用户名: 密码: 验证码:
云南沧源南腊—缅甸金厂铅锌银多金属矿集区成矿作用及成矿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨越中缅边境的金腊(金厂-南腊)铅锌银资源富集区,位于三江南段的冈底斯-念青唐古拉褶皱系之昌宁-孟连褶皱带西缘沧源-西盟褶皱束,该区构造环境复杂,成矿条件优越,是三江南段重要的铅锌银金铜资源富集区。本文以“岩浆-流体-成矿系统”理论为指导,运用地质学、岩石学、矿床学、地球化学相结合的方法,对该区部分岩浆岩及主要矿床的地质、岩石与地球化学特征进行了研究,基本查明工作区主要矿床的空间分布、成矿地质与物理化学条件、矿床成因及控矿因素等,并对该区铅锌银铜金等成矿潜力作出评价。
     研究了岩浆岩分布与特征。首次对研究区与成矿作用密切相关的花岗岩类中分离出单矿物锆石进行Shirmp同位素定年,获得40.3Ma、40Ma和40.9Ma的年龄数据,证明本区与成矿作用有关的岩浆作用主要是喜马拉雅期。
     系统分析了矿集区地球化学特征。研究成果显示,本区流体以NaCl-H_2O体系为主,其次为NaCl-CO_2--H_2O体系,流体包裹体均一温度和盐度具有一个较宽变化范围,特别在240~320℃具有明显峰值,对应盐度为0-20wt%NaCl,属于中低温中低盐度的成矿流体。成矿深度在350-2700m范围,属于浅成中低温度和中低盐度矿床。气相成分以H_2O为主,其次为CO_2;液相成分中的阳离子以Na~+、K~+为主,阴离子中SO_4~(2-)特别显著,属Cl--Na+-Ca~(2+)型和SO_4~(2-)-Na~+-Ca~(2+)型;SO_4~(2-)/Cl~-多数高于0.5,本区成矿流体是一种以地下热卤水为主,并混合有岩浆流体的混合流体。碳氢氧同位素测定表明流体中δDH2O‰变化范围比较小,在-103‰-120‰之间,与温度的相关性不明显,证明本区成矿流体具有大气降水与深源流体的混合成因。从金厂到南腊,稀土配分型式从微弱轻稀土转变为轻稀土富集型,微量元素主要以不相容元素为主,分析结果表明成矿流体来源于上地幔。流体的δ18O值(-9.4‰~8.8‰)充分显示成矿流体具有大气降水与岩浆水混合的特征。矿石的S同位素具有以富34S的重硫型占优势的特点,S主要来自深部,Pb同位素组成相对均一,Pb来源为壳幔混合源。成矿物质和成矿流体来源于本区老的变质地层及深部岩浆。
     讨论了矿床成矿阶段和矿床成因,较为系统总结了矿集区成矿地质条件及地质特征。矿床成因类型有五大类:浅成低温热液交代-充填白云岩型铅锌银矿、角岩-矽卡岩型、构造破碎带型、喷流-沉积型、斑岩型。矿集区经历了特提斯和造山带成矿阶段,划分为早期赋存于西盟群允沟组海相碳酸盐岩系中的铅锌银成矿系列、中期与早石炭系海相基-中性火山岩有关的铅锌银铜硫成矿系列和晚期喜马拉雅期花岗斑岩、花岗闪长斑岩有关的铅锌银铜钼金成矿系列等三个成矿系列。
     首次建立了金腊铅锌银多金属矿床的成矿模式。特提斯阶段元古代本区为地槽型沉积区,强烈中基性海相火山喷发活动,形成了一套以富集Au、Ag、As、PbZn元素组合为特征的元古界西盟群王雅组、允沟组巨厚火山岩系,为铅锌、银、金等金属矿的初始矿源层,局部地段发生强烈海底火山喷发,金属矿物堆积,形成喷流-沉积型SEDEX多金属矿床。晋宁期-加里东早期区域变质作用及构造运动,使元古界地层褶皱变质,由于变质热水加入,加速铅锌银金等成矿物质的初始富集。早石炭系初期,特提斯洋处于发育阶段,为浅海-深海洋盆环境,昌宁-孟连深大断裂活动加剧,深大断裂切至上地幔,造成大规模火山喷发,形成澜沧老厂式海底火山喷流-沉积多金属矿床。华力西末期-印支期,由于特提斯洋闭合,进入陆内演化阶段,南汀河大断裂强烈活动,花岗岩的形成和侵位不仅使初始矿源层中的铅锌、银、金等成矿物质进一步富集,而且南汀河大断裂活动所产生的次级构造断裂,为流体活动提供通道,下渗循环水不断与深部岩浆交换,为流体带来成矿物质。喜山期构造运动使该区褶皱隆升形成金厂-南腊背斜。由于喜马拉雅期同源岩浆脉动式活动加强,形成规模不等的碱长花岗斑岩岩株群。正是由于这个阶段岩浆活动引发的热液作用和成矿流体的深循环作用,加速成矿物质萃取、沉淀、富集,最终在花岗岩体内的断裂及裂隙、花岗岩与围岩的内外接触带、围岩断裂及层间薄弱带中形成铅锌银金多金属矿体。
Jinla (Jingchang-Nanla) Zinc-Silver enrichment region stepping across China-Burma board is a fundamental prospecting target for Zinc and Sliver polymetallic deposit. Tectonically, this region belongs to Cangyuan-Ximeng bundle of fold lying in the west of Changning-Menglian fold belt of Gangdese-Nyaingentanglha fold system, southern part of Sanjiang River. This region is characterized by its complex tectonic settings and favorable minerogenetic conditions, which is one of the most important Pb-Zn-Ag-Au-Cu resources-rich areas in southern part of Sanjiang River. Based on the theory of“magma-fluid-metallogenic system”, the author combined various subjects involving geology, petrology, stratigraphy, structural geology, study of mineral deposits, geophysics and geochemistry, basically verified the spatial distribution of main ore deposits, the geological and physical chemistry metallogenic conditions, and the metallogenesis and ore-controlling factors of the research region, and evaluated the metallogenic potential for Pb-Zn-Ag-Au-Cu.
