人源CFI_m复合物识别pre-mRNA的分子机制及酵母Pub1蛋白结构的生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数的pre-mRNA的3’-端成熟包括核酸内切酶剪切和在上游剪切产物末端添加多聚腺苷酸末尾并需要多个蛋白复合物的参与。参与真核生物pre-mRNA3’-端加工的蛋白几乎都已被发现,其中Cleavage factor I (CFI_m)是一个参与多聚腺苷酸位点剪切过程的重要蛋白复合物,包含一个25 kDa亚基(CFI_m25)和三个较大的亚基中的任意一个(CFI_m59, CFI_m68, CFI_m72)。CFI_m识别AAUAAA上游的UGUAA元件从而促进pre-mRNA的3’-端加工复合物组装和提高体外多聚腺苷酸位点的体外剪切速率和效率。CFI_m也可通过与PAP和hFip1的相互作用调控不依赖AAUAAA信号的多聚腺苷酸末尾合成。将体外表达的CFI_m25-CFI_m68复合物添加到纯化后的3’-端加工因子中,可在体外实验中恢复多聚腺苷酸位点剪切活性。通过基因敲除抑制CFI_m25的表达不影响HeLa细胞的存活,但增加上游剪切位点的使用频率,说明CFI_m25在多聚腺苷酸位点选择中发挥重要作用。因此研究CFI_m复合物的结构和功能对于揭示多聚腺苷酸尾巴合成这一生物现象具有非常重要的意义。本论文研究了CFI_m复合物的晶体结构,阐述了CFI_m复合物识别pre-mRNA的分子机制。
     我们研究了CFI_m25和CFI_m68之间的相互作用,发现CFI_m68通过其氨基端的RRM结构域结合CFI_m25并解析了CFI_m25-CFI_m68RRM复合物的晶体结构。CFI_m68RRM通过一种新颖的RRM-蛋白相互作用模式与CFI_m25结合形成四聚体。突变实验揭示CFI_m68RRM与CFI_m25二体的两个分子均有相互作用,同时CFI_m25二聚化可稳定CFI_m68RRM的结合面,提示CFI_m25的二聚化具有关键的生物学意义。我们进一步解析了CFI_m25-CFI_m68RRM-RNA的三元复合物晶体结构。CFI_m复合物以四聚体形式结合两个UGUAA元件,CFI_m25亚基通过疏水作用,氢键作用和芳香族残基侧链与碱基环之间的共轭作用在其带正电的沟中特异性结合UGUAA元件。CFI_m25-CFI_m68RRM结合pre-mRNA的亲和力测定及突变实验发现CFI_m68RRM可结合UGUAA元件5’-末端序列并且复合物的形成可大大提高底物亲和力,说明CFI_m68也参与识别pre-mRNA,同时CFI_m25-CFI_m68复合物与pre-mRNA的结合具有协同性。这些研究揭示了CFI_m复合物识别pre-mRNA的分子机制。
     本文还介绍了酵母蛋白Pub1的结构生物学研究。Pub1是一个分布于细胞核和细胞质的蛋白,含有三个RRM结构域(Pub1-RRM1,Pub1-RRM2和Pub1-RRM3),调控细胞mRNA降解。已有的研究发现大约10%的mRNA的降解受到Pub1的调控。它可结合并稳定含ARE和类似ARE元件的mRNA来抑制其降解,同时也可结合并稳定含STE元件的mRNA来抑制NMD通路的降解作用。Pub1可在体外结合多聚尿嘧啶。我们成功解析Pub1-RRM2和连续RRM结构域Pub1-RRM1-RRM2(Pub1-RRM12)的结构。Pub1-RRM1和Pub1-RRM2具有典型RRM结构域的结构。结构生物学研究发现Pub1-RRM12中两个RRM结构域通过一段linker相连,结构域之间没有相互作用。Pub1-RRM12的晶体结构显示,Pub1-RRM12是一个CV-N类型domain-swapped二聚体。Pub1-RRM12与晶胞内的对称分子相互作用稳定了两个RRM结构域的空间位置。进一步研究发现Pub1-RRM12在溶液中是以单体形式存在的。通过点突变实验,我们确定了Pub1-RRM1和Pub1-RRM2结合多聚尿嘧啶的结合面及关键氨基酸残基。利用SPR技术,我们测定了三个RRM结构域和Pub1-RRM12结合10个和15个碱基多聚尿嘧啶的亲和力。结果显示Pub1的单个RRM结构域以相似的亲和力结合这两条多聚尿嘧啶。但是Pub1-RRM12结合15个碱基多聚尿嘧啶的亲和力显著高于10个碱基。这些研究结果为了解Pub1蛋白提高了结构生物学和生物化学的基础。
The maturation of the 3’-ends of most mRNAs is catalyzed by multiple protein complexes, including the endo-nucleolytic cleavage of primary transcripts and addition of poly(A) tails to the upstream cleavage products. Nearly all the critical protein complexes involved in eukaryotic pre-mRNA 3’-end processing have been identified. Cleavage factor I (CFI_m), consisting of a 25 kDa subunit (CFI_m25) and one of the three larger subunits (CFI_m59, CFI_m68, CFI_m72), is required for the 3’-end cleavage. CFI_m binds to the UGUAA elements upstream of AAUAAA elements of the pre-mRNA substrates that facilitates pre-mRNA 3’-end processing complex assembly and enhance the rate and overall efficiency of poly(A) site cleavage in vitro. Sequence-specific binding of CFI_m to pre-mRNA directs A(A/U)UAAA-independent poly(A) addition through interacting with poly(A) polymerase and hFip1. When added to partially purified 3’-end processing factors, recombinant CFI_m25-CFI_m68 complex was sufficient to reconstitute poly(A) site cleavage activity in vitro. Repression of CFI_m25-CFI_m68 complex activity by knocking down CFI_m25 does not affect the HeLa cell viability, but increases upstream poly(A) site usage, suggesting CFI_m25 plays an important role in poly(A) site selection. Therefore, it is important to exploring the structure-function relationship of CFI_m. This thesis presents the structural basis for pre-mRNA recognition by CFI_m.
