一松,陈多璞.粳稻谷粒性状间相关性研究[J].安徽农业科学,2002,30(3):321-323
    [79]钟旭华,李太贵.不同结实温度下稻米直链淀粉含量与千粒重的相关性研究[J].中国水稻科学,1994,8(2):126-128
    [80]陈能,罗玉坤,朱智伟.优质食用稻米的理化指标与食味的相关性研究[J].中国水稻学,1997,11(2):70-76
    [81]李欣,莫惠栋,王安民,徐辰武,朱育华,于恒秀.粳型杂交稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    [82]李欣,汤述翥,印志同,朱毅华,王安民,莫惠栋.粳型杂交稻米品质性状的表现及遗传控制[J].作物学报,2000,26(4):411-419
    [83]徐辰武,张爱红,宋庆森.籼粳杂交稻米品质性状的遗传分析[J].作物学报,1996,22(5):530-534
    [84]莫惠栋.我国稻米品质的改良[J].中国农业科学,1993,26(4):8-14
    [85]陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型环境互作效应研究[J].中国农业科学,1998,31(4):1-7
    [86]Mckenzie K S, Rutger J N. Genetic-analysis of amylose content, alkali spreading score, and grain dimensions in rice[J]. Crop Science,1983,23(2):306-313
    [87]武田和义,斋藤健一.控制水稻籽粒大小的主效基因[J].育种学杂志,1980,30(3):280-282
    [88]石春海,申宗坦.早籼稻谷粒性状遗传效应分析[J].浙江农业大学学报,1994,20(4):405-410
    [89]林鸿宣,闵绍楷,熊振民.应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J].中国农业科学,1995,28(4):1-7
    [90]Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theoretical and Applied Genetics,1998,96(6-7):957-963
    [91]Tan Y F, Xing Y Z, Li J X, Yu S B, Xu C G, Zhang Q F. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid[J]. Theor Appl Genet,2000,101(5-6):823-829
    [92]万向元,刘世家,王春明,江玲,翟虎渠,吉村醇,万建民.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,33(11):1275-1283
    [93]林荔辉,吴为人.水稻粒形和粒重的QTL定位分析[J].分子植物育种,2003,1(3):337-342
    [94]李泽福,万建民,夏加发,翟虎渠.Mapping quantitative trait loci underlying appearance quality of rice grains(Oryza sativa L.)[J].遗传学报2003,30(3):251-259
    [95]严长杰,梁国华,陈峰,李欣,汤述翥,裔传灯,田舜,陆驹飞,顾铭洪.利用籼粳回交群体分析水稻粒形性状相关QTLs[J].遗传学报,2003,30(8):711-716
    [96]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers [J]. Euphytica,2004,137(3): 325-332
    [97]Li J, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3[J]. Genetics,2004,168(4):2187-2195
    [98]Li J M, Xiao J H, Grandillo S, Jiang L Y, Wan Y Z, Deng Q Y, Yuan L P, McCouch S R. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O-sativa L.) and African (O-glaberrima S.) rice[J]. Genome,2004,47(4): 697-704
    [99]张光恒,张国平,钱前,徐律平,曾大力,滕胜,包劲松.不同环境条件下稻谷粒形数量性状的QTL分析[J].中国水稻科学,2004,18(1):16-22
    [100]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects [J]. Theor Appl Genet,2006,112(7):1258-1270
    [101]谭耀鹏,李兰芝,李平.利用DH群体定位水稻谷粒外观性状的QTL[J].分子植物育种,2005,3(3):314-322
    [102]曾瑞珍,TALUKDAR A,刘芳,张桂权.利用单片段代换系定位水稻粒形QTL[J].中国农业科学,2006,39(4):647-654
    [103]余守武,樊叶杨,杨长登,李西明.水稻第1染色体短臂粒长和粒宽QTL的精细定位[J].中国水稻科学,2008,22(5):465-471
    [104]赵明富,黄招德,吴春珠,车容会,施碧红,方珊如,孙永建,赵志民.水稻谷粒粒长显性主效QTL的遗传分析与定位[J].分子植物育种,2008,6(6):1057-1060
    [105]符福鸿,王丰,黄文剑.杂交水稻谷粒性状的遗传分析[J].作物学报,1994,20(1):39-44
    [106]徐建龙,薛庆中,罗利军,黎志康.水稻粒重及其相关性状的遗传解析[J].中国水稻科学,2002,16(1):6-10
    [107]Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112(6):1164-1171
    [108]Fan C, Yu S, Wang C, Xing Y. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker[J]. Theor Appl Genet, 2009,118(3):465-472
    [109]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630
    [110]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet,2008,40(8): 1023-1028
    [111]Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding[J]. Trends Plant Sci,2006,11(7):344-350
    [112]Mccouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes [J]. Theor Appl Genet,1988,76(6):815-829
    [113]Osborn T C, Alexander D C, Fobes J F. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit[J]. Theor Appl Genet,1987,73350-356
    [114]Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population[J]. Genetics,1998,148(1):479-494
    [115]Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuda A, et al. A 300 kilobase interval genetic-map of rice including 883 expressed sequences[J]. Nature Genetics,1994,8(4):365-372
    [116]Hackett C A. Statistical methods for QTL mapping in cereals[J]. Plant Molecular Biology,2002, 48(5):585-599
    [117]Ammiraju J S, Luo M, Goicoechea J L, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros N B, Blackmon B, Fang E, Tomkins J B, et al. The Oryza bacterial artificial chromosome library resource:construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza[J].Genome Res,2006,16(1):140-147