     This study distribution and characteristic of magmatic rock.For the first time, this study successfully separated and picked out Zircon from granitoids closely related to metallogenesis of this region, yielding ages of 40.3Ma, 40Ma and 40.9Ma, respectively, testifying that the timing of magmatism related to metallogenesis is defined mainly in the Himalayan.
     The systematic research on the geochemical characteristics of the ore district shows that the ore-forming fluid is mainly NaCl-H2O system, followed by NaCl-CO2-H2O system, and the homogenization temperature and salinity of fluid inclusions vary in a relatively wide range, with a peak temperature in a range of 240~320℃and corresponding salinity of 0-20wt% NaCl-equivalent, which falls into the category of intermediate to low temperature-intermediate to low salinity ore-forming fluid. The ore-forming depth lies in a range of 350-2700m, which is a depth of intermediate-low temperature and salinity epithermal deposits. The gas composition mainly consists of H2O and CO2;positive ion in the liquid is mainly composed of Na+、K+ and negative ion is dominated by SO_4~(2-) belonging to Cl--Na+-Ca~(2+) and SO_4~(2-)-Na+-Ca~(2+) type;most ratios of SO_4~(2-) and Cl1- are higher than 0.5, showing that the ore-forming fluid is dominant by underground hot brine, with mixing of magmatic fluid. Isotopic data of C-H-O indicates thatδDH2O‰varies in a relatively small range (-103‰-120‰), and shows no significant correlation with temperature, confirming that the ore-forming fluid is a mixture of meteoric water and deep-derived fluids. From Jingchang to Nanla, the REE patterns shift from weak LREE enrichment to strong LREE enrichment. The trace elements are mainly incompatible elements,and the results reveal that the ore-forming fluids derive form upper mantle. Theδ18O of fluids (-9.4‰~8.8‰)fully demonstrate ore-forming fluids are characterized by mixing of meteoric water and magmatic water. The sulfur isotopic data shows a heavy sulfur dominating trend. Sulfur is mainly derived from a deep source, and the Lead isotopic composition is relatively homogeneous, which is resulted from a crust-mantle mixing source. Ore-forming material and fluids of this region are derived from the ancient metamorphic strata and deep magma.
