自然刺激下小鸡视网膜神经节细胞群体放电活动时空特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜是视觉信息处理的第一站,视网膜光感受器细胞接受视觉信号输入并将其以膜电位改变的形式经视网膜神经元回路传递至输出神经元神经节细胞,形成动作电位,然后通过视神经进一步向视觉中枢系统传递。视觉经验通常都发生在自然环境中,因此直接使用自然图像刺激来探索视觉系统中某些未知的特性越来越受到视觉系统研究者的重视。视网膜的信息处理过程受到视神经在视觉通路解剖结构中的瓶颈地位,以及神经系统代谢能量消耗等诸多因素的制约。本研究的目的就是通过分析群体视网膜神经节细胞在连续自然影像(电影)刺激下反应活动的时空特性来了解视网膜是如何在这些限制下有效地对视觉信息进行处理和编码的。本论文运用多电极记录技术结合数据分析,以伪随机棋盘格(pseudorandom checker-board)刺激为对照,对小鸡视网膜神经节细胞在自然刺激下的时空编码模式进行研究,包括考察神经节细胞群体在自然影像刺激下放电活动在时间上和空间上的统计特性,以及这种统计特性下群体神经节细胞的放电模式和协同作用等。
     主要结果包括:1)在自然影像的刺激下,单个神经元在刺激延续过程中的放电序列以及群体神经元在特定时刻的反应活动呈现出比在伪随机棋盘格刺激下更明显的超高斯分布,提示群体神经节细胞可能以一种稀疏的反应模式编码自然视觉刺激信息。2)进一步分析研究发现,这种稀疏编码模式的形成更多地依赖单个神经节细胞在刺激延续过程中的少数高频放电和多个神经元在某一时刻的协同放电,而不仅仅是在刺激过程中大多数神经元在大多数时间里不放电。这些结果提示视网膜神经节细胞在自然视觉信息处理过程中可能通过单个神经节细胞的少数高频放电和群体神经元中邻近神经元的协同放电实现视觉信息稳定而高效地向视觉中枢传递。3)应用基于子序列分布差异度量(measurement of sub-sequence distribution discrepancy, MSDD)的多维数据处理方法分析群体神经节细胞在不同刺激时段放电活动的协同性,发现在自然影像刺激下群体神经节细胞在刺激过程中的协同放电随时间存在明显的动态特性,进一步采用基于熵分析的信息论算法对群体神经节细胞在自然刺激下的完整放电序列进行分析以考察群体神经节细胞中不同成员在整个刺激过程中动态成组协同放电的情况,发现在自然刺激下,群体神经节细胞的协同放电模式比在伪随机棋盘格刺激下更加广泛和多样化,提示神经节细胞在自然环境中以一种更加高效的方式进行信息传递。
     从这些结果可以看出,视网膜可以通过群体神经节细胞的时空发放模式来对信息进行编码,这种模式不仅节省了储存大量信息所必需的神经元数目,节省了代谢能量消耗,有效地实现了信息之间的快速传递,同时也加大了对外界信号的识别和处理能力。而视网膜群体神经节细胞的这种以单个神经元在少数时刻的高频放电及相邻神经元动态成组协同放电为特征的高效反应模式(即稀疏编码)在对自然影像刺激的编码中体现得尤为突出,更有力地说明了视网膜神经节细胞在自然环境下具有更优化的时空编码特性。
The first stage of the visual information processing occurs in the retina. The photoreceptors absorb photons from the visual field, and signal the light information through changes in their membrane potentials. These signals are further transmitted along the retinal circuit to the output neurons, retinal ganglion cells and make their way to the central visual system in the form of action potentials (spikes). Nearly all the visual experiences happen in natural environment, thus it has been paid more and more attention to investigate the visual information processing using natural stimuli. The information processing in the retina is subject to several restrictions such as the anatomic bottleneck structure of the retina in the visual pathway and the limited metabolic energy. The aim of this investigation is getting to know how the retinal ganglion cells process and encode the natural visual stimuli effectively under such constraints. In the present work, the multi-neuronal activities of the chick retinal ganglion cells in response to time-varying natural images (movies) as well as pseudorandom white-noise checker-board flickering sequence (control) were recorded using multi-electrode recording technique. The statistical distributions of the population retinal ganglion cells’spikes in temporal (over the duration of stimulation) and spatial (across the population neurons), the underlying firing patterns and dynamic grouping of activated neurons in synchronization, were analyzed and investigated.
