组织工程种植体构建及植入放疗区的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用种植体进行颌面赝复体的固位是目前颌面缺损修复的重要方式,已经广泛应用于眶耳、眼、鼻等多器官的缺损修复上,尤其对于颌面恶性肿瘤切除术后的患者,迫切需要进行种植体固位赝复体的重建,但是,由于术后放疗对于周围骨组织的损伤,使得种植体骨结合成功率降低,极大限制了种植体的应用。如何提高放疗区种植体骨结合的成功率一直是颌面赝复体固位研究中的“瓶颈”问题,直接关系到肿瘤术后颌面部缺损修复的质量。也有学者尝试采用高压氧治疗来提高种植体骨结合率,主要通过增加放疗组织区氧供以改善局部组织的血供,但该方法并不是在真正意义上促进种植体骨结合,更多的是起到稳定局部治疗的效果,因此目前对于高压氧是否能够促进种植体骨结合仍然存在较大的争议。
     然而,随着组织工程技术的出现和发展,利用该项技术为解决种植体骨结合的问题提供了崭新的思路和方法。骨髓基质干细胞是组织工程最常用的种子细胞,具有较强的增殖和组织修复能力,我们设想通过细胞膜片技术将骨髓基质干细胞与种植体复合,体外构建具有生物活性的种植体,即组织工程化种植体,使得植入的种植体不再仅仅依靠周围组织的修复能力来获得骨结合,而是在种植体植入时其自身就具有了修复周围组织的能力并促进骨愈合。因此,本研究拟体外构建组织工程化种植体,检测其生物活性,探讨其应用于放疗区促进骨结合的可行性,以期为临床解决放疗后种植体骨结合失败率高的问题提供新的思路和方法。
     所取得主要研究结果如下:
     1.证实了利用组织工程技术体外构建组织工程化种植体的可行性
     本实验分离培养骨髓基质干细胞并进行相关生物学检测,采用原代骨髓基质干细胞加工具有体外操作性的细胞膜片,分别与锆瓷和钛两种材料种植体复合,体外构建组织工程化种植体;通过大体观察、组织学及分子生物学技术分析其生物学特性;体内植入组织工程化种植体,研究其成骨和血管化的能力。结果显示:体外构建骨髓基质干细胞细胞膜片方法简单,细胞膜片与种植体复合后通过体外培养可以与之紧密结合,并能够继续分泌细胞外基质,成功构建组织工程化种植体;细胞、分子生物学技术检测构建的组织工程化种植体,发现其成骨和成血管相关基因和蛋白高表达。裸鼠体内移植结果证实种植体周围有血管化的骨组织生成。锆瓷和钛两种材料种植体,由于元素构成的不同,在成骨能力上钛种植体强于锆瓷种植体(P<0.05);而在促进血管生成方面,锆瓷种植体略好于钛种植体(P>0.05)。
     本研究结果说明,利用骨髓基质干细胞膜片技术与种植体构建具有生物活性的组织工程化种植体,并促进种植体周围骨组织愈合的思路是可行的;不同的种植体材料成分对于组织工程化种植体的生物学特性有一定的影响。
     2.不同材料种植体放疗前后植入的差异性研究
     为了比较不同材料种植体,放疗前后植入对于种植体骨结合的影响,本实验选择了锆瓷和钛两种种植体材料,分别在放疗前后3个月植入,对比分析了两种种植体不同时间植入的骨结合差异。结果显示:放疗前植入种植体形成的种植体骨结合率要高于放疗后(P<0.05),钛种植体的骨结合强度要略高于锆瓷种植体(P>0.05),但是锆瓷种植体的周围组织血管化好略于钛种植体(P>0.05)。
     本研究结果说明:在低于50Gy放射剂量的条件下,放疗前进行种植体植入形成的骨结合,要优于放疗后植入;钛种植体较锆瓷种植体在放疗区种植优势并不明显。
     3.组织工程化种植体应用于放疗区的研究
     为了评估体外构建的组织工程化种植体应用于放疗区的可行性,本实验体外抽取培养犬骨髓基质干细胞,加工成细胞膜片后,构建组织工程化种植体,植入放疗区,与常规种植体对比观察。结果显示:组织工程化种植体骨结合率要高于常规种植体(P<0.05),种植体周围骨组织愈合要优于常规种植体;锆瓷与钛两种材料构建组织工程化种植体,应用于放疗区差异不大(P>0.05)。
     本研究结果说明:利用干细胞组织工程和细胞膜片技术,构建组织工程化种植体并应用于放疗区,是一种新的种植体表面处理方法的探索,为今后提高放疗区种植体骨结合率提供了新的理论和实验依据。
Until now the endosseos implants has been used for the retention of ear prosthetics, orbit prosthetics, nose prosthetics and midface prosthetics. In recent years, an increasing number of cancer patients, particularly malignant tumor patients, which urgently needed the implant-supported prosthestics after surgery. But radiotherapy, which harmed bone around implants, decreased the success rate of endosseous implant significantly and limited the application of implants. Implant failures were higher after radiotherapy, which limited the use of endosseous implant supported maxillofacial prosthetics. How to resolve this "bottleneck" problem directly related to the retension effect of maxillofacial prosthetics. The therapeutic effect of HBO is related to an elevated partial pressure of oxygen in the tissue. The pressure itself enhances oxygen solubility in the tissue fluids. HBO only plays an adjunctive roles as only stationary results are achieved local reatement. Whether HBO improve the osseointegration is still controversy.
     In resent years, however, the devolpment of tissue engineering technology may provide a new way to solve the osseointegration problem. Bone marrow stem cells (MSCs) with strong proliferation and tissue repair are the most commonly used in tissue engineering as seed cells. The MSC-implant composed by MSC cell sheet with implants in vitro forms the osseointegration not only by bone tissue around implant, but also by MSCs aound implant. Then we hypothesize that MSC-implant have the ability to accelerate the implant ossintegration in irradiated bone. Therefore, this study was to construct MSC-implant in vitro, to test its biology and explore the feasibility to use in irradiated bone, in order to provide a new way to resolve the implant failure problem.