     This study systematically summarized the geological condition and characteristics and discussed the ore-forming phases and metallogenesis of the ore district. The mineralization can be classified into five categories:Epithermal metasomatic-filling dolomite type, taconite-skarn type, structural fracture zone type, SEDEX type, and porphyry copper type. The ore district experienced Tethys and collisional ore-forming phases, and can be divided into there ore-forming systems:the first one is a Pb-Zn-Ag ore system occurring in the oceanic carbonate rocks of Yungou set,Ximeng group; the second one is a Pb-Zn-Ag-Cu-S ore system related to the Early Carboniferous oceanic basic-intermediate volcanic rocks; the last one is a Pb-Zn-Ag-Cu-Mo-Au ore system associated with the Himalayan granite porphyry and granodiorite porphyry.
     This study initially set up an ore-forming model for the Jinla Pb-Zn-Ag polymetallic deposit. During the Proterozoic epoch of Tethys phase, this region was a geocynclinic sedmentary area, with strong basic-intermediate oceanic volcanic eruptive activities, forming a nearly huge thick Proterozoic Wangya set, Ximeng group volcanic rocks, which constitutes the primary ore source of Pb-Zn-Ag-Au polymetallic deposit. Meanwhile, some part of the region underwent strong sea bottom volcanic eruptions, which gave rise to the deposition of metallic minerals, forming SEDEX type polymetallic depostis. During Jinningian to Caledonian, this region was subject to regional metamorphism and structural movement, which made the Proterozoic strata deformed, and the involvement of hot metamorphic water accelerated the regional metamorphism and structural movement. In the Early Carboniferous, the Tethys Ocean was under an early development phase, belonging to shallow ocean-deep ocean basin condition. With the aggravating activity of the Changning-Menglian deep fault, and cutting into the upper mantle, large-scale volcanic eruptions emerged and produced the sea bottom VMS type polymetallic deposit in Laochang, Lanchang area. During the Late Variscan to the Indosinian, as a consequence of the close of Tethys Ocean, the intracontinental evolution stage began and both the strong activity of Nanding River deep fault and the forming of intrusion of granites not only enhanced the enrichment of Pb-Zn-Ag-Au in the initial ore-forming source, but also provide the migrating path of ore-forming fluids due to the secondary structural faults and fissures of Nanding River deep fault. Penetrating cycling water continuously exchanged with deep magmatic fluids, bringing ore-forming material to the fluids. The Himalayan structural movements caused the fold uplift of this region and brought force the Jingchang-Nanla anticline. Owing to the intensified pulse activities of the consanguinity magma during this phase, various scales of granite porphyry stocks were formed. The hydrothermal and deep cycling of ore-forming fluids driven by the magmatic activities stimulated the extraction, precipitation and enrichment of ore-forming material, and ultimately generated Pb-Zn-Ag polymetallic ore bodies which mainly occurred in the structural fracture zone of inner granite contact zone, faults and interlayer weak zones of wall rock, structural weak zone of the contact zone between intrusions and wall rock.