     The main findings include three parts: 1) In response to the natural stimuli, the individual single retinal ganglion cell’s firing activities over the duration of the stimulation and the multi-neuronal instantaneous activities at the same moment both show more obvious super-Gaussian distribution, which is related to sparse coding of the neurons, than those during stimulation of pseudorandom white-noise checker-board flickering sequence. 2) Further analysis of the experimental data shows that it is the action potentials fired in“burst”form of individual single neurons and synchronized activities of neurons in group that contribute mainly to the sparse representation of the population retinal ganglion cells. These results suggest that in response to natural stimuli, individual neuron fires at a low rate to save metabolic energy, while the dynamically grouped small subsets of neurons are activated with adjacent neurons firing concertedly and individual single neurons fire in“burst”form occasionally to transmit information to the postsynaptic neurons efficiently. 3) Multi-dimensional data analysis based on MSDD (a measurement based on sub-sequence distribution discrepancy) was applied to the spike trains of population retinal ganglion cell during different time periods of the stimulation and the results show that the neurons fried synchronously in dynamic groups over the duration of natural stimulation. Furthermore, an information-theoretic algorithm based on entropy analysis was applied to identify the synchronized neuronal groups of the population RGCs based on the complete spike trains over stimulation. The results show that the synchronized firings in RGCs are more extensive and diverse and may account for more effective information processing in representing the natural visual environment.
     These results indicate that the retina processes the natural visual information in a highly dynamic and efficient manner through the spatiotemporal firing patterns of the population ganglion cells, which can reduce the number of neurons involved, save the metabolic energy consuming, improve the efficacy of the information transmission and enhance capabilities of the ganglion cells’information reorganization and processing.
引文
[1]寿天德,视觉信息处理的脑机制上海:上海科技教育出版社,1997。
    [2]杨雄里,视觉的神经机制上海:上海科学技术出版社,1996。
    [3]唐宗湘,鸟类离顶盖通路的结构和电生理特性。吉首大学学报(自然科学版),2000,21(4),21-25。
    [4]陈耀星,王子旭,内藤顺平,鸡投射视顶盖视网膜节细胞的形态学分类。解剖学报,2002,33(1),47-50。
    [5] Adrian, E. D. The impulses produced by sensory nerve endings: Part I. J. Physiol., 1926. 61(1): 49-72.
    [6] Adrian, E. D., Zotterman, Y. The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ. J. Physiol., 1926. 61(2): 151-171.
    [7] Aertsen, A. M., Gerstein, G. L., Habib, M. K., et al. Dynamics of neuronal firing correlation: modulation of "effective connectivity". J. Neurophysiol., 1989. 61(5): 900-917.
    [8] Aiello, L. C., Wheeler, P. The expensive-tissue hypothsis: the brain and the digestive system in human and primate evolution. Curr. Anthropol., 1995. 36: 199-221.
    [9] Ames, A. Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol., 1992. 70 Suppl: S158-S164.
    [10] Amthor, F. R., Tootle, J. S., Grzywacz, N. M. Stimulus-dependent correlated firing in directionally selective retinal ganglion cells. Vis. Neurosci., 2005. 22(6): 769-787.
    [11] Atick, J. J. Could information theory provide an ecological theory of sensory processing? Network: Comput. Neural Syst., 1992. 3: 213-251.
    [12] Attwell, D., Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab., 2001. 21(10): 1133-1145.
    [13] Azouz, R., Gray, C. M. Dynamic spike threshold reveals a mechanism forsynaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. U S A, 2000. 97(14): 8110-8115.
    [14] Baddeley, R., Abbott, L. F., Booth, M. C., et al. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. Biol. Sci., 1997. 264(1389): 1775-1783.
    [15] Baker, S. N., Philbin, N., Spinks, R., et al. Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J. Neurosci. Methods, 1999. 94(1): 5-17.
    [16] Balasubramanian, V., Berry, M. J. A test of metabolically efficient coding in the retina. Network, 2002. 13(4): 531-552.