     CFI_m68 interacts with CFI_m25 through its N-terminal RRM domain (CFI_m68RRM). We determined the crystal structure of CFI_m25-CFI_m68RRM complex, revealing that CFI_m68RRM interacts with CFI_m25 through a novel RRM-protein interaction mode to form a tetramer. Mutagenesis analysis and pull-down experiment showed that CFI_m25 dimerization is crucial for CFI_m complex assembly, suggesting CFI_m complex is possibly a tetramer in vivo. We also determined the crystal structure of CFI_m25-CFI_m68RRM-RNA complex. The CFI_m25-CFI_m68RRM tetramer binds two UGUAA elements in the positively charged cavities of the CFI_m25 dimer via hydrogen-bonds, hydrophobic contacts and base pair stacking. The kinetic analysis demonstrates that CFI_m complex assembly increases pre-mRNA binding affinity, and the subsequent mutagenesis analysis reveals the RNA binding surface of CFI_m68, suggesting CFI_m68 may bind the immediately flanking region at 5’-end of the UGUAA element.
     This thesis also presents the structural investigation of yeast poly(U) binding protein (Pub1). Yeast poly(U)-binding protein (Pub1) is a major nuclear and cytoplasmic protein, containing three RNA recognition motif (RRM) domains (termed Pub1-RRM1, Pub1-RRM2 and Pub1-RRM3), which has been implicated as a regulator of cellular mRNA decay. Nearly 10% of all yeast mRNAs decay occurs in a Pub1-dependent manner. Pub1 binds to and stabilizes AU-rich element (ARE) and ARE-like sequence-containing transcripts by protecting them from degradation through the deadenylation-dependent pathway, and also binds to and stabilizes stabilizer element (STE)-containing transcripts by preventing their degradation via the nonsense-mediated decay (NMD) pathway. We determined the crystal structures of Pub1-RRM2 and the first two tandem RRM domains (Pub1-RRM12). Pub1-RRM1 and Pub1-RRM2 adopt the canonicalαβsandwich structures of RRM domains. Pub1-RRM12 forms a CV-N type domain-swapped dimmer by crystal packing. Size exclusion chromatography assay and analysitcal ultracentrifugation (AUC) showed Pub1-RRM12 is a monomer in solution. Mutagenesis analysis revealed five residues, located on the twoβ-sheets of Pub1-RRM1 and Pub1-RRM2, are critical for poly(U) binding. Kinetic analysis showed that all the three individual RRM domains can bind to a 10- or 15-base poly(U) segment with similar affinities, whereas Pub1-RRM12 binds to the 15-base poly(U) segment with the affinity approximately an order of magnitude higher than the 10-base poly(U) segment. Our studies provide structural and biochemical information for Pub1.