     The major findings are as follows:
     Part I. Confirmed feasibility of construction Msc-implant in vitro with tissue engineering technology
     In this study, we isolated and cultured bone marrow-derived mesenchymal stem cells (MSCs) and formed the cell sheet, then constructed the MSC-implant with two kinds of implant in vitro. The biological properties of MSC-implant were analyzied in gross, histological, and molecular level. After thransplanted in nude mouse, the MSC-implant can regenerate bone-like tissue and vascular-like tissue. The results showed that bone marrow mesenchymal stem cells formed cell sheet easily which could composed with implant tightly in vitro. The MSCs in cell sheet still kept secreting extracellular matrix. The novel MSC-implant had the ability to form new bone and blood vessels, and expressed the osteogenesis and vascular gene. The Ti implant had higher capability to accelerate the bone forming than Zr implant. But it was lower in accelerating the vascular forming.
     The results suggest that it is feasibility to construct the MSC-implant in vitro, which has the ability to accelerate the tissue healing. The different materials of implants have the different impact on cell sheet.
     Part II: the study of different implants inserting the irradiated bone in different time
     In order to compare different materials implants insertion before and after radiotherapy had the impact on osseointegration. Two kinds of zirconia ceramic and titanium implant were selected. The study compared the different osseointegration before and after 3 months irradiation. The results showed that: bone-implant contact (BIC) was higher before irradiation insertion implants than after irradiation. The osseointegrated strength of titanium implants was higher than zirconia implants, while in vascular forming it was lower.
     The results suggest that the ossointegration insertion before irradiation, less than 50Gy radiation dose, was significantly better than after irradiation insertion. There was no obvious difference between titanium and zirconia implants used in irradiated bone.
     Part III: the study about MSC-implants used in irradiated bone
     To assess the effect of MSC-implant, which was constructed in vitro,, inserted in irradiated bone. The MSCs of dogs were isolated and cultured, formed the cell sheet and constructed the MSC-implant. Then it was inserted in irradiated bone compared with normal implants. The results showed that the MSC-implant had higher capability to accelerate bone healing than normal implants. There were no obvious different between MSC-Ti implant and MSC-Zr implant when they inserted in irradiated bone.
     The results suggests that contructing MSC-implant in vitro inserts in irradiated bone may be a novel implant surface modifying method, which could improve the success rate of implants in irradiated bone.
引文
1. Branemark, P.I., B.O. Hansson, R. Adell, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scand J Plast Reconstr Surg Suppl, 1977, 16 1-132.
    2. Adell, R., U. Lekholm, B. Rockler, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw[J]. Int J Oral Surg, 1981, 10 (6):387-416.
    3. Granstrom, G. Craniofacial osseointegration[J]. Oral Dis, 2007, 13 (3):261-269.
    4.赵铱民.颌面赝复学(上)[J]. [M] 2004,世界图书出版公司6-28.
    5. Roumanas, E.D., E.G. Freymiller, T.L. Chang, et al. Implant-retained prostheses for facial defects: an up to 14-year follow-up report on the survival rates of implants at UCLA[J]. Int J Prosthodont, 2002, 15 (4):325-332.
    6. Ohrnell, L.O., R. Branemark, J. Nyman, et al. Effects of irradiation on the biomechanics of osseointegration. An experimental in vivo study in rats[J]. Scand J Plast Reconstr Surg Hand Surg, 1997, 31 (4):281-293.
    7. Schon, R., K. Ohno, M. Kudo, et al. Peri-implant tissue reaction in bone irradiated the fifth day after implantation in rabbits: histologic and histomorphometric measurements[J]. Int J Oral Maxillofac Implants, 1996, 11 (2):228-238.
    8. Coulthard, P., M. Esposito, H.V. Worthington, et al. Therapeutic use of hyperbaric oxygen for irradiated dental implant patients: a systematic review[J]. J Dent Educ, 2003, 67 (1):64-68.
    9. Ohgushi, H., S. Kitamura, N. Kotobuki, et al. Clinical application of marrow mesenchymal stem cells for hard tissue repair[J]. Yonsei Med J, 2004, 45 Suppl 61-67.
    10. Pittenger, M.F., A.M. Mackay, S.C. Beck, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284 (5411): 143-147.
    11. Oreffo, R.O. and J.T. Triffitt. Future potentials for using osteogenic stem cells and biomaterials in orthopedics[J]. Bone, 1999, 25 (2 Suppl):5S-9S.
    12. Bruder, S.P. and B.S. Fox. Tissue engineering of bone. Cell based strategies[J]. Clin Orthop Relat Res, 1999, (367 Suppl):S68-83.
    13. Kalia, P., G.W. Blunn, J. Miller, et al. Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants?[J]. Tissue Eng, 2006, 12 (6):1617-1626.
    14.康彪.颜面赝复体粘结剂的研制与评价[J]. [博士论文], 2004, [J] (西安):第四军医大学.
    15.赵铱民,,刘宝林等.全上颌骨缺失的功能性修复[J].华西口腔医学杂志, 1995, 13 (4):251-253.
    16.赵铱民,,刘宝林等.上颌骨切除术与赝复体修复[J].实用口腔医学杂志, 1998, 14 (1):41-43.
    17.刘宝林,肿瘤术后颌骨缺损的功能重建[J].中华口腔医学杂志, 2003, 38 (1):9-11.
    18.赵晋龙,何黎升,刘宝林.等. MDIC种植体颧骨种植在全上颌骨缺损功能重建中的应用[J].实用口腔医学杂志, 2004, 20 (2):133-135.
    19. Swennen, G., R. Dempf, and H. Schliephake. Cranio-facial distraction osteogenesis: a review of the literature. Part II: Experimental studies[J]. Int J Oral Maxillofac Surg, 2002, 31 (2):123-135.
    20. Swennen, G., H. Schliephake, R. Dempf, et al. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies[J]. Int J Oral Maxillofac Surg, 2001, 30 (2):89-103.