    [17] Balasubramanian, V., Kimber, D., Berry, M. J. Metabolically efficient information processing. Neural Comput., 2001. 13(4): 799-815.
    [18] Barlow, H. B. Possible principles underlying the transformation of sensory messages. MIT Press, 1961. 217-234.
    [19] Barlow, H. B. The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond B. Biol. Sci., 1981. 212(1186): 1-34.
    [20] Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception, 1972. 1(4): 371-394.
    [21] Barlow, H. B., Hill, R. M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science, 1963. 139: 412-414.
    [22] Bear, M. F., Connors, B. W., Paradiso, M. A. Neuroscience: exploring the brain. 3rd edition. Baltimore: Lippincott Williams and Wilkins, 2006.
    [23] Bell, A. J., Sejnowski, T. J. The "independent components" of natural scences are edge filters. Vision Res., 1997. 37(23): 3327-3338.
    [24] Beloozerova, I. N., Sirota, M. G., Swadlow, H. A. Activity of different classes of neurons of the motor cortex during locomotion. J. Neurosci., 2003. 23(3): 1087-1097.
    [25] Bickel, P. J., Lehmann, E. L. Descriptice statistics for nonparametric modelsⅠIntroduction. The Annals of Statistics, 1975. 3(5): 1038-1044.
    [26] Brecht, M., Schneider, M., Sakmann, B., et al. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 2004. 427(6976): 704-710.
    [27] Brivanlou, I. H., Warland, D. K., Meister, M. Mechanisms of concerted firing among retinal ganglion cells. Neuron, 1998. 20(3): 527-539.
    [28] Cai, C. F., Zhang, Y. Y., Liu, X., Liang, P. J., Zhang, P. M. Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chin. Phys. Lett., 2008. 25(5): 1595-1598.
    [29] Chen, A. H., Zhou, Y., Gong, H.Q., Liang, P. J. Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing. Brain Res., 2004. 1017(1-2): 13-20.
    [30] Chichilnisky, E. J. A simple white noise analysis of neuronal light responses. Network, 2001. 12(2): 199-213.
    [31] Dan, Y., Atick, J. J., Reid, R. C. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J. Neurosci., 1996. 16(10): 3351-3362.
    [32] Darlington, R. B. Is Kurtosis Really "Peakedness?". The American Statistician, 1970. 24(2): 19-22.
    [33] David, S. V., Vinje, W. E., Gallant, J. L. Natural stimulus statistics alter the receptive field structure of v1 neurons. J. Neurosci., 2004. 24(31): 6991-7006.
    [34] Desimone, R., Albright, T. D., Gross, C. G., et al. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci., 1984. 4(8): 2051-2062.
    [35] DeWeese, M. R., Wehr, M., Zador, A. M. Binary spiking in auditory cortex. J. Neurosci., 2003. 23(21): 7940-7949.
    [36] Dong, C. J., Qian, H. H., Liu, Y. M., et al. An investigation on the suppression of the cone system by the rod system in the isolated frog retina. Sheng Li Xue Bao, 1986. 38(6): 555-564.
    [37] Dong, D. W., Atick, J. J. Statistics of natural time-varying images. Network: Comput. Neural Syst., 1995. 6: 345-358.
    [38] Dowling, J. E. The Retina: An Approachable Part of the Brain. Cambridge: Mass: Belknap Pres of Harvard University Press, 1987.
    [39] Dowling, J. E., Boycott, B.B. Organization of the primate retina: electron microscopy. Proc. R. Soc. Lond. B. Biol. Sci., 1966. 166(2): 80-111.
    [40] Dubin, M. W. The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J. Comp. Neurol., 1970. 140(4): 479-505.
    [41] Duff, T. A., Cohen, D. H. Retinal afferents to the pigeon optic tectum: discharge characteristics in response to whole field illumination. Brain Res., 1975. 92(1): 1-19.
    [42] Escabi, M. A., Miller, L. M., Read, H. L., Schreiner, C. E. Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. J. Neurosci., 2003. 23(37): 11489-11504.
    [43] Faber, V. Clustering and the continuous K-means algorithm. Los Alamos Science, 1994. 22: 138-144.