引文
1. Colgan, D.F. and J.L. Manley, Mechanism and regulation of mRNA polyadenylation. Genes Dev, 1997. 11(21): p. 2755-66.
    2. Zhao, J., L. Hyman, and C. Moore, Formation of mRNA 3’ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev, 1999. 63(2): p. 405-45.
    3. Edmonds, M. and R. Abrams, Polynucleotide biosynthesis: formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J Biol Chem, 1960. 235: p. 1142-9.
    4. Darnell, J.E., R. Wall, and R.J. Tushinski, An adenylic acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc Natl Acad Sci U S A, 1971. 68(6): p. 1321-5.
    5. Edmonds, M., M.H. Vaughan, Jr., and H. Nakazato, Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci U S A, 1971. 68(6): p. 1336-40.
    6. Lee, S.Y., J. Mendecki, and G. Brawerman, A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc Natl Acad Sci U S A, 1971. 68(6): p. 1331-5.
    7. Manley, J.L., P.A. Sharp, and M.L. Gefter, Rna synthesis in isolated nuclei processing of adenovirus serotype 2 late messenger rna precursors. J Mol Biol, 1982. 159(4): p. 581-99.
    8. Nevins, J.R. and J.E. Darnell, Jr., Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell, 1978. 15(4): p. 1477-93.
    9. Vinciguerra, P. and F. Stutz, mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol, 2004. 16(3): p. 285-92.
    10. Huang, Y. and G.G. Carmichael, Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol, 1996. 16(4): p. 1534-42.
    11. Wickens, M., P. Anderson, and R.J. Jackson, Life and death in the cytoplasm: messages from the 3’end. Curr Opin Genet Dev, 1997. 7(2): p. 220-32.
    12. Wilusz, C.J., M. Wormington, and S.W. Peltz, The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol, 2001. 2(4): p. 237-46.
    13. Wormington, M., A.M. Searfoss, and C.A. Hurney, Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. Embo J, 1996. 15(4): p. 900-9.
    14. Chekanova, J.A. and D.A. Belostotsky, MicroRNAs and messenger RNA turnover. Methods Mol Biol, 2006. 342: p. 73-85.
    15. Proudfoot, N., New perspectives on connecting messenger RNA 3’end formation to transcription. Curr Opin Cell Biol, 2004. 16(3): p. 272-8.
    16. Gilmartin, G.M., Eukaryotic mRNA 3’processing: a common means to different ends. Genes Dev, 2005. 19(21): p. 2517-21.
    17. Beaudoing, E., et al., Patterns of variant polyadenylation signal usage in human genes. Genome Res, 2000. 10(7): p. 1001-10.
    18. Tian, B., et al., A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res, 2005. 33(1): p. 201-12.
    19. Proudfoot, N.J. and G.G. Brownlee, 3’non-coding region sequences in eukaryotic messenger RNA. Nature, 1976. 263(5574): p. 211-4.
    20. Manley, J.L., Polyadenylation of mRNA precursors. Biochim Biophys Acta, 1988. 950(1): p. 1-12.
    21. Higgs, D.R., et al., Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 1983. 306(5941): p. 398-400.
    22. Fitzgerald, M. and T. Shenk, The sequence 5’-AAUAAA-3’forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell, 1981. 24(1): p. 251-60.
    23. Simonsen, C.C. and A.D. Levinson, Analysis of processing and polyadenylation signals of the hepatitis B virus surface antigen gene by using simian virus 40-hepatitis B virus chimeric plasmids. Mol Cell Biol, 1983. 3(12): p. 2250-8.
    24. Chou, Z.F., F. Chen, and J. Wilusz, Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res, 1994. 22(13): p. 2525-31.
    25. Gil, A. and N.J. Proudfoot, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3’end formation. Cell, 1987. 49(3): p. 399-406.
    26. McLauchlan, J., et al., The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3’termini. Nucleic Acids Res, 1985. 13(4): p. 1347-68.
    27. Sittler, A., H. Gallinaro, and M. Jacob, Upstream and downstream cis-acting elements forcleavage at the L4 polyadenylation site of adenovirus-2. Nucleic Acids Res, 1994. 22(2): p. 222-31.
    28. McDevitt, M.A., et al., Sequences capable of restoring poly(A) site function define two distinct downstream elements. Embo J, 1986. 5(11): p. 2907-13.
    29. Zarkower, D. and M. Wickens, A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3’-end formation and for assembly of a precleavage complex in vitro. J Biol Chem, 1988. 263(12): p. 5780-8.