    21.杨辛.牵张成骨在下颌骨修复中的应用和进展[J].国外医学口腔医学, 2004, 31 (2):141-143.
    22.吕俊邦史宗道.牵张成骨在颌面外科的研究进展[J].中华整形外科杂志, 2002, 18 (5):308-310.
    23.胡敏洪民.口腔颌面外科应用牵张成骨技术的实验研究进展[J].北京口腔医学, 2000, 8 (2):101-104.
    24.牛学刚.颧骨牵张成骨修复部分上颌骨缺失的实验研究[J]. [博士论文], 2005,西安(第四军医大学):
    25.冯志宏.牙槽骨弧形牵张成骨修复单侧上颌骨缺损的实验研究[J]. [博士论文], 2009,西安(第四军医大学):
    26. Wolfaardt, J.F., P. Coss, and R. Levesque. Craniofacial osseointegration: technique for bar and acrylic resin substructure construction for auricular prostheses[J]. J Prosthet Dent, 1996, 76 (6):603-607.
    27. Gary, J.J., M. Donovan, F.T. Garner, et al. Rehabilitation with calvarial bone grafts and osseointegrated implants after partial maxillary resection: a clinical report[J]. J Prosthet Dent, 1992, 67 (6):743-746.
    28.王翰章.我国口腔颌面部创伤及修复外科学的发展史[J].中华口腔医学杂志, 2004, 39 (1):15-18.
    29.闫香珍杨丕山.骨组织工程技术瓶颈及其原因分析[J].国际口腔医学杂志, 2009, 36 (1):117-119.
    30. Eckardt, A. and G.R. Swennen. Virtual planning of composite mandibular reconstruction with free fibula bone graft[J]. J Craniofac Surg, 2005, 16 (6):1137-1140.
    31. Vayvada, H., F. Mola, A. Menderes, et al. Surgical management of ameloblastoma in the mandible: Segmental mandibulectomy and immediate reconstruction with free fibula or deep circumflex iliac artery flap (evaluation of the long-term esthetic and functional results)[J]. J Oral Maxillofac Surg, 2006, 64 (10):1532-1539.
    32. Hsiong, S.X. and D.J. Mooney. Regeneration of vascularized bone[J]. Periodontol 2000, 2006, 41 109-122.
    33. Br?nemark, P.I., G. Zarb, and T. Albrektsson. Tissue-integrated prostheses.[J]. Chicago; Quintessence, 1985, 11-43.
    34. Branemark, P.I., R. Adell, U. Breine, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies[J]. Scand J Plast Reconstr Surg, 1969, 3 (2):81-100.
    35. Albrektsson, T. and A. Wennerberg. The impact of oral implants - past and future, 1966-2042[J]. J Can Dent Assoc, 2005, 71 (5):327.
    36. Tjellstrom, A. [Titanium implants in otorhinolaryngology][J]. Hno, 1989, 37 (8):309-314.
    37. Granstrom, G. Osseointegration in irradiated cancer patients: an analysis with respect to implant failures [J]. J Oral Maxillofac Surg, 2005, 63 (5):579-585.
    38.赵铱民.口腔修复的磁附着固位技术[J]. [M] 2010,世界图书出版公司6-28.
    39. Roach, M. Base metal alloys used for dental restorations and implants[J]. Dent Clin North Am, 2007, 51 (3):603-627, vi.
    40. Andreiotelli, M., H.J. Wenz, and R.J. Kohal. Are ceramic implants a viable alternative to titanium implants? A systematic literature review[J]. Clin Oral Implants Res, 2009, 20 Suppl 4 32-47.
    41. Fuster-Torres, M.A., S. Albalat-Estela, M. Alcaniz-Raya, et al. CAD / CAM dental systems in implant dentistry: update[J]. Med Oral Patol Oral Cir Bucal, 2009, 14 (3):E141-145.
    42. Wennerberg, A. and T. Albrektsson. Effects of titanium surface topography on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20 Suppl 4 172-184.
    43. Junker, R., A. Dimakis, M. Thoneick, et al. Effects of implant surface coatings and composition on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20 Suppl 4 185-206.
    44. Granstrom, G., A. Tjellstrom, and T. Albrektsson. Postimplantation irradiation for head and neck cancer treatment[J]. Int J Oral Maxillofac Implants, 1993, 8 (5):495-501.
    45.李德华.简单化原则是口腔种植发展的必然趋势[J].中华口腔医学杂志, 2006, 41 (3):151-153.
    46. Wilkes, G.H. and J.F. Wolfaardt. Osseointegrated alloplastic versus autogenous ear reconstruction: criteria for treatment selection[J]. Plast Reconstr Surg, 1994, 93 (5):967-979.
    47. Wolfaardt, J., G. Gehl, M. Farmand, et al. Indications and methods of care for aspects of extraoral osseointegration[J]. Int J Oral Maxillofac Surg, 2003, 32 (2):124-131.
    48. Granstrom, G., K. Bergstrom, and A. Tjellstrom. The bone-anchored hearing aid and bone-anchored epithesis for congenital ear malformations[J]. Otolaryngol Head Neck Surg, 1993, 109 (1):46-53.
    49. Harris, L., G.H. Wilkes, and J.F. Wolfaardt. Autogenous soft-tissue procedures and osseointegrated alloplastic reconstruction: their role in the treatment of complex craniofacial defects[J]. Plast Reconstr Surg, 1996,98 (3):387-392.
    50. Schwipper, V. [Malignant melanoma in the area of the head and neck][J]. Mund Kiefer Gesichtschir, 2000, 4 Suppl 1 S177-186.
    51. Keller, E.E., R.P. Desjardins, S.E. Eckert, et al. Composite bone grafts and titanium implants in mandibular discontinuity reconstruction[J]. Int J Oral Maxillofac Implants, 1988, 3 (4):261-267.
    52. Tjellstrom, A. and B. Hakansson. The bone-anchored hearing aid. Design principles, indications, and long-term clinical results[J]. Otolaryngol Clin North Am, 1995, 28 (1):53-72.