引文
*西南“三江”中南段试验区铜、金等矿产快速勘查评价的综合示范研究(2001)
    Barnes H L,Geochemisty of hydrothermal ore deposits.New York:John Wiley & Sons,Inc.1997,657-69
    Bischoff,J. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300℃to 500℃.Amer.J.Sci,1991,291:309-338
    Bodnar R J. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta,57:683-684
    Brown,A. C. 1992, Sediment-hosted stratiform copper deposits. Geosc. Can.19:125-141
    Brown,A. C. 1997 Word-class sediment-hosted stratiform copper deposits: characteristics,genetic concepts and metallotects [j]. Australian Journal of Earth Science,44(3):317-328
    Bryan,W.B. et al.,1976,Infeered geologic settings and differentiation in basalts from the deep Sea Drilling Project. J.Geophys. Res.,Vol.81,pp.4285-4304
    Campbell I H,Griffiths R W. Implication of mantle plume structure for the eruption on flood basalts. Earth Planet. Sci. Lett.,1990,90:79-93
    Chung Sunlin,Lo Chinghua,Lee Tunyi et al.,1998,Diachronous uplift of the Tibetan Plateau Starting 40 Myr ago. Nature,394:769-773
    Condie et al.(1989) reported a similar case in Kappraal in south Africa. A possible
    Condie,K C. Plate Tectonics and Crustal Evolution(2nd edition),Pergamon Press.1982
    Condie,K.C.and Crow,C,Geochemistry of Basalts From the Kaapvaal Craton,South Africa:Evolution of Mantle Sources During the late 3 Ga:Abstracts of the 28th International Geological congress,1989,l:32O
    Cullers R L,Graf J L. Rare earth elements in igneous rocks of the continental crust:Predoninantly basic and ultrabasic rocks. In: Henderson P ed. Rare earth element geochemistry. New York: Elsevier Scientific Publishing Compang,1989.237-267
    D.H.W.Hutton et al.,1992,Strike-slip tectonics and granite petrogenesis,Tectonics,11,960-967
    Dennis,P.Cox,斑岩铜矿床的描述性模式。见:D.P.cox,D.A.Singer编,宋伯庆,李文祥,朱裕生等译,1990,矿床模式,74-75页
    Deway J.F,Cands S,Pitman W C,Tectonic evolution of the India/Eurasia Collision zone. Eclogae geol,Helv.,82(3),717-734.1989
    Dickinson,W R. Plate Tectonics in Geologic History. Science,1971,174,107-113
    Fyfe W S,Price N N,Thompson A B.Fluid in the earth’s crust.Elsevier scientific publishing company.1978
    Ghazi A M,Vanko D A,Roedder E et al.Determination of rare earth elements in fluid inclusions by inductively coupleplasma-mass spectrometry(ICP-MS) Geochim. Cosm.Acta,1993,57:4513-4516
    Ghazi A M,Vanko K A,Ruiz J,et al.Trace and rare element analysis in single fluid inclusions:an application of laser ablation ICP-MS.EQS,1994,75(44):695 Hall D L,Sterner S M,Bodnar R J.1988,Freezing point depression of Nacl-Kcl-H2O solutions. Econ Geol,83,197-202
    Henderson,P. 1989,稀土元素地球化学(中译本),地质出版社