    30. Takagaki, Y. and J.L. Manley, RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol, 1997. 17(7): p. 3907-14.
    31. Chen, F., C.C. MacDonald, and J. Wilusz, Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res, 1995. 23(14): p. 2614-20.
    32. Gilmartin, G.M., et al., CPSF recognition of an HIV-1 mRNA 3’-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev, 1995. 9(1): p. 72-83.
    33. MacDonald, C.C., J. Wilusz, and T. Shenk, The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol, 1994. 14(10): p. 6647-54.
    34. Sheets, M.D., S.C. Ogg, and M.P. Wickens, Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res, 1990. 18(19): p. 5799-805.
    35. Hu, J., et al., Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. Rna, 2005. 11(10): p. 1485-93.
    36. Brackenridge, S. and N.J. Proudfoot, Recruitment of a basal polyadenylation factor by the upstream sequence element of the human lamin B2 polyadenylation signal. Mol Cell Biol, 2000. 20(8): p. 2660-9.
    37. Huang, Y., K.M. Wimler, and G.G. Carmichael, Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. Embo J, 1999. 18(6): p. 1642-52.
    38. Brown, K.M. and G.M. Gilmartin, A mechanism for the regulation of pre-mRNA 3’processing by human cleavage factor Im. Mol Cell, 2003. 12(6): p. 1467-76.
    39. Sartini, B.L., et al., Pre-messenger RNA Cleavage Factor I (CFIm): Potential Role in Alternative Polyadenylation During Spermatogenesis. Biol Reprod, 2007.
    40. Venkataraman, K., K.M. Brown, and G.M. Gilmartin, Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev, 2005. 19(11): p. 1315-27.
    41. Moore, C.L. and P.A. Sharp, Site-specific polyadenylation in a cell-free reaction. Cell, 1984. 36(3): p. 581-91.
    42. Dantonel, J.C., et al., Transcription factor TFIID recruits factor CPSF for formation of 3’end of mRNA. Nature, 1997. 389(6649): p. 399-402.
    43. McCracken, S., et al., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 1997. 385(6614): p. 357-61.
    44. Murthy, K.G. and J.L. Manley, The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3’-end formation. Genes Dev, 1995. 9(21): p. 2672-83.
    45. Moore, C.L., J. Chen, and J. Whoriskey, Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding. Embo J, 1988. 7(10): p. 3159-69.
    46. Dominski, Z., Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol, 2007. 42(2): p. 67-93.
    47. Ma, Y., et al., Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 2002. 108(6): p. 781-94.
    48. Moshous, D., et al., Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell, 2001. 105(2): p. 177-86.
    49. Mathy, N., et al., 5’-to-3’exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5’stability of mRNA. Cell, 2007. 129(4): p. 681-92.
    50. Ishii, R., et al., Crystal structure of the tRNA 3’processing endoribonuclease tRNase Z from Thermotoga maritima. J Biol Chem, 2005. 280(14): p. 14138-44.
    51. Li de la Sierra-Gallay, I., et al., Structure of the ubiquitous 3’processing enzyme RNase Z bound to transfer RNA. Nat Struct Mol Biol, 2006. 13(4): p. 376-7.
    52. Ryan, K., O. Calvo, and J.L. Manley, Evidence that polyadenylation factor CPSF-73 is the mRNA 3’processing endonuclease. Rna, 2004. 10(4): p. 565-73.
    53. Dominski, Z., X.C. Yang, and W.F. Marzluff, The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell, 2005. 123(1): p. 37-48.
    54. Mandel, C.R., et al., Polyadenylation factor CPSF-73 is the pre-mRNA 3’-end-processing endonuclease. Nature, 2006. 444(7121): p. 953-6.
    55. Jenny, A., et al., Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I. Science, 1996. 274(5292): p. 1514-7.
    56. Aravind, L., An evolutionary classification of the metallo-beta-lactamase fold proteins. In Silico Biol, 1999. 1(2): p. 69-91.
    57. Callebaut, I., et al., Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res, 2002. 30(16): p. 3592-601.
    58. Dominski, Z., et al., A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol Cell Biol, 2005. 25(4): p. 1489-500.
    59. Barabino, S.M., M. Ohnacker, and W. Keller, Distinct roles of two Yth1p domains in 3’-end cleavage and polyadenylation of yeast pre-mRNAs. Embo J, 2000. 19(14): p. 3778-87.