    [44] Fang, W. W. Disagreement degree of multi-person judgements in an additive structure. Mathemetical Social Sciences, 1994. 28: 85-111.
    [45] Fang, W. W., Roberts, F. S., Ma, Z. R. A measure of discrepancy of multiple sequences. Information Science, 2001. 137: 75-102.
    [46] Felsen, G., Dan, Y. A natural approach to studying vision. Nat. Neurosci., 2005. 8(12): 1643-1646.
    [47] Felsen, G., Touryan, J., Han, F., et al. Cortical sensitivity to visual features in natural scenes. PLoS Biol., 2005. 3(10): e342.
    [48] Field, D. J. What is the goal of sensory coding? Neural Comput., 1994. 6: 559-601.
    [49] Field, D. J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 1987. 4(12): 2379-2394.
    [50] Frechette, E. S., Sher, A., Grivich, M. I., et al. Fidelity of the ensemble code for visual motion in primate retina. J. Neurophysiol., 2005. 94: 119-135.
    [51] Fujita, I., Tanaka, K., Ito, M., et al. Columns for visual features of objects inmonkey inferotemporal cortex. Nature, 1992. 360(6402): 343-346.
    [52] Gerstein, G. L., Aertsen, A. M. Representation of cooperative firing activity among simultaneously recorded neurons. J. Neurophysiol., 1985. 54(6): 1513-1528.
    [53] Gerstner, W. Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput., 2000. 12(1): 43-89.
    [54] Gray, C. M., Maldonado, P. E., Wilson, M., et al. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods, 1995. 63(1-2): 43-54.
    [55] Greene, G., Barrett, D. G., Sen, K., et al. Sparse coding of birdsong and receptive field structure in songbirds. Network, 2009. 20(3): 162-177.
    [56] Grinvald, A., Lieke, E., Frostig, R. D., et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 1986. 324(6095): 361-364.
    [57] Hartline, H. K. Nobel Lecture. Visual receptors and retinal interaction. 1967. 269-287.
    [58] Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Phys., 1938. 121: 400-415.
    [59] Hellmann, B., Gunturkun, O. Structural Organization of Parallel Information Processing Within the Tectofugal Visual System of the Pigeon. J. Comp. Neurol., 2001. (429): 94-112.
    [60] Holden, A. L. Concentric receptive fields of pigeon ganglion cells. Vision Res., 1977. 17(4): 545-554.
    [61] Hubel, D. H., Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol., 1962. 160: 106-154.
    [62] Hubel, D. H., Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 1968. 195(1): 215-243.
    [63] Hubel, D. H., Wiesel, T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. Biol. Sci., 1977. 198(1130):1-59.
    [64] Hubel, D. H., Wiesel, T. N., Stryker, M. P. Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature, 1977. 269(5626): 328-330.
    [65] Husband, S., Schwartz, J. H. Evolution of the avian visual system. Avian visual cognition. Robert G. C. Tufts University, 2001. Cyberbook at http://www.pigeon.psy.tufts.edu/avc/.
    [66] Jin, X., Chen, A. H., Gong, H. Q., et al. Information transmission rate changes of retinal ganglion cells during contrast adaptation. Brain Res., 2005. 1055(1-2): 156-164.
    [67] Jing, W., Liu, W. Z., Gong, X. W., et al. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells' activities. Cogn. Neurodyn., 2010. 4(3): 179-188.
    [68] Kandel, E. R., Schwartz, J. H., Jessel, T. M., Principles of Neural Science. 4th edition. New York: 2000.
    [69] Kara, P., Reinagel, P., Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): 635-646.
    [70] Kayser, C., Salazar, R. F., Konig, P. Responses to natural scenes in cat V1. J. Neurophysiol. 2003. 90(3): 1910-1920.
    [71] Kiani, R., Esteky, H., Tanaka, K. Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. J. Neurophysiol., 2005. 94(2): 1587-1596.
    [72] Kolb, H. How the retina works. American Scientist, 2003. 91: 28-35.
    [73] Konig, P. A method for the quantification of synchrony and oscillatory properties of neuronal activity. J. Neurosci. Methods,1994. 54(1): 31-37.