    53. Roumanas, E.D., T.L. Chang, and J. Beumer. Use of osseointegrated implants in the restoration of head and neck defects[J]. J Calif Dent Assoc, 2006, 34 (9):711-718.
    54. Johnsson, A.A., T. Sawaii, M. Jacobsson, et al. A histomorphometric study of bone reactions to titanium implants in irradiated bone and the effect of hyperbaric oxygen treatment[J]. Int J Oral Maxillofac Implants, 1999, 14 (5):699-706.
    55. Ihde, S., S. Kopp, K. Gundlach, et al. Effects of radiation therapy on craniofacial and dental implants: a review of the literature[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107 (1):56-65.
    56. Granstrom, G., M. Jacobsson, and A. Tjellstrom. Titanium implants in irradiated tissue: benefits from hyperbaric oxygen[J]. Int J Oral Maxillofac Implants, 1992, 7 (1):15-25.
    57. Verdonck, H.W., G.J. Meijer, T. Laurin, et al. Assessment of vascularity in irradiated and nonirradiated maxillary and mandibular minipig alveolar bone using laser doppler flowmetry[J]. Int J Oral Maxillofac Implants, 2007, 22 (5):774-778.
    58. Curtis, T.A., M.R. Griffith, and D.N. Firtell. Complete denture prosthodontics for the radiation patient[J]. J Prosthet Dent, 1976, 36 (1):66-76.
    59. Cooper, J.S., K. Fu, J. Marks, et al. Late effects of radiation therapy in the head and neck region[J]. Int J Radiat Oncol Biol Phys, 1995, 31 (5):1141-1164.
    60. Jacobsson, M.G., A.K. Jonsson, T.O. Albrektsson, et al. Short- and long-term effects of irradiation on bone regeneration[J]. Plast Reconstr Surg, 1985, 76 (6):841-850.
    61. Jacobsson, M., P. Kalebo, T. Albrektsson, et al. Provoked repetitive healing of mature bone tissue following irradiation. A quantitative investigation[J]. Acta Radiol Oncol, 1986, 25 (1):57-62.
    62. Matsui, Y., K. Ohno, K. Michi, et al. Histomorphometric examination of healing around hydroxylapatite implants in 60Co-irradiated bone[J]. J Oral Maxillofac Surg, 1994, 52 (2):167-172; discussion 172-163.
    63. Jisander, S., B. Grenthe, and P. Alberius. Dental implant survival in the irradiated jaw: a preliminary report[J]. Int J Oral Maxillofac Implants, 1997, 12 (5):643-648.
    64. Marx, R.E. Osteoradionecrosis: a new concept of its pathophysiology[J]. J Oral Maxillofac Surg, 1983, 41 (5):283-288.
    65. Murray, C.G., J. Herson, T.E. Daly, et al. Radiation necrosis of the mandible: a 10 year study. Part I. Factors influencing the onset of necrosis[J]. Int J Radiat Oncol Biol Phys, 1980, 6 (5):543-548.
    66. Murray, C.G., J. Herson, T.E. Daly, et al. Radiation necrosis of the mandible: a 10 year study. Part II. Dental factors; onset, duration and management of necrosis[J]. Int J Radiat Oncol Biol Phys, 1980, 6(5):549-553.
    67. Beumer, J., 3rd, R. Harrison, B. Sanders, et al. Preradiation dental extractions and the incidence of bone necrosis[J]. Head Neck Surg, 1983, 5 (6):514-521.
    68. Costantino, P.D., C.D. Friedman, and M.J. Steinberg. Irradiated bone and its management[J]. Otolaryngol Clin North Am, 1995, 28 (5):1021-1038.
    69. Teng, M.S. and N.D. Futran. Osteoradionecrosis of the mandible[J]. Curr Opin Otolaryngol Head Neck Surg, 2005, 13 (4):217-221.
    70. Albrektsson, T., P.I. Branemark, M. Jacobsson, et al. Present clinical applications of osseointegrated percutaneous implants[J]. Plast Reconstr Surg, 1987, 79 (5):721-731.
    71. Wolfaardt, J.F., G.H. Wilkes, S.M. Parel, et al. Craniofacial osseointegration: the Canadian experience[J]. Int J Oral Maxillofac Implants, 1993, 8 (2):197-204.
    72.白石柱.无牙上颌骨缺损种植修复优化设计的三维有限元分析[J]. [博士论文], 2004,西安(第四军医大学):
    73.周冰.外鼻缺损修复的个性化三维仿真设计及快速成型研究[J]. [博士论文], 2008,西安(第四军医大学):
    74. Landes, C.A. and A.F. Kovacs. Comparison of early telescope loading of non-submerged ITI implants in irradiated and non-irradiated oral cancer patients[J]. Clin Oral Implants Res, 2006, 17 (4):367-374.
    75. Jacobsson, M., A. Jonsson, T. Albrektsson, et al. Dose-response for bone regeneration after single doses of 60Co irradiation[J]. Int J Radiat Oncol Biol Phys, 1985, 11 (11):1963-1969.
    76. Toljanic, J.A., S.E. Eckert, E. Roumanas, et al. Osseointegrated craniofacial implants in the rehabilitation of orbital defects: an update of aretrospective experience in the United States[J]. J Prosthet Dent, 2005, 94 (2):177-182.
    77. Granstrom, G. Osseointegration in irradiated cancer patients: an analysis with respect to implant failures[J]. J Oral Maxillofac Surg, 2005, 63 (5):579-585.
    78. Thames, H.D., L.J. Peters, and K.K. Ang. Time-dose considerations for normal-tissue tolerance[J]. Front Radiat Ther Oncol, 1989, 23 113-130.
    79. Brasseur, M., V. Brogniez, V. Gregoire, et al. Effects of irradiation on bone remodelling around mandibular implants: an experimental study in dogs[J]. Int J Oral Maxillofac Surg, 2006, 35 (9):850-855.