    60. Barabino, S.M., et al., The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev, 1997. 11(13): p. 1703-16.
    61. Tacahashi, Y., S. Helmling, and C.L. Moore, Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation factor. Nucleic Acids Res, 2003. 31(6): p. 1744-52.
    62. Noah, D.L., K.Y. Twu, and R.M. Krug, Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3’end processing of cellular pre-mRNAS. Virology, 2003. 307(2): p. 386-95.
    63. Bai, C. and P.P. Tolias, Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein. Mol Cell Biol, 1996. 16(12): p. 6661-7.
    64. Kaufmann, I., et al., Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. Embo J, 2004. 23(3): p. 616-26.
    65. Wilusz, J. and T. Shenk, A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell, 1988. 52(2): p. 221-8.
    66. Deka, P., et al., Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein. J Mol Biol, 2005. 347(4): p. 719-33.
    67. Perez Canadillas, J.M. and G. Varani, Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. Embo J, 2003. 22(11): p. 2821-30.
    68. Hatton, L.S., et al., The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene. Nucleic Acids Res, 2000. 28(2): p. 520-6.
    69. Takagaki, Y. and J.L. Manley, Complex protein interactions within the humanpolyadenylation machinery identify a novel component. Mol Cell Biol, 2000. 20(5): p. 1515-25.
    70. Qu, X., et al., The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3’-end processing. J Biol Chem, 2007. 282(3): p. 2101-15.
    71. Juge, F., et al., Tissue-specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells. Rna, 2000. 6(11): p. 1529-38.
    72. Benoit, B., et al., Chimeric human CstF-77/Drosophila Suppressor of forked proteins rescue suppressor of forked mutant lethality and mRNA 3’end processing in Drosophila. Proc Natl Acad Sci U S A, 2002. 99(16): p. 10593-8.
    73. Preker, P.J. and W. Keller, The HAT helix, a repetitive motif implicated in RNA processing. Trends Biochem Sci, 1998. 23(1): p. 15-6.
    74. Bai, Y., et al., Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell, 2007. 25(6): p. 863-75.
    75. Bai, Y., T.C. Auperin, and L. Tong, The use of in situ proteolysis in the crystallization of murine CstF-77. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007. 63(Pt 2): p. 135-8.
    76. Legrand, P., et al., The structure of the CstF-77 homodimer provides insights into CstF assembly. Nucleic Acids Res, 2007. 35(13): p. 4515-22.
    77. Takagaki, Y. and J.L. Manley, A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature, 1994. 372(6505): p. 471-4.
    78. McCracken, S., et al., An evolutionarily conserved role for SRm160 in 3’-end processing that functions independently of exon junction complex formation. J Biol Chem, 2003. 278(45): p. 44153-60.
    79. Kleiman, F.E. and J.L. Manley, Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science, 1999. 285(5433): p. 1576-9.
    80. Kleiman, F.E. and J.L. Manley, The BARD1-CstF-50 interaction links mRNA 3’end formation to DNA damage and tumor suppression. Cell, 2001. 104(5): p. 743-53.
    81. Ryan, K., Pre-mRNA 3’cleavage is reversibly inhibited in vitro by cleavage factor dephosphorylation. RNA Biol, 2007. 4(1): p. 26-33.
    82. de Vries, H., et al., Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. Embo J, 2000. 19(21): p. 5895-904.
    83. Barilla, D., B.A. Lee, and N.J. Proudfoot, Cleavage/polyadenylation factor IA associateswith the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2001. 98(2): p. 445-50.
    84. Sadowski, M., et al., Independent functions of yeast Pcf11p in pre-mRNA 3’end processing and in transcription termination. Embo J, 2003. 22(9): p. 2167-77.
    85. Gross, S. and C. Moore, Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6080-5.
    86. Edmonds, M., A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol, 2002. 71: p. 285-389.
    87. Bard, J., et al., Structure of yeast poly(A) polymerase alone and in complex with 3’-dATP. Science, 2000. 289(5483): p. 1346-9.
    88. Kyriakopoulou, C.B., H. Nordvarg, and A. Virtanen, A novel nuclear human poly(A) polymerase (PAP), PAP gamma. J Biol Chem, 2001. 276(36): p. 33504-11.
    89. Martin, G., W. Keller, and S. Doublie, Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. Embo J, 2000. 19(16): p. 4193-203.