    Holland P T,Beaty D W,Snow G G,Comparative elemental and oxygen isotope geochemisty of Jasperiod in the Northern Great Basin:Evidence for distinctive fluid evolution in gold-producing hydrothermal systems.Eco.Geol,1988,83:1401-1434
    HopfS. Behaviour of rare earth elements in geothermal systems kf New Zealand.Jounal of geochemical exploration,47
    Howell,D.G. Terrane tectonics.王成善等译,四川科技出版社,1991
    J.M.Franklin,et.al.,1981,Volcanic-associated massive sulfide deposits, Econ.Geol.,75th Ann.Volume,p.485-672
    J.W .Lydon,1988,Ore deposit models 14,volcanogenic massive sulfide deposits, Part11:genetic models,Geosci.Can.,15,43-66
    Jakes P,Gill J B. Rare earth elements and the island arc tholeiitic series.Earth Planet. Sci. Lett.,1979,9:17-28
    Kaj H, Hans U S. The petrology of the tholeiites through melilite nephelinites on Gran Canaria,Canary Islands:Crystal fractionation, accumulation,and depths of melting. J. Petrol.,1993,34:573-597
    Kirkham,R. V. & Ros coe,S. M. 1993 Atomspheric evolution and ore deposit formation. Resource Geol.,Japan,Spec. Iss. 15:1-17
    Kirkham, R. V. 1996a Sediment-hosted stratiform copper, In Eckstrand, O.R. et al. (eds) Geology of Canadian Mineral Deposit Types. Geol. Surv. Can. Geol. Can. 8 or Geol. Soc. Am. Geol. N. Am. P. 1:233-240
    Kirkham,R. V. 1996b Volcanic redbed copper. In Eckstrand, et al. (eds) Geology of Canadian Mineral Deposit Types. Geol. Surv. Can. Geol. Can. 8 or Geol. Soc. Am. Geol. N. Am. P. 1:241-252
    Kirkham, R. V. 1989 The distribution,settings and genesis of sediment stratiform copper deposits. In Boyle,R. W. et al. (eds) Sediment-hosted. Stratiform Copper deposits. Geol. Assoc. Can. Spec. 36:3-38
    Kyser T K,Stable isotope geochemistry of low temperature fluids.MAC short courses,1987,13:451
    Kyser T K. Stable isotope geochemistry of low temperature fluids. MAC short course,13
    Malavieille J.,Late orogenic extension in mountain belts: insights from the basin and range and the late paleozoic variscan belt.tectonics ,12(5),.1115-1130,1993
    Maruyamas . Plume tectonics. Jour. Geol. Soc. Japan,1994,100:24-29 Mitchell A.H.G.,Mineral deposits and global tectonic settings. Acdermic Press Inc,Ltd,1981
    Mo,X.,Lu,F and Deng,J. Volcanism in Sanjiang Tethyan Orogenic Belt: New Facts and Concepts. Jour. of China University of Geosciences,1991,2(1),58-74
    Mo,X.,Lu,F and Deng,J. Volcanism in Sanjiang Tethyan Orogenic Belt:New Facts and Concepts. Jour. of China University of Geosciences,1991,2(1),58-74
    Molnar.P.et al.,Cenozoic tectonics of Asia:effects of a continental collision. Science.vol,189,1975