    [118]Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice[J]. Science,2003,301(5631):376-379
    [119]Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000, 408(6814):796-815
    [120]Goff S A. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) (April, pg 92, 2002)[J]. Science,2005,309(5736):879-879
    [121]Goff S A, Ricke D, Lan T H, Presting G, Wang R L, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica)[J]. Science,2002,296(5565):92-100
    [122]Yu J, Hu S N, Wang J, Wong G K S, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X Q, Cao M L, Liu J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica)[J]. Science,2002, 296(5565):79-92
    [123]Yamamoto T, Yonemaru J, Yano M. Towards the Understanding of Complex Traits in Rice: Substantially or Superficially? DNA Res,2009, online
    [124]Arondel V, Lemieux B, Hwang I, Gibson S, Goodman H M, Somerville C R. Map-based cloning of a gene controlling omega-3-fatty-acid desaturation in Arabidopsis[J]. Science,1992, 258(5086):1353-1355
    [125]Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis Abi3 Gene by Positional Cloning[J]. Plant Cell,1992,4(10):1251-1261
    [126]Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell,2003,15(12): 2900-2910
    [127]Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.)[J]. Plant J,2004, 37(3):315-325
    [128]Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, et al. Control of tillering in rice[J]. Nature,2003,422(6932):618-621
    [129]Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants[J]. Plant Cell,2003,15(9):2020-2031
    [130]Sano H, Youssefian S. A novel ras-related rgpl gene encoding a GTP-binding protein has reduced expression in 5-azacytidine-induced dwarf rice[J]. Mol Gen Genet,1991,228(1-2): 227-232
    [131]Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1[J]. Development,2004,131(22):5649-5657
    [132]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature,2005,437(7059):693-698
    [133]Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J]. Plant Cell,2004,16(2):500-509
    [134]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proc Natl Acad Sci U S A,2002,99(11):7530-7535
    [135]Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice[J]. Plant Physiol,2006,140(3):972-983
    [136]Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander L N, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J]. Plant Cell, 2006,18(2):442-456
    [137]Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes[J]. Trends Genet,1995,11(2):63-68
    [138]Bennetzen J L, Ma J. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis[J]. Curr Opin Plant Biol,2003,6(2):128-133
    [139]Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development:from zygote to spikelet[J]. Plant Cell Physiol,2005,46(1):23-47
    [140]Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era[J]. Plant Physiol,2002,129(2):440-450
    [141]Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges[J]. Trends Plant Sci,2005,10(6):297-304
    [142]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell,2000, 12(12):2473-2484
    [143]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci USA,2001,98(14):7922-7927
    [144]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions [J]. Plant Cell Physiol,2002,43(10):1096-1105
    [145]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl[J]. Genes Dev,2004,18(8):926-936
    [146]Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science,2005, 309(5735):741-745
    [147]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nat Genet,2005, 37(10):1141-1146
    [148]Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C. TAC1, a major quantitative trait locus controlling tiller angle in rice[J]. Plant J,2007,52(5):891-898
    [149]Ueda T, Sato T, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase[J]. Genetics,2005,171(4):1941-1950
    [150]Sweeney M T, Thomson M J, Pfeil B E, McCouch S. Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell,2006,18(2):283-294
    [151]Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication[J]. Science,2006,312(5778):1392-1396
    [152]Li C, Zhou A, Sang T. Rice domestication by reducing shattering[J]. Science,2006,311(5769): 1936-1939