    90. Martin, G., et al., Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J Mol Biol, 2004. 341(4): p. 911-25.
    91. Martin, G. and W. Keller, Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. Embo J, 1996. 15(10): p. 2593-603.
    92. Balbo, P.B. and A. Bohm, Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure, 2007. 15(9): p. 1117-31.
    93. Balbo, P.B., G. Meinke, and A. Bohm, Kinetic studies of yeast polyA polymerase indicate an induced fit mechanism for nucleotide specificity. Biochemistry, 2005. 44(21): p. 7777-86.
    94. Balbo, P.B., J. Toth, and A. Bohm, X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. J Mol Biol, 2007. 366(5): p. 1401-15.
    95. Bienroth, S., W. Keller, and E. Wahle, Assembly of a processive messenger RNA polyadenylation complex. Embo J, 1993. 12(2): p. 585-94.
    96. Sachs, A.B. and R.W. Davis, The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell, 1989. 58(5): p. 857-67.
    97. Keller, R.W., et al., The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J Mol Biol, 2000. 297(3): p. 569-83.
    98. Meyer, S., C. Urbanke, and E. Wahle, Equilibrium studies on the association of the nuclear poly(A) binding protein with poly(A) of different lengths. Biochemistry, 2002. 41(19): p. 6082-9.
    99. Kerwitz, Y., et al., Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. Embo J, 2003. 22(14): p. 3705-14.
    100. Deo, R.C., et al., Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 1999. 98(6): p. 835-45.
    101. Kolev, N.G. and J.A. Steitz, Symplekin and multiple other polyadenylation factors participate in 3’-end maturation of histone mRNAs. Genes Dev, 2005. 19(21): p. 2583-92.
    102. Hofmann, I., et al., Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell, 2002. 13(5): p. 1665-76.
    103. Barnard, D.C., et al., Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell, 2004. 119(5): p. 641-51.
    104. Phatnani, H.P. and A.L. Greenleaf, Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev, 2006. 20(21): p. 2922-36.
    105. Hirose, Y. and J.L. Manley, RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 1998. 395(6697): p. 93-6.
    106. Ryan, K., et al., Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3’cleavage. Mol Cell Biol, 2002. 22(6): p. 1684-92.
    107. Dreyfuss, G., M.S. Swanson, and S. Pinol-Roma, Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci, 1988. 13(3): p. 86-91.
    108. Adam, S.A., et al., mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol, 1986. 6(8): p. 2932-43.
    109. Swanson, M.S., et al., Primary structure of human nuclear ribonucleoprotein particle C proteins: conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and pre-rRNA-binding proteins. Mol Cell Biol, 1987. 7(5): p. 1731-9.
    110. Bandziulis, R.J., M.S. Swanson, and G. Dreyfuss, RNA-binding proteins as developmental regulators. Genes Dev, 1989. 3(4): p. 431-7.
    111. Birney, E., S. Kumar, and A.R. Krainer, Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res, 1993. 21(25): p. 5803-16.
    112. Kenan, D.J., C.C. Query, and J.D. Keene, RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci, 1991. 16(6): p. 214-20.
    113. Maruyama, K., N. Sato, and N. Ohta, Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res, 1999. 27(9): p. 2029-36.
    114. Bateman, A., et al., The Pfam protein families database. Nucleic Acids Res, 2002. 30(1): p. 276-80.
    115. De Guzman, R.N., et al., Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science, 1998. 279(5349): p. 384-8.
    116. Hudson, B.P., et al., Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol, 2004. 11(3): p. 257-64.
    117. Kozlov, G., et al., Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4409-13.
    118. Lin, K.T., R.M. Lu, and W.Y. Tarn, The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol, 2004. 24(20): p. 9176-85.
    119. Roy, G., et al., Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol, 2002. 22(11): p. 3769-82.
    120. Sudol, M., K. Sliwa, and T. Russo, Functions of WW domains in the nucleus. FEBS Lett, 2001. 490(3): p. 190-5.
    121. Schuster, G. and W. Gruissem, Chloroplast mRNA 3’end processing requires a nuclear-encoded RNA-binding protein. Embo J, 1991. 10(6): p. 1493-502.
    122. Vermel, M., et al., A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci U S A, 2002. 99(9): p. 5866-71.
    123. Nagai, K., et al., Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature, 1990. 348(6301): p. 515-20.
    124. Liker, E., et al., The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. Embo J, 2000. 19(21): p. 5587-98.
    125. Perez-Alvarado, G.C., et al., Structure of the nuclear factor ALY: insights into post-transcriptional regulatory and mRNA nuclear export processes. Biochemistry, 2003. 42(24): p. 7348-57.