    Mullis J.D.,Poty J.B,et al.,1994,Fluid regimes during late stages of a continental collision:physical,chemical,and stabl isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps,Switzerland. Geochim.Cosmochim.Acta.,58:2239-2267
    Nesbitt B.E.,Muchlenbachs K.M.,1995,geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia,Canada,GSA Bulletin,107:1033-1050
    Nesbitt B.E.,Muchlenbachs K.M.,1997,Paleo-hydrogeology of late proterozoic units of southeastern Canadian cordiliera,Amer.J.Sci.,297:359-392
    Norman D I,Sawkins F J.Analysis of gases in fluid inclusions by mass spectrometer.Chem.Geol,1987,61:1-10
    Pearce J.A.,Harris N.B .W. and Tindle A.G.,Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.J.Petrol,1984,25:956-983
    Potter , RW. Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. J. Res.U.S. Geol. Surv.,1977,5:603-607
    Ridley J.,1993,The relations between mean rock stress and fluid flow in the crust: with reference to vein- and lode-style gold deposits, Ore Geol. Rev.,8:23-37
    Robin Lacassin et al,Tertiay deformation and metamorphism SE of Tibet:the tolded Tiger-Leap decollement of NW Yunnan,China.Tectonics,15(3),P605~622.1996
    RodderE. Fluid inclusions. Reviews in mineralogy,1984,Volume 12 RodderE. Composition of fluid inclusions. US. Geos. Survey Prof. Paper,1972
    Rollison H. Using geochemical data : Evoluation , presentation ,interpretation.London:Longman Group UK Limited,1993
    Scott S D,Yang K,Binns R A. Massive sulfide-forming systems on the present-day ocean floor. In: Papunen H, ed. Mineral Deposits:Research and Exploration where do They Meet ? [s.l.]:[s.n.],1997.19-23
    Scott S D. Submarine hydrothermal systems and deposits. In: H L Barnes,ed. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. [s.l.]:Wiley and Sons,Inc,1997,797-876
    Shen Shangyue,Wei Qirong,Chen Huilan et al. Metamorphic peridotite and rock series of ophiolite belt in Mt. Ailao,Yunnan Province. Chinese Science Bulletin,1998,43(11):955-959
    Tapponnier P,Molna P.,Slip-line field theory and large scale continental tectonics. Nature,264(5584),319-324,1976
    Thompson R N,Morrison M A,Hendry G L et al. An assessment of the relative roles of a crust and mantle in magma genesis:an elemental approach. Phil. Trans R. Soc. Lond.,1984,A310:549-590
    White E D. Diverse Origins of Hydrothermal Ore Fluids. Economic Geology, 1974,6
    Wilson J T. A possible origin of the Hawaii islands. Can. J.Phys.,1963,41:863-870 Wyllie,P.J.,1991,Plate tectonics and magma genesis. Geologicahen Rundschau Baud,Vol.70,pp.128-15
    Yang Kaihui ,1998.Magmatic fluids and mineralization–Observations of subaerial volcanic–hydrothermal processes,black smokers on modern sea floor and melt inclusion studies , Earth Science Frontiers(China University of Geosciences,Beijing).Vol.5 No.3,p7-38