    [74] Konig, P., Engel, A. K., Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci., 1996. 19(4): 130-137.
    [75] Koulakov, A. A., Chklovskii, D. B. Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron, 2001.29(2): 519-527.
    [76] Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 1953. 16(1): 37-68.
    [77] Kullback, S. Information theory and statistics. New York: John Wiley and Sons, Inc., 1959.
    [78] Laughlin, S. B., Sejnowski, T. J. Communication in neuronal networks. Science, 2003. 301(5641): 1870-1874.
    [79] Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci., 2002. 3(11): 884-895.
    [80] Legendy, C. R., Salcman, M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol., 1985. 53(4): 926-939.
    [81] Lennie, P. The cost of cortical computation. Curr. Biol., 2003. 13(6): 493-497.
    [82] Lesica, N. A., Stanley, G. B. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci., 2004. 24(47): 10731-10740.
    [83] Levy, W. B, Baxter, R. A. Energy efficient neural codes. Neural Comput., 1996. 8(3): 531-543.
    [84] Lewicki, M. S. Efficient coding of natural sounds. Nat. Neurosci., 2002. 5(4): 356-363.
    [85] Lewicki, M. S., Sejnowski, T. J. Learning overcomplete representations. Neural Comput., 2000. 12: 337-365.
    [86] Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol., 1983. 49(2): 303-324.
    [87] Meister, M. Multineuronal codes in retinal signaling. Proc. Natl. Acad. Sci. U S A, 1996. 93(2): 609-614.
    [88] Meister, M., Berry, M. J. The neural code of the retina. Neuron, 1999. 22(3): 435-450.
    [89] Meister, M., Lagnado, L., Baylor, D. A. Concerted signaling by retinalganglion cells. Science, 1995. 270(5239): 1207-1210.
    [90] Meister, M., Pine, J., Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods, 1994. 51(1): 95-106.
    [91] Miles, F. A. Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res., 1972. 48: 65-92.
    [92] Moors, J. J. A. The Meaning of Kurtosis: Darlington Reexamined. The American Statistician, 1986. 40(4): 283-284.
    [93] Nelken, I., Rotman, Y., Bar, Y. O. Responses of auditory-cortex neurons to structural features of natural sounds. Nature, 1999. 397(6715): 154-157.
    [94] Neuenschwander, S., Singer, W. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 1996. 379(6567): 728-732.
    [95] Nicholls, J. G., Martin, A. R, Wallace, B. G. From Neuron to Brain. 4th edition. Sunderland: MA: Sinauer Associates, 2001.
    [96] O'Keefe, J., Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res., 1971. 34(1): 171-175.
    [97] O'Keefe, J., Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res., 1987. 68(1): 1-27.
    [98] Olshausen, B. A., Field, D. J. Natural image statistics and efficient coding. Network, 1996. 7(2): 333-339.
    [99] Olshausen, B. A., Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res., 1997. 37(23): 3311-3325.
    [100] Olshausen, B. A., Field, D. J. How close are we to understanding V1? Neural Comput., 2005. 17(8): 1665-1699.
    [101] Olshausen, B. A., Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol., 2004. 14(4): 481-487.
    [102] Oram, M. W., Perrett, D. I. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol., 1992. 68(1): 70-84.
    [103] Pearlman, A. L., Hughes, C. P. Functional role of efferents to the avian retina.I. Analysis of retinal ganglion cell receptive fields. J. Comp. Neurol., 1976. 166(1): 111-122.
    [104] Perez-Orive, J., Mazor, O., Turner, G. C., et al. Oscillations and sparsening of odor representations in the mushroom body. Science, 2002. 297(5580): 359-365.
    [105] Pillow, J. W., Simoncelli, E. P. Biases in white noise analysis due to non-Poisson spike generation. Neurocomputing, 2003. 52-54: 109-115.
    [106] Polyak, S. The Vertebrate Visual System. Chicago: Univ. Chicago, 1957.
    [107] Poo, C., Isaacson, J. S. Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations. Neuron, 2009. 62(6): 850-861.
    [108] Prenger, R., Wu, M. C., David, S. V., et al. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw., 2004. 17(5-6): 663-679.