    126. Avis, J.M., et al., Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J Mol Biol, 1996. 257(2): p. 398-411.
    127. Jacks, A., et al., Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element. Structure, 2003. 11(7): p. 833-43.
    128. Conte, M.R., et al., Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. Embo J, 2000. 19(12): p. 3132-41.
    129. Simpson, P.J., et al., Structure and RNA interactions of the N-terminal RRM domains of PTB. Structure, 2004. 12(9): p. 1631-43.
    130. Kielkopf, C.L., S. Lucke, and M.R. Green, U2AF homology motifs: protein recognition in the RRM world. Genes Dev, 2004. 18(13): p. 1513-26.
    131. Oubridge, C., et al., Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature, 1994. 372(6505): p. 432-8.
    132. Allain, F.H., et al., Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. Embo J, 2000. 19(24): p. 6870-81.
    133. Allain, F.H., et al., Specificity of ribonucleoprotein interaction determined by RNA folding during complex formulation. Nature, 1996. 380(6575): p. 646-50.
    134. Ding, J., et al., Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev, 1999. 13(9): p. 1102-15.
    135. Handa, N., et al., Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature, 1999. 398(6728): p. 579-85.
    136. Johansson, C., et al., Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J Mol Biol, 2004. 337(4): p. 799-816.
    137. Mazza, C., et al., Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. Embo J, 2002. 21(20): p. 5548-57.
    138. Price, S.R., P.R. Evans, and K. Nagai, Crystal structure of the spliceosomal U2B"-U2A’protein complex bound to a fragment of U2 small nuclear RNA. Nature, 1998. 394(6694): p. 645-50.
    139. Varani, L., et al., The NMR structure of the 38 kDa U1A protein - PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. Nat Struct Biol, 2000. 7(4): p. 329-35.
    140. Wang, X. and T.M. Tanaka Hall, Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol, 2001. 8(2): p. 141-5.
    141. Allain, F.H., et al., Solution structure of the two N-terminal RNA-binding domains ofnucleolin and NMR study of the interaction with its RNA target. J Mol Biol, 2000. 303(2): p. 227-41.
    142. Allers, J. and Y. Shamoo, Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol, 2001. 311(1): p. 75-86.
    143. Varani, G. and K. Nagai, RNA recognition by RNP proteins during RNA processing. Annu Rev Biophys Biomol Struct, 1998. 27: p. 407-45.
    144. Showalter, S.A. and K.B. Hall, Altering the RNA-binding mode of the U1A RBD1 protein. J Mol Biol, 2004. 335(2): p. 465-80.
    145. Crowder, S.M., et al., Absence of interdomain contacts in the crystal structure of the RNA recognition motifs of Sex-lethal. Proc Natl Acad Sci U S A, 1999. 96(9): p. 4892-7.
    146. Grabowski, P.J. and D.L. Black, Alternative RNA splicing in the nervous system. Prog Neurobiol, 2001. 65(3): p. 289-308.
    147. Shamoo, Y., et al., Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nat Struct Biol, 1997. 4(3): p. 215-22.
    148. Xu, R.M., et al., Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure, 1997. 5(4): p. 559-70.
    149. Calero, G., et al., Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol, 2002. 9(12): p. 912-7.
    150. Mazza, C., et al., Crystal structure of the human nuclear cap binding complex. Mol Cell, 2001. 8(2): p. 383-96.
    151. Mazza, C., et al., Co-crystallization of the human nuclear cap-binding complex with a m7GpppG cap analogue using protein engineering. Acta Crystallogr D Biol Crystallogr, 2002. 58(Pt 12): p. 2194-7.
    152. Bono, F., et al., Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep, 2004. 5(3): p. 304-10.
    153. Fribourg, S., et al., A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol, 2003. 10(6): p. 433-9.
    154. Lau, C.K., et al., Structure of the Y14-Magoh core of the exon junction complex. Curr Biol, 2003. 13(11): p. 933-41.
    155. Selenko, P., et al., Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell, 2003. 11(4): p. 965-76.
    156. Kadlec, J., E. Izaurralde, and S. Cusack, The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat Struct Mol Biol, 2004. 11(4): p. 330-7.
    157. Kielkopf, C.L., et al., A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell, 2001. 106(5): p. 595-605.
    158. Ruegsegger, U., D. Blank, and W. Keller, Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell, 1998. 1(2): p. 243-53.