    80. Marx, R.E. and R.P. Johnson. Studies in the radiobiology of osteoradionecrosis and their clinical significance[J]. Oral Surg Oral Med Oral Pathol, 1987, 64 (4):379-390.
    81. Visch, L.L., M.A. van Waas, P.I. Schmitz, et al. A clinical evaluation of implants in irradiated oral cancer patients[J]. J Dent Res, 2002, 81 (12):856-859.
    82. Colella, G., R. Cannavale, M. Pentenero, et al. Oral implants in radiated patients: a systematic review[J]. Int J Oral Maxillofac Implants, 2007, 22 (4):616-622.
    83. Ryu, J.K., R.L. Stern, M.G. Robinson, et al. Mandibular reconstruction using a titanium plate: the impact of radiation therapy on plate preservation[J]. Int J Radiat Oncol Biol Phys, 1995, 32 (3):627-634.
    84. Cao, Y. and T. Weischer. Comparison of maxillary implant-supported prosthesis in irradiated and non-irradiated patients[J]. J Huazhong Univ Sci Technolog Med Sci, 2003, 23 (2):209-212.
    85. Taylor, T.D. and P. Worthington. Osseointegrated implant rehabilitation ofthe previously irradiated mandible: results of a limited trial at 3 to 7 years[J]. J Prosthet Dent, 1993, 69 (1):60-69.
    86. Franzen, L., J.B. Rosenquist, K.I. Rosenquist, et al. Oral implant rehabilitation of patients with oral malignancies treated with radiotherapy and surgery without adjunctive hyperbaric oxygen[J]. Int J Oral Maxillofac Implants, 1995, 10 (2):183-187.
    87. Eckert, S.E., R.P. Desjardins, E.E. Keller, et al. Endosseous implants in an irradiated tissue bed[J]. J Prosthet Dent, 1996, 76 (1):45-49.
    88. Esser, E. and W. Wagner. Dental implants following radical oral cancer surgery and adjuvant radiotherapy[J]. Int J Oral Maxillofac Implants, 1997, 12 (4):552-557.
    89. Keller, E.E., D.E. Tolman, S.L. Zuck, et al. Mandibular endosseous implants and autogenous bone grafting in irradiated tissue: a 10-year retrospective study[J]. Int J Oral Maxillofac Implants, 1997, 12 (6):800-813.
    90. Keller, E.E. Placement of dental implants in the irradiated mandible: a protocol without adjunctive hyperbaric oxygen[J]. J Oral Maxillofac Surg, 1997, 55 (9):972-980.
    91. Johnsson, K., A. Hansson, G. Granstrom, et al. The effects of hyperbaric oxygenation on bone-titanium implant interface strength with and without preceding irradiation[J]. Int J Oral Maxillofac Implants, 1993, 8 (4):415-419.
    92. Nilsson, P., T. Albrektsson, G. Granstrom, et al. The effect of hyperbaric oxygen treatment on bone regeneration: an experimental study using the bone harvest chamber in the rabbit[J]. Int J Oral Maxillofac Implants, 1988, 3 (1):43-48.
    93. Larson, D.A. Surgical management of radiated scalp in patients with recurrent glioma[J]. Neurosurgery, 1994, 34 (6):1105.
    94. Mayer, R., M.R. Hamilton-Farrell, A.J. van der Kleij, et al. Hyperbaric oxygen and radiotherapy[J]. Strahlenther Onkol, 2005, 181 (2):113-123.
    95. Esposito, M., J.M. Hirsch, U. Lekholm, et al. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis[J]. Eur J Oral Sci, 1998, 106 (3):721-764.
    96. Ali, A., D.W. Patton, A.M. el-Sharkawi, et al. Implant rehabilitation of irradiated jaws: a preliminary report[J]. Int J Oral Maxillofac Implants, 1997, 12 (4):523-526.
    97. Niimi, A., T. Fujimoto, Y. Nosaka, et al. A Japanese multicenter study of osseointegrated implants placed in irradiated tissues: a preliminary report[J]. Int J Oral Maxillofac Implants, 1997, 12 (2):259-264.
    98. Granstrom, G. Placement of dental implants in irradiated bone: the case for using hyperbaric oxygen[J]. J Oral Maxillofac Surg, 2006, 64 (5):812-818.
    99. Donoff, R.B. Treatment of the irradiated patient with dental implants: the case against hyperbaric oxygen treatment[J]. J Oral Maxillofac Surg, 2006, 64 (5):819-822.
    100. Mian, T.A., M.C. Van Putten, Jr., D.C. Kramer, et al. Backscatter radiation at bone-titanium interface from high-energy X and gamma rays[J]. Int J Radiat Oncol Biol Phys, 1987, 13 (12):1943-1947.
    101. Rosengren, B., L. Wulff, E. Carlsson, et al. Backscatter radiation at tissue-titanium interfaces. Analyses of biological effects from 60Co and protons[J]. Acta Oncol, 1991, 30 (7):859-866.
    102. Granstrom, G. and A. Tjellstrom. Effects of irradiation on osseointegration before and after implant placement: a report of three cases[J]. Int J OralMaxillofac Implants, 1997, 12 (4):547-551.
    103. Yerit, K.C., M. Posch, M. Seemann, et al. Implant survival in mandibles of irradiated oral cancer patients[J]. Clin Oral Implants Res, 2006, 17 (3):337-344.
    104. Kasemo, B. and J. Lausmaa. Aspects of surface physics on titanium implants[J]. Swed Dent J Suppl, 1985, 28 19-36.
    105. Lausmaa, J., B. Kasemo, and S. Hansson. Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination[J]. Biomaterials, 1985, 6 (1):23-27.
    106. Kasemo, B. and J. Lausmaa. Biomaterial and implant surfaces: a surface science approach[J]. Int J Oral Maxillofac Implants, 1988, 3 (4):247-259.
    107. Sundgren, J.E., P. Bodo, I. Lundstrom, et al. Auger electron spectroscopic studies of stainless-steel implants[J]. J Biomed Mater Res, 1985, 19 (6):663-671.