    [153]Nishimura A, Ashikari M, Lin S, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems[J]. Proc Natl Acad Sci U S A,2005,102(33):11940-11944
    [154]He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice[J]. Genome Res,2006,16(5):618-626
    [155]Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature,2006,442(7103):705-708
    [156]Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication[J]. Nat Genet,2008,40(11):1365-1369
    [157]Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nat Genet,2008,40(11): 1360-1364
    [158]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nat Genet,2008,40(6):761-767
    [159]Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice[J]. Proc Natl Acad Sci U S A,2008,105(32): 11436-11441
    [160]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1[J]. Proc Natl Acad Sci U S A,2003,100(10):6263-6268
    [161]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization[J]. Science,2004,303(5664):1640-1644
    [162]Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene[J]. Proc Natl Acad Sci U S A, 2000,97(9):4718-4723
    [163]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size[J]. Science,2000,289(5476):85-88
    [164]Liu J, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proc Natl Acad Sci U S A,2002,99(20):13302-13306
    [165]Doebley J, Stec A, Gustus C. teosinte branched1 and the origin of maize:evidence for epistasis and the evolution of dominance[J]. Genetics,1995,141(1):333-346
    [166]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S t. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nat Genet,2001,28(3):286-289
    [167]El-Din El-Assal S, Alonso-Blanco C, Peeters A J, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2[J]. Nat Genet,2001,29(4):435-440
    [168]Werner J D, Borevitz J O, Warthmann N, Trainer G T, Ecker J R, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation[J]. Proc Natl Acad Sci U S A,2005,102(7): 2460-2465
    [169]Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Ardbidopsis insect resistance quantitative trait locus[J]. Proc Natl Acad Sci U S A,2003,100 Suppl 214587-14592
    [170]Mouchel C F, Briggs G C, Hardtke C S. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root[J]. Genes Dev, 2004,18(6):700-714
    [171]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335(6192):721-726
    [172]葛莘.高级植物分子生物学[M].2004.北京:科学出版社.
    [173]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato [J]. Proc Natl Acad Sci U S A,1996,93(26):15503-15507
    [174]Yoshida S, Parao F T. Proceedings of theSymposium on Climate & Rice.1976. International Rice Research Institute. Los Banos, The Philippines
    [175]Yano M, Harushima Y, Nagamura N, Kurata Y, Minobe T, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map[J]. Theor. Appl. Genet, 1997,951025-1032
    [176]Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant[J]. Plant Physiol,2001,127(4):1425-1429
    [177]Nagata K, Fukuta Y, Shimizu H, Yagi T, Terao T. Quantitative trait loci for sink size and ripening traits in rice (Oryza sativa L.)[J]. Breeding Science,2002,52(4):259-273
    [178]Ando T, Yamamoto T, Shimizu T, Ma X F, Shomura A, Takeuchi Y, Lin S Y, Yano M. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice[J]. Theor Appl Genet,2008,116(6):881-890
    [179]Allard R W. Genetic basis of the evolution of adaptedness in plants[J]. Euphytica,1996,92(1-2): 1-11
    [180]Rieseberg L H, Sinervo B, Linder C R, Ungerer M C, Arias D M. Role of gene interactions in hybrid speciation:Evidence from ancient and experimental hybrids[J]. Science,1996,272(5262): 741-745
    [181]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2574-2579
    [182]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield[J]. Genetics,2001,158(4): 1737-1753
    [183]Malmberg R L, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse[J]. Genetics,2005,171(4): 2013-2027
    [184]Rand D M, Fry A, Sheldahl L. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds[J]. Genetics,2006,172(1):329-341
    [185]Zeyl C, Andreson B, Weninck E. Nuclear-mitochondrial epistasis for fitness in Saccharomyces cerevisiae[J]. Evolution,2005,59(4):910-914