    159. Ruegsegger, U., K. Beyer, and W. Keller, Purification and characterization of human cleavage factor Im involved in the 3’end processing of messenger RNA precursors. J Biol Chem, 1996. 271(11): p. 6107-13.
    160. Kubo, T., et al., Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3’-UTRs. Nucleic Acids Res, 2006.
    161. Bessman, M.J., D.N. Frick, and S.F. O’Handley, The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem, 1996. 271(41): p. 25059-62.
    162. Smith, C.W. and J. Valcarcel, Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci, 2000. 25(8): p. 381-8.
    163. Dettwiler, S., et al., Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem, 2004. 279(34): p. 35788-97.
    164. Coseno, M., et al., Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res, 2008. 36(10): p. 3474-83.
    165. Z. Otwinowski, W.M., Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology, 1997. 276(Macromolecular Crystallography): p. 307-326,.
    166. McCoy A. J., G.-K.R.W., Adams P. D., Winn M. D., Storoni L. C. and Read R. J. , Phaser crystallographic software. J. Appl. Cryst, 2007. 40: p. 658-674
    167. Vagin A, T.A., MOLREP: an automated program for molecular replacement. J Appl Crystallogr, 1997. 30: p. 1022–1025.
    168. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32.
    169. Brunger, A.T., et al., Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 905-21.
    170. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 3): p. 240-55.
    171. Davis, I.W., et al., MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res, 2007. 35(Web Server issue): p. W375-83.
    172. Chenna, R., et al., Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 2003. 31(13): p. 3497-500.
    173. Gouet, P., et al., ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 1999. 15(4): p. 305-8.
    174. Clery, A., M. Blatter, and F.H. Allain, RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol, 2008. 18(3): p. 290-8.
    175. Maris, C., C. Dominguez, and F.H. Allain, The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. Febs J, 2005. 272(9): p. 2118-31.
    176. McLennan, A.G., The Nudix hydrolase superfamily. Cell Mol Life Sci, 2006. 63(2): p. 123-43.
    177. ElAntak, L., et al., Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J Biol Chem, 2007. 282(11): p. 8165-74.
    178. Corsini, L., et al., U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol, 2007. 14(7): p. 620-9.
    179. Schellenberg, M.J., et al., Crystal structure of a core spliceosomal protein interface. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1266-71.
    180. Rideau, A.P., et al., A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nat Struct Mol Biol, 2006. 13(9): p. 839-48.
    181. Mandel, C.R., Y. Bai, and L. Tong, Protein factors in pre-mRNA 3’-end processing. Cell Mol Life Sci, 2008. 65(7-8): p. 1099-122.
    182. Vasudevan, S. and S.W. Peltz, Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell, 2001. 7(6): p. 1191-200.
    183. Ruiz-Echevarria, M.J. and S.W. Peltz, The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell, 2000. 101(7): p. 741-51.
    184. Anderson, J.T., M.R. Paddy, and M.S. Swanson, PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae. Mol Cell Biol, 1993. 13(10): p. 6102-13.
    185. Duttagupta, R., et al., Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol Cell Biol, 2005. 25(13): p.5499-513.
    186. Hollams, E.M., et al., MRNA stability and the control of gene expression: implications for human disease. Neurochem Res, 2002. 27(10): p. 957-80.
    187. Vilela, C., et al., The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex. Embo J, 2000. 19(16): p. 4372-82.
    188. Vilela, C., et al., The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res, 1998. 26(5): p. 1150-9.
    189. Cui, Y., et al., Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev, 1995. 9(4): p. 423-36.
    190. Ruiz-Echevarria, M.J., C.I. Gonzalez, and S.W. Peltz, Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. Embo J, 1998. 17(2): p. 575-89.
    191. Matunis, M.J., E.L. Matunis, and G. Dreyfuss, PUB1: a major yeast poly(A)+ RNA-binding protein. Mol Cell Biol, 1993. 13(10): p. 6114-23.
    192. Otwinowski, Z.M., W., Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology, 1997. 276: p. 307-326.
    193. Holm, L. and C. Sander, Protein structure comparison by alignment of distance matrices. J Mol Biol, 1993. 233(1): p. 123-38.
    194. Oberstrass, F.C., et al., Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science, 2005. 309(5743): p. 2054-7.
    195. Yang Q, Gilmartin GM, DoubliéS. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3’processing. Proceedings of the National Academy of Sciences of the United States of America 2010; 107 (22):10062-10067.