    108. Kasemo, B. and J. Lausmaa. Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures[J]. J Biomed Mater Res, 1988, 22 (A2 Suppl):145-158.
    109. Zitter, H. and H. Plenk, Jr. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility[J]. J Biomed Mater Res, 1987, 21 (7):881-896.
    110. Hennig, F.F., H.J. Raithel, K.H. Schaller, et al. Nickel-, chrom- and cobalt-concentrations in human tissue and body fluids of hip prosthesis patients[J]. J Trace Elem Electrolytes Health Dis, 1992, 6 (4):239-243.
    111. Dorr, L.D., R. Bloebaum, J. Emmanual, et al. Histologic, biochemical, and ion analysis of tissue and fluids retrieved during total hip arthroplasty[J]. Clin Orthop Relat Res, 1990, (261):82-95.
    112. Bartolozzi, A. and J. Black. Chromium concentrations in serum, blood clot and urine from patients following total hip arthroplasty[J]. Biomaterials, 1985, 6 (1):2-8.
    113. Michel, R., M. Nolte, M. Reich, et al. Systemic effects of implanted prostheses made of cobalt-chromium alloys[J]. Arch Orthop Trauma Surg, 1991, 110 (2):61-74.
    114. Jacobs, J.J., A.K. Skipor, L.M. Patterson, et al. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study[J]. J Bone Joint Surg Am, 1998, 80 (10):1447-1458.
    115. Wennerberg, A., A. Ide-Ektessabi, S. Hatkamata, et al. Titanium release from implants prepared with different surface roughness[J]. Clin Oral Implants Res, 2004, 15 (5):505-512.
    116. Merritt, K. and S.A. Brown. Distribution of cobalt chromium wear and corrosion products and biologic reactions[J]. Clin Orthop Relat Res, 1996, (329 Suppl):S233-243.
    117. Kasemo, B. and J. Gold. Implant surfaces and interface processes[J]. Adv Dent Res, 1999, 13 8-20.
    118. TA, H. and B. JL. Protein at interfaces:current issues and future prospects. In:Brash JL, Horbett TA, editors. Proteina at interfaces:physiochemical and biochemical studies.Washington (DC):American Chemical Society;[J]. 1987, 1-33.
    119. Mavrogenis, A.F., R. Dimitriou, J. Parvizi, et al. Biology of implant osseointegration[J]. J Musculoskelet Neuronal Interact, 2009, 9 (2):61-71.
    120. Stanford, C.M. and J.C. Keller. The concept of osseointegration and bone matrix expression[J]. Crit Rev Oral Biol Med, 1991, 2 (1):83-101.
    121. Davies, J.E. Mechanisms of endosseous integration[J]. Int J Prosthodont,1998, 11 (5):391-401.
    122. Berglundh, T., I. Abrahamsson, N.P. Lang, et al. De novo alveolar bone formation adjacent to endosseous implants[J]. Clin Oral Implants Res, 2003, 14 (3):251-262.
    123. Meyer, U., U. Joos, J. Mythili, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants[J]. Biomaterials, 2004, 25 (10):1959-1967.
    124. Murai, K., F. Takeshita, Y. Ayukawa, et al. Light and electron microscopic studies of bone-titanium interface in the tibiae of young and mature rats[J]. J Biomed Mater Res, 1996, 30 (4):523-533.
    125. Albrektsson, T. and H.A. Hansson. An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces[J]. Biomaterials, 1986, 7 (3):201-205.
    126. Brunette, D.M. The effects of implant surface topography on the behavior of cells[J]. Int J Oral Maxillofac Implants, 1988, 3 (4):231-246.
    127. Kieswetter, K., Z. Schwartz, D.D. Dean, et al. The role of implant surface characteristics in the healing of bone[J]. Crit Rev Oral Biol Med, 1996, 7 (4):329-345.
    128. Cooper, L.F. A role for surface topography in creating and maintaining bone at titanium endosseous implants[J]. J Prosthet Dent, 2000, 84 (5):522-534.
    129. Webster, T.J., C. Ergun, R.H. Doremus, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000, 21 (17):1803- 1810.
    130. Popat, K.C., E.E. Leary Swan, V. Mukhatyar, et al. Influence of nanoporous alumina membranes on long-term osteoblast response[J].Biomaterials, 2005, 26 (22):4516-4522.
    131. Salthouse, T.N. Some aspects of macrophage behavior at the implant interface[J]. J Biomed Mater Res, 1984, 18 (4):395-401.
    132. Hulbert, S.F., S.J. Morrison, and J.J. Klawitter. Tissue reaction to three ceramics of porous and non-porous structures[J]. J Biomed Mater Res, 1972, 6 (5):347-374.
    133. Bobyn, J.D., R.M. Pilliar, H.U. Cameron, et al. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone[J]. Clin Orthop Relat Res, 1980, (150):263-270.
    134. Lu, J.X., B. Flautre, K. Anselme, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. J Mater Sci Mater Med, 1999, 10 (2):111-120.
    135. Schupbach, P., R. Glauser, A. Rocci, et al. The human bone-oxidized titanium implant interface: A light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy- dispersive x-ray study of clinically retrieved dental implants[J]. Clin Implant Dent Relat Res, 2005, 7 Suppl 1 S36-43.
    136. Lavos-Valereto, I.C., I. Costa, and S. Wolynec. The electrochemical behavior of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating in Hank's solution[J]. J Biomed Mater Res, 2002, 63 (5):664-670.
    137. Yu, S.R., X.P. Zhang, Z.M. He, et al. Effects of Ce on the short-term biocompatibility of Ti-Fe-Mo-Mn-Nb-Zr alloy for dental materials[J]. J Mater Sci Mater Med, 2004, 15 (6):687-691.
    138. Lausmaa, J. and L. Linder. Surface spectroscopic characterization of titanium implants after separation from plastic-embedded tissue[J].Biomaterials, 1988, 9 (3):277-280.