    [109] Rahman, M. L., Aoyama, M., Sugita, S. Number and density of retinal photoreceptor cells with emphasis on oil droplet distribution in the Mallard Duck (Anas platyrhynchos var. domesticus). Animal Science Journal, 2007b. 78: 639-649.
    [110] Rahman, M. L., Aoyama, M., Sugita, S. Topography of ganglion cells in the retina of the duck (Anas platyrhynchos var. domesticus). Animal Science Journal, 2007a. 78: 286-292.
    [111] Rahman, M. L., Aoyama, M., Sugita, S. Topography of retinal photoreceptor cells in the Jungle Crow (Corvus macrorhynchos) with emphasis on the distribution of oil droplets. Ornithological Science, 2007c. 6(1): 29-38.
    [112] Rahman, M. L., Sugita, S., Aoyama, M. Number, distribution and size of retinal ganglion cells in the jungle crow (Corvus macrorhynchos). Anat. Sci. Int., 2006. 81(4): 253-259.
    [113] Reid, R. C., Victor, J. D., Shapley, R. M. The use of m-sequences in the analysis of visual neurons: Linear receptive field properties. Visual Neurosci., 1997. 14: 1015-1027.
    [114] Reinagel, P. How do visual neurons respond in the real world? Curr. Opin.Neurobiol., 2001. 11(4): 437-442.
    [115] Rieke, F., Baylor, D. A. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J., 1996. 71(5): 2553-2572.
    [116] Rieke, F., Bodnar, D. A., Bialek, W. Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. Biol. Sci., 1995. 262(1365): 259-265.
    [117] Rieke, F., Warland, D., de Ruyter van Steveninck, R., et al. Spikes: Exploring the Neural Code. Cambridge: MIT, 1997.
    [118] Ringach, D. L., Hawken, M. J., Shapley, R. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J. Vis., 2002. 2: 12-24.
    [119] Rolfe, D. F., Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev., 1997. 77(3): 731-758.
    [120] Rolls, E. T. Invariant object and face recognition. MIT Press, 2004: 1165-1178.
    [121] Rolls, E. T., Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol., 1995. 73(2): 713-726.
    [122] Rolls, E. T., Treves, A. The relative advantages of sparse versus distributed encoding for associative neural networks in the brain. Network, 1990. (1): 407-421.
    [123] Ruppert, D. What is kurtosis?: An influence function approach. The American Statistician, 1987. 41(1): 1-5.
    [124] Rust, N. C., Movshon, J. A. In praise of artifice. Nat. Neurosci., 2005. 8(12): 1647-1650.
    [125] Ruthazer, E. S., Cline, H. T. Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. J. Neurobiol., 2004. 59(1): 134-146.
    [126] Sakurai, Y. How do cell assemblies encode information in the brain? Neurosci. Biobehav. Rev., 1999. 23(6): 785-796.
    [127] Scheller, D., Tegtmeier, F., Schlue, W. R. Dose-dependent effects oftetraethylammonium on circling spreading depressions in chicken retina. J. Neurosci. Res., 1998. 51(1): 85-89.
    [128] Schiller, P. H., Tehovnik, E. J. Neural mechanisms underlying target selection with saccadic eyemovements. Prog. Brain Res., 2005. 149: 157-171.
    [129] Schneidman, E., Berry, M. J, Segev, R., et al. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 2006. 440(7087): 1007-1012.
    [130] Schnitzer, M. J., Meister, M. Multineuronal firing patterns in the signal from eye to brain. Neuron, 2003. 37(3): 499-511.
    [131] Schwartz, G., Taylor, S., Fisher, C., et al. Synchronized firing among retinal ganglion cells signals motion reversal. Neuron, 2007. 55(6): 958-969.
    [132] Schwartz, O., Pillow, J. W., Rust, N. C., et al. Spike-triggered neural characterization. J. Vis. 2006. 6(4): 484-507.
    [133] Segev, R., Goodhouse, J., Puchalla, J., et al. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci., 2004. 7(10): 1154-1161.
    [134] Shapley, R., Perry, V. H. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci., 1986. 9: 229-235.
    [135] Simoncelli, E. P., Freeman, W. T., Adelson, E. H., et al. Shiftable multiscale transforms. IEEE Trans. Inform. Theory, 1992. 38(2): 587-607.