    Yang,K. and Scott,S. D.,Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature,1996,383,p. 420-423
    Yang,K. Mo,X.,Characteristics of the Laochang volcanogenic massive sulfide deposit,Yunnan,southwestern China . Exploration and Mining Geology,1993,2,p.31-40
    Yang,K.,Mo,X. and Zhu,Q.,Late Paleozoic-early Mesozoic tectono-volcanic
    belts and regional evolution of southwestern Yunnan,China. Journal of Southeast Asia Earth Sciences,1994,10,p.245-262
    毕献武,胡瑞忠.墨江金矿成矿流体的形成演化机制[J].地质论评,1997,43(4):381~387
    程裕淇,向缉熙.再论最大限度地合理开发和利用矿产资源.中国地质,1996,03-002
    陈骏,王鹤年.成矿流体作用过程的REE示踪研究.南京大学学报,1997,3(33)
    陈银汉.矿物包裹体地球化学.河北地质学院,1981
    陈好寿,等.同位素地球化学研究.浙江大学出版社,1994
    陈绪松,徐九华,刘建明,等.山东金青顶金矿床和七宝山金矿床的流体包裹体REE组成[J].矿床地质,2002,21(4):387~392
    陈永清,黄静宁,卢映祥,等.中缅毗邻区金腊Pb-Zn-Ag多金属矿田花岗岩锆石U-Pb定年与地球化学特征.地学前缘,2009.1,第16卷第1期:344-362
    陈永清,黄静宁,Xiaoming Zhai,等.中缅毗邻区金腊Pb-Zn-Ag多金属矿田元素、稳定同位素和流体包裹体地球化学.地球科学,2009.7,第34卷第4期:585-594
    邓晋福,莫宣学,赵海玲,等.壳幔物质与深部过程.地学前缘,1998,5(3):67-75
    邓万明.中国西部新生代火山活动及其大地构造背景-青藏及邻区火山岩的形成机制.地学前缘,2003,10:471-478
    段向东,张志斌,冯庆来,等.滇西南耿马弄巴地区南皮河组正层型剖面地层层序、时代的重新认识[J],地层学杂志,2003,(1)
    段向东,张志斌,王伟,等.滇西南耿马地区泥盆纪牙形石的新发现及地层意义[J],地质通报,2003,22(3):182~185
    范承均,张翼飞.云南西部地质构造格局[J].云南地质,1993,12(2)
    范建国,倪培,田京辉.成矿流体的流体包裹体同位素示踪探讨.地质找矿论丛,2000,9(3)
    范俊杰,张学军,常春郊,等.甘肃省肃北县鸡叫沟金矿床地球化学特征及成因探讨[J].地质与资源,2006,15(4):272~276
    黄智龙,称进,韩润生,等.云南会泽超大型鉛锌矿床地球化学及成因.地质出版社,2004
    何科昭,赵崇贺,何浩生,等.滇西陆内裂谷与造山作用[M].北京:中国地质大学出版社,1996,1~52
    华仁民.成矿过程中由流体混合而导致金属沉淀的研究.地球科学发展,1994,9(4):15—22
    简平,刘敦一,孙晓猛.滇西北白马雪山和鲁甸花岗岩基SHRIMP U-Pb年龄及其地质意义.地球科学,2003,24:337-342
    李华芹,刘家齐,魏林.热液矿床流体包裹体年代学研究及其地质应用.地质出版社,1993
    李兴振,刘文均,王义昭,等.西南三江地区特提斯构造演化与成矿(总论).地质出版社,1999
    李保华.矿物包裹体研究在矿床学中的某些应用.成都地质学院学报,1989,4(2) 李德惠.晶体光学[M].地质出版社,1993
    李文昌,莫宣学.西南“三江”地区新生代构造及其成矿作用.云南地质,2001,20(4):333~346
    李晓峰,毛景文,朱和平,等.四川大渡河黑金台子金矿成矿流体稀土元素地球化学[M].岩石矿物学杂志,2005,24(4):311~318
    林培英,田成.晶体光学与造岩矿物.中国地质大学(北京)岩矿教研室,1999.5
    刘英俊,等.元素地球化学.地质出版社,1987
    刘斌,沈昆.流体包裹体热力学.地质出版社,1999
    刘斌,朱思林,沈昆.流体包裹体热力学参数计算软件及算例.地质出版社,2000
    刘增乾,等.三江地区构造岩浆带的划分与矿产分布.地质出版社,1993
    刘本培,冯庆来,方念乔,等.滇西南昌宁—孟连带和澜沧江带古特提斯及多岛洋构造演化[J].地球科学—中国地质大学学报,1993,18(5):529-538
    李德惠.晶体光学.地质出版社,1993
    卢焕章.成矿流体.北京科学技术出版社,1997
    卢焕章,李秉伦,沈昆,等.包裹体地球化学.地质出版社,1990
    卢焕章,范宏瑞,倪培,等.流体包裹体.科学出版社,2004
    罗君烈,杨友华,赵准,等.滇西特提斯的演化及主要金属矿床成矿作用.地质出版社.1994
    罗石生,杨贵来,杨伟光,等.云南沧源拱丁金、多金属矿床的成矿特征及成因.现代地质,2007.12,第21卷第4期:655-665
    莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩—构造组合及其意义.高校地质学报2001,7(2):121—138
    莫宣学,沈上越,朱勤文,等.三江中南段火山岩—蛇绿岩与成矿.地质出版社,1998
    莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993,128-571