    [186]Garcia A A, Wang S, Melchinger A E, Zeng Z B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice[J]. Genetics,2008,180(3):1707-1724
    [187]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics,2002, 162(4):1885-1895
    [188]Li Z, Pinson S R, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.)[J]. Genetics,1997,145(2):453-465
    [189]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, et al. QTL x environment interactions in rice. I. heading date and plant height[J]. Theor Appl Genet,2003,108(1):141-153
    [190]Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components [J]. Genetics,2001,158(4):1755-1771
    [191]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance Is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995,140(2):745-754
    [192]You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice[J]. Genetics,2006,172(2):1287-1300
    [193]Yu S B, Li J X, Tan Y F, Gao Y J, Li X H, Zhang Q F, Maroof M A S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):9226-9231
    [194]汤在祥,徐辰武.复杂性状遗传分析策略和方法研究进展[J].中国农业科学,2008,41(5):1255-1266
    [195]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods,2001,25(4):402-408
    [196]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient Transformation of Rice (Oryza-Sativa L) Mediated by Agrobacterium and Sequence-Analysis of the Boundaries of the T-DNA[J]. Plant Journal,1994,6(2):271-282
    [197]Sieburth L E, Meyerowitz E M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically[J]. Plant Cell,1997,9(3): 355-365
    [198]Ikeda K, Nagasawa N, Nagato Y ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice[J]. Dev Biol,2005,282(2):349-360
    [199]Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development[J]. Dev Biol,2001,231(2):364-373
    [200]Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature,2007, 445(7128):652-655
    [201]Gillespie J M, Marshall R C. Variability in the proteins of wool and hair.1980.
    [202]Crewther W G, Fraser R D B, Lennox F G, Lindley H. The chemistry of keratins [J]. Adv. Protein Chem,1965,20191-20346
    [203]Parry D A, Smith T A, Rogers M A, Schweizer J. Human hair keratin-associated proteins: sequence regularities and structural implications[J]. J Struct Biol,2006,155(2):361-369
    [204]Garcia Abreu J, Coffinier C, Larrain J, Oelgeschlager M, De Robertis E M. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems [J]. Gene, 2002,287(1-2):39-47
    [205]O'Leary J M, Hamilton J M, Deane C M, Valeyev N V, Sandell L J, Downing A K. Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA[J]. J Biol Chem,2004,279(51):53857-53866
    [206]Hanson M A, Gaut B S, Stec A O, Fuerstenberg S I, Goodman M M, Coe E H, Doebley J F. Evolution of anthocyanin biosynthesis in maize kernels:the role of regulatory and enzymatic loci[J]. Genetics,1996,143(3):1395-1407
    [207]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication[J]. Nature,1999,398(6724):236-239
    [208]Fan L J, Quan L Y, Leng X D, Guo X Y, Hu W M, Ruan S L, Ma H S, Zeng M Q. Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize[J]. Molecular Breeding,2008,22(3):329-338
    [209]Olsen K M, Caicedo A L, Polato N, McClung A, McCouch S, Purugganan M D. Selection under domestication:evidence for a sweep in the rice waxy genomic region[J]. Genetics,2006,173(2): 975-983
    [210]Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nat Genet,2008,40(11):1370-1374
    [211]朱文银,杨德卫,林静,赵凌,张亚东,朱镇,陈涛,王才林.利用染色体片段置换系定位水稻粒型QTL[J].江苏农业学报,2008,24(3):226-231
    [212]Fjellstrom R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes[J]. Crop Science,2004,44(5):1790-1798
    [213]Fjellstrom R, McClung A M, Shank A R. SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm[J]. Molecular Breeding,2006, 17(2):149-157
    [214]Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes[J]. Theoretical and Applied Genetics,2006,113(2): 251-260
    [215]Jia Y L, Wang Z H, Fjellstrom R G, Moldenhauer K A K, Azam M A, Correll J, Lee F N, Xia Y W, Rutger J N. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States[J]. Phytopathology,2004,94(3):296-301
    [216]Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet,2009,41(4):494-497