    [136] Simoncelli, E. P., Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci., 2001. 24: 1193-1216.
    [137] Sincich, L. C., Adams, D. L., Economides, J. R., Horton, J. C. Transmission of spike trains at the retinogeniculate synapse. J. Neurosci., 2007. 27(10): 2683-2692.
    [138] Smith, E. C., Lewicki, M. S. Efficient auditory coding. Nature, 2006. 439(7079): 978-982.
    [139] Stuermer, C. A., Easter, S. S. Jr., Rules of order in the retinotectal fascicles of goldfish. J. Neurosci., 1984. 4(4): 1045-1051.
    [140] Szczepanski, J., Amigo, J. M., Wajnryb, E., et al. Application of Lempel-Zivcomplexity to the analysis of neural discharges. Network, 2003. 14(2): 335-350.
    [141] Theunissen, F. E. From synchrony to sparseness. Trends Neurosci., 2003. 26(2): 61-64.
    [142] Thorpe, S., Delorme, A., Van Rullen, R. Spike-based strategies for rapid processing. Neural Netw., 2001. 14(6-7): 715-725.
    [143] Touryan, J., Felsen, G., Dan, Y. Spatial structure of complex cell receptive fields measured with natural images. Neuron, 2005. 45(5): 781-791.
    [144] Treves, A., Rolls, E. T. What determines the capacity of autoassociative memories in the brain? Network, 1991.(2): 371-397.
    [145] Uchiyama, H., Aoki, K., Yonezawa, S., et al. Retinal target cells of the centrifugal projection from the isthmo-optic nucleus. J. comp. Neurol., 2004. 476: 146-153.
    [146] Usrey, W. M., Alonso, J. M., Reid, R. C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci., 2000. 20(14): 5461-5467.
    [147] Usrey, W. M., Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol., 1999. 61: 435-456.
    [148] Usrey, W. M., Reppas, J. B., Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 1998. 395(6700): 384-387.
    [149] van Hateren, J. H., van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci., 1998. 265(1394): 359-366.
    [150] Van Rullen, R., Guyonneau, R., Thorpe, S. J. Spike times make sense. Trends Neurosci., 2005. 28(1): 1-4.
    [151] Van Rullen, R., Thorpe, S. J. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput., 2001. 13(6): 1255-1283.
    [152] Vinje, W. E., Gallant, J. L. Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. J. Neurosci., 2002.22(7): 2904-2915.
    [153] Vinje, W. E., Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000. 287(5456): 1273-1276.
    [154] Wang, G. L., Liu, X., Zhang, P. M., et al. A new method for multiple spike train analysis based on information discrepancy. LNCS, 2006b. 4232: 30-38.
    [155] Wang, G. L., Zhou, Y., Chen, A. H., et al. A robust method for spike sorting with automatic overlap decomposition. IEEE Trans. Biomed. Eng., 2006a. 53(6): 1195-1198.
    [156] Warland, D. K., Reinagel, P., Meister, M. Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol., 1997. 78(5): 2336-2350.
    [157] Weliky, M., Fiser, J., Hunt, R. H., et al. Coding of natural scenes in primary visual cortex. Neuron, 2003. 37(4): 703-718.
    [158] Willmore, B., Tolhurst, D. J. Characterizing the sparseness of neural codes. Network, 2001. 12(3): 255-270.
    [159] Wolburg, H., Liebner, S., Reichenbach, A., et al. The pecten oculi of the chicken: a model system for vascular differentiation and barrier maturation. Int. Rev. Cytol., 1999. 187: 111-159.
    [160] Wylie, D. R.W., Gutierrez-Ibanez, C., Pakan, J. M. P. The optic tectum of birds: Mapping our way to understanding visual processing. Can. J. Exp. Psychol., 2009. 63(4): 328-338.
    [161] Zhang, D. Q., Yang, X. L. The selective suppression of GABA on cone-driven horizontal cells in carp retina. Sheng Li Xue Bao, 1997. 49(6): 639-643.
    [162] Zhang, P. M., Wu, J. Y., Zhou, Y., et al. Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J. Neurosci. Methods, 2004. 135(1-2): 55-65.