    139. Baier, R.E. and A.E. Meyer. Implant surface preparation[J]. Int J Oral Maxillofac Implants, 1988, 3 (1):9-20.
    140. Carlsson, L.V., T. Alberktsson, and C. Berman. Bone response to plasma-cleaned titanium implants[J]. Int J Oral Maxillofac Implants, 1989, 4 (3):199-204.
    141. Wennerberg, A., P. Bolind, and T. Albrektsson. Glow-discharge pretreated implants combined with temporary bone tissue ischemia[J]. Swed Dent J, 1991, 15 (2):95-101.
    142. Hamamoto, N., Y. Hamamoto, T. Nakajima, et al. Histological, histocytochemical and ultrastructural study on the effects of surface charge on bone formation in the rabbit mandible[J]. Arch Oral Biol, 1995, 40 (2):97-106.
    143. Krukowski, M., R.A. Shively, P. Osdoby, et al. Stimulation of craniofacial and intramedullary bone formation by negatively charged beads[J]. J Oral Maxillofac Surg, 1990, 48 (5):468-475.
    144. Jarcho, M. Calcium phosphate ceramics as hard tissue prosthetics[J]. Clin Orthop Relat Res, 1981, (157):259-278.
    145. Jarcho, M. Retrospective analysis of hydroxyapatite development for oral implant applications[J]. Dent Clin North Am, 1992, 36 (1):19-26.
    146. Dhert, W.J. Retrieval studies on calcium phosphate-coated implants[J]. Med Prog Technol, 1994, 20 (3-4):143-154.
    147. Puleo, D.A. and A. Nanci. Understanding and controlling the bone-implant interface[J]. Biomaterials, 1999, 20 (23-24):2311-2321.
    148. Cochran, D.L., R. Schenk, D. Buser, et al. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseousdental implants[J]. J Periodontol, 1999, 70 (2):139-150.
    149.金岩.组织工程学与相关技术[J]. [M] 2003, 1-5.
    150.尹宏宇曹谊林.组织工程学在牙种植领域应用的研究进展[J].组织工程与重建外科杂志, 2007, 3 (4):228-230.
    151.杨振华.微环境对牙周再生及相关间充质干细胞分化影响的研究[J]. [博士论文], 2008, [J] (西安):第四军医大学.
    152. Nakao, K., R. Morita, Y. Saji, et al. The development of a bioengineered organ germ method[J]. Nat Methods, 2007, 4 (3):227-230.
    153. Ohazama, A., S.A. Modino, I. Miletich, et al. Stem-cell-based tissue engineering of murine teeth[J]. J Dent Res, 2004, 83 (7):518-522.
    154. Sonoyama, W., Y. Liu, D. Fang, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1 e79.
    155. Puleo, D.A. and M.V. Thomas. Implant surfaces[J]. Dent Clin North Am, 2006, 50 (3):323-338, v.
    156. Fawzy, A.S. and M.A. Amer. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment[J]. Dent Mater, 2009, 25 (1):48-57.
    157. Ueda, M., I. Tohnai, and H. Nakai. Tissue engineering research in oral implant surgery[J]. Artif Organs, 2001, 25 (3):164-171.
    158. Weng, Y., M. Wang, W. Liu, et al. Repair of experimental alveolar bone defects by tissue-engineered bone[J]. Tissue Eng, 2006, 12 (6):1503-1513.
    159. Okano, T., N. Yamada, H. Sakai, et al. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide)[J]. J Biomed Mater Res, 1993, 27 (10): 1243-1251.
    160. Okano, T., N. Yamada, M. Okuhara, et al. Mechanism of cell detachmentfrom temperature-modulated, hydrophilic-hydrophobic polymer surfaces[J]. Biomaterials, 1995, 16 (4):297-303.
    161. Yang, J., M. Yamato, T. Shimizu, et al. Reconstruction of functional tissues with cell sheet engineering[J]. Biomaterials, 2007, 28 (34):5033- 5043.
    162. Galli, C., S. Guizzardi, G. Passeri, et al. Comparison of human mandibular osteoblasts grown on two commercially available titanium implant surfaces[J]. J Periodontol, 2005, 76 (3):364-372.
    163. Bowers, K.T., J.C. Keller, B.A. Randolph, et al. Optimization of surface micromorphology for enhanced osteoblast responses in vitro[J]. Int J Oral Maxillofac Implants, 1992, 7 (3):302-310.
    164. Ong, J.L., C.W. Prince, G.N. Raikar, et al. Effect of surface topography of titanium on surface chemistry and cellular response[J]. Implant Dent, 1996, 5 (2):83-88.
    165. Wang, X., F. Chen, G. Wang, et al. An in vitro evaluation on the percutaneous sites of MAO-treated implants[J]. J Biomed Mater Res B Appl Biomater, 2008, 87 (2):508-515.
    166. Pohler, O.E. Unalloyed titanium for implants in bone surgery[J]. Injury, 2000, 31 Suppl 4 7-13.
    167. Piconi, C. and G. Maccauro. Zirconia as a ceramic biomaterial[J]. Biomaterials, 1999, 20 (1):1-25.
    168. Sundh, A. and G. Sjogren. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics[J]. J Oral Rehabil, 2004, 31 (7):682-688.
    169. Chevalier, J. What future for zirconia as a biomaterial?[J]. Biomaterials,2006, 27 (4):535-543.
    170. Kohal, R.J., G. Klaus, and J.R. Strub. Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation[J]. Clin Oral Implants Res, 2006, 17 (5):565-571.
    171. Kohal, R.J., W. Att, M. Bachle, et al. Ceramic abutments and ceramic oral implants. An update[J]. Periodontol 2000, 2008, 47 224-243.
    172. Grinnell, F. Cellular adhesiveness and extracellular substrata[J]. Int Rev Cytol, 1978, 53 65-144.
    173. Altankov, G., F. Grinnell, and T. Groth. Studies on the biocompatibility of materials: fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability[J]. J Biomed Mater Res, 1996, 30 (3):385-391.
    174. Anselme, K., M. Bigerelle, B. Noel, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses[J]. J Biomed Mater Res, 2000, 49 (2):155-166.