    南京大学地质系编.地球化学.科学出版,1979.10
    潘兆橹.结晶学及矿物学.地质出版社,1993
    潘桂棠、徐强、侯增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价.地质出版社,2003
    邱家骧.岩浆岩岩石学.地质出版社,1985
    邵洁涟,梅建明.浙江火山岩区金矿床的矿物包裹体矿物岩石.1986,6(3):103~111
    孙立民.青城子铅锌矿田闪锌矿特征及意义.辽宁地质,1997(3):210~217
    宋彪,张玉海,刘敦一.微量原位分析仪器SHRIMP的产生于锆石同位素地质年代学.质谱学报,2002,23:58-62
    田世洪,丁悌平,毛景文.四川牦牛坪稀土矿床地幔流体成矿的碳、氢、氧、硫同位素证据.地球学报,2003,24(6):543-547
    涂光炽,等.地球化学.上海:上海科学技术出版社,1984
    王京彬,秦克章,吴志亮,等.阿尔泰山南缘火山喷流沉积型鉛锌矿床.地质出版社,1998
    王书来,王京彬,彭省临,等.新疆可可塔勒铅锌矿成矿流体稀土元素地球化学特征[J].中国地质,2004,31(3):308~314
    王莉娟.流体包裹体成分分析研究.地质论评,1998,9(5)
    王莉娟,王京彬,王玉往,等.河北蔡家营铅锌银矿床流体包裹体研究[J].矿床地质,2002,21(增刊):1037~1040
    王中刚,等.稀土元素地球化学.北京:科学出版社.1989
    王义昭,李兴林,段丽兰,等.三江地区南段大地构造与成矿[M].北京:地质出版社,2000,64~66
    温春齐,菜建明,刘文周,等.金顶铅锌矿床流体包裹体地球化学特征[J].矿物岩石,199515(4):79~84
    徐九华,谢玉玲,杨竹森,等.安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比.矿床地质,2004,23:344-352
    徐启东.变质岩流体包裹体研究的几个基本问题综述.地学前缘,1996,3:216-221
    薛春纪,陈毓川,杨建民,等.滇西北兰坪铅锌银铜矿田含烃富CO2成矿流体及其地质意义.地质学报,2002,76:244-253
    肖晓牛,喻学惠,杨贵来,等.滇西沧源铅锌多金属矿集区流体包裹体研究.矿床地质,2008.2,第27卷第1期:101-112
    肖晓牛,喻学惠,杨贵来,等.滇西沧源铅锌多金属矿集区成矿地球化学特征.岩石学报,1000-0569/2008/024(02)-00589-599
    杨贵来,杨伟光,莫宣学,等.云南澜沧地区南角河银多金属矿床的地质特征及成因.地质通报,2006.10,第25卷第9-10期:1225-1232
    杨贵来,杨伟光,罗梅,等.云南勐海勐满金矿床的地球化学特征及成因.现代地质,2007.12,第21卷第4期:667-674
    杨永强,翟裕生,侯玉树,等.沉积岩型铅锌矿床的成矿系列研究[J].地学前缘,2006,13(3):200~205
    张文淮,陈紫英.流体包裹体地质学.中国地质大学出版社,1993
    叶庆同,胡云中,杨岳清.三江地区区域地球化学背景和金银铅锌成矿作用.地质出版社.1992
    尹意求,李嘉兴,郭旭吉.新疆阿尔泰山南缘克兰盆地红墩SEDEX型铅锌矿[J].矿产与地质,2004,18(105):422~427
    袁见齐,朱上庆,翟裕生.矿床学.地质出版社,1985.5
    喻学惠,肖晓牛,杨贵来,等.滇西“三江”南段几个花岗岩的锆石SHIRMP U-Pb定年及其地质意义.岩石学报,1000-0569/2008/024(02)-0377-383
    云南省地质矿产局科技情报室,等.云南省鉛、锌及贵金属矿床会议文集,1984
    朱勤文,张双全,谭劲.确定南澜沧江带的火山岩地球化学证据[J].岩石矿物学杂志,1998,17(4):298-307
    朱勤文,张双全,谭劲.南澜沧江结合带火山岩岩浆成因[J].现代地质,1999,13(2):137-142
    朱赖民,袁海华,栗世伟.金阳底苏会东大梁子铅锌矿床内闪锌矿微量元素标型特征及其研究意义.四川地质学报,1995(15,1):49~55
    朱和平,王莉娟.四极质谱测定流体包裹体中的气相成分.中国科学(D辑),2001,31(7):586—590
    郑淑蕙,郑斯成,莫志超.稳定同位素地球化学分析.北京大学出版社,1986
    赵伦山,张本仁.地球化学.地质出版社,1988
    张凡,冯庆来,张志斌,等.滇西南耿马地区弄巴剖面早石炭世硅质岩的地球化学特征及古地理意义[J],地质通报,2003,22(5):336~340
    张凡,冯庆来,段向东,等.滇西南昌宁—孟连构造带西带研究初探[J],地质科技情报,2006,25(3):14~20
    张振芳,冯庆来,万念乔,等.滇西南昌宁—孟连三叠纪牡音河组硅质岩地球化学及沉积环境[J],地球科学,2001,26(5):449~454
    张长青,毛景文,吴锁平,等.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质,2005,24(3):336~348
    张相训.广西老厂铅锌矿田方铅矿和闪锌矿微量元素特征及其成因探讨.广西地质,1995(8,1):15~22
    翟裕生,邓军,李晓波.区域成矿学.地支出版社,1999
    曾荣,薛春纪,高永宝,等.云南金顶铅锌矿床成矿流体的微量元素研究[J].矿物岩石,2006,26(3):38~45
    钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社,1998,56-167
    钟大赉,丁林,刘福田,等.造山带岩石层多向层架构造及其对新生代岩浆活动制约—以三江及邻区为例.中国科学(D辑),2000,30:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700