    175. Thomas, K.A. and S.D. Cook. An evaluation of variables influencing implant fixation by direct bone apposition[J]. J Biomed Mater Res, 1985, 19 (8):875-901.
    176. Setzer, B., M. Bachle, M.C. Metzger, et al. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia[J]. Biomaterials, 2009, 30 (6):979-990.
    177. Chen, F., H. Ouyang, X. Feng, et al. Anchoring dental implant in tissue-engineered bone using composite scaffold: a preliminary study in nude mouse model[J]. J Oral Maxillofac Surg, 2005, 63 (5):586-591.
    178. Sul, Y.T., Y. Jeong, C. Johansson, et al. Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1--experimental implants[J].Clin Oral Implants Res, 2006, 17 (5):521-526.
    179. Takahashi, K. and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4):663-676.
    180. Park, I.H., R. Zhao, J.A. West, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature, 2008, 451 (7175):141-146.
    181. Okita, K., T. Ichisaka, and S. Yamanaka. Generation of germline- competent induced pluripotent stem cells[J]. Nature, 2007, 448 (7151): 313-317.
    182. Adamo, A.K. and R.L. Szal. Timing, results, and complications of mandibular reconstructive surgery: report of 32 cases[J]. J Oral Surg, 1979, 37 (10):755-763.
    183. Marx, R.E., R.P. Johnson, and S.N. Kline. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin[J]. J Am Dent Assoc, 1985, 111 (1):49-54.
    184. Epstein, J.B., F.L. Wong, and P. Stevenson-Moore. Osteoradionecrosis: clinical experience and a proposal for classification[J]. J Oral Maxillofac Surg, 1987, 45 (2):104-110.
    185. Rohrer, M.D., Y. Kim, and J.V. Fayos. The effect of cobalt-60 irradiation on monkey mandibles[J]. Oral Surg Oral Med Oral Pathol, 1979, 48 (5):424-440.
    186.路正刚,刘洪臣,王东胜.等.放疗后狗下颌种植体周围骨密度变化初探[J].口腔颌面修复学杂志, 2001, 2 (1):11-13.
    187.路正刚,刘洪臣,王东胜.放疗和高压氧辅助治疗对狗下颌纯钛种植体周围骨组织沉积率的影响[J].口腔颌面修复学杂志, 2008, 9 (2):124-126.
    188. Powers, B.E., E.L. Gillette, S.L. McChesney, et al. Bone necrosis and tumor induction following experimental intraoperative irradiation[J]. Int J Radiat Oncol Biol Phys, 1989, 17 (3):559-567.
    189. Weinlaender, M., J. Beumer, 3rd, E.B. Kenney, et al. Histomorphometric and fluorescence microscopic evaluation of interfacial bone healing around 3 different dental implants before and after radiation therapy[J]. Int J Oral Maxillofac Implants, 2006, 21 (2):212-224.
    190. Brogniez, V., W. D'Hoore, V. Gregoire, et al. Implants placed in an irradiated dog mandible: a morphometric analysis[J]. Int J Oral Maxillofac Implants, 2000, 15 (4):511-518.
    191. Bergermann, M., J. Dieckmann, and E. Machtens. [Preoperative short-term preliminary irradiation with 3 x 6 Gy, immediate radical tumor resection and postoperative booster irradiation to 60 Gy as an effective therapy concept for the treatment of T2 squamous cell carcinomas of the mouth. Results of a prospective randomized bi-center study][J]. Fortschr Kiefer Gesichtschir, 1992, 37 17-20.
    192. Hum, S. and P. Larsen. The effect of radiation at the titanium-bone interface. In: Laney W,Tolman D (eds).Tissue Integration inn Oral, Orthopedic and Maxillofacial Reconstruction. Chicago:[J]. Quintessence Int, 1990, 234.
    193. Johnsson, A.A., T. Sawaii, M. Jacobsson, et al. A histomorphometric and biomechanical study of the effect of delayed titanium implant placement in irradiated rabbit bone[J]. Clin Implant Dent Relat Res, 2000, 2 (1):42-49.
    194. Johnsson, A.A., M. Jacobsson, G. Granstrom, et al. A microradiographicinvestigation of cancellous bone healing after irradiation and hyperbaric oxygenation: a rabbit study[J]. Int J Radiat Oncol Biol Phys, 2000, 48 (2):555-563.
    195. Brogniez, V., C. Nyssen-Behets, V. Gregoire, et al. Implant osseointegration in the irradiated mandible. A comparative study in dogs with a microradiographic and histologic assessment[J]. Clin Oral Implants Res, 2002, 13 (3):234-242.
    196. Nelson, K., S. Heberer, and C. Glatzer. Survival analysis and clinical evaluation of implant-retained prostheses in oral cancer resection patients over a mean follow-up period of 10 years[J]. J Prosthet Dent, 2007, 98 (5):405-410.
    197. Esposito, M., J. Hirsch, U. Lekholm, et al. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature[J]. Int J Oral Maxillofac Implants, 1999, 14 (4):473-490.
    198. Bolind, P., C.B. Johansson, P. Johansson, et al. Retrieved implants from irradiated sites in humans: a histologic/histomorphometric investigation of oral and craniofacial implants[J]. Clin Implant Dent Relat Res, 2006, 8 (3):142-150.
    199. Mastrogiacomo, M., A. Papadimitropoulos, A. Cedola, et al. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption[J]. Biomaterials, 2007, 28 (7):1376-1384.
    200. Mastrogiacomo, M., A. Muraglia, V. Komlev, et al. Tissue engineering of bone: search for a better scaffold[J]. Orthod Craniofac Res, 2005, 8(4):277-284.
    201. Dennis, J.E. and P. Charbord. Origin and differentiation of human and murine stroma[J]. Stem Cells, 2002, 20 (3):205-214.
    202.杨军,丁振华,罗成基等.电离辐射致小鼠骨髓基质细胞凋亡的研究[J].第一军医大学学报2002, 22 (05):406.