用户名: 密码: 验证码:
考虑飞/推耦合特性的超燃冲压发动机控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用超燃冲压发动机推进的吸气式高超声速飞行器在可预见的未来空天运输和军事领域具有强烈的应用前景。吸气式高超声速推进系统即超燃冲压发动机面临很多关键技术亟待突破,目前美国、俄罗斯、欧洲、澳大利亚、日本等军事大国和组织都投入巨大的人力、物力和财力加紧进行攻关研究,尤其美国、俄罗斯等国已进入飞行试验阶段。为缩小我国在国防尖端技术领域与其他军事强国之间的差距,占据未来吸气式高超声速推进技术的制高点,有必要对该领域的相关关键技术难题进行探索和研究。本文针对高超声速飞行器机身/超燃冲压发动机一体化耦合建模与控制方面面临的挑战,对一些关键技术难题作了研究。
     首先,开展了高超声速飞行器机身/超燃冲压发动机一体化建模研究。针对高超声速飞行器机身/超燃冲压发动机一体化控制设计对建模提出的要求,采用特性分析、CFD计算、试验数据验证、数据拟合等多种方法,建立了含安全边界的高超声速飞行器机身/超燃冲压发动机耦合模型HIT-HAV。其中重点探讨了对各种安全边界的建模过程。最终建立高超声速飞行器机身/超燃冲压发动机耦合模型HIT-HAV不仅可以输出各种飞行状态,还包含超燃冲压发动机各个截面的气动参数、推力及各种安全边界。最后对所建立的模型进行了比较分析和验证。
     其次,分析了高超声速飞行器存在的特殊耦合特性。基于已建立的含安全边界的高超声速飞行器机身/超燃冲压发动机耦合模型HIT-HAV,分析了气动力/推力耦合特性对飞行动力学的影响;然后通过仿真分析了高超声速飞行器机身与超燃冲压发动机之间存在的耦合作用,以及耦合作用对机身及超燃冲压发动机在运行过程中的各种安全边界的影响;然后基于耦合特性对模型结构带来的影响以及传统飞行控制面临的挑战,分析阐述了进行高超声速飞行器机身/超燃冲压发动机一体化控制的必要性,并指出在一体化控制框架下的超燃冲压发动机切换控制必要性。
     接下来,开展超燃冲压发动机的性能调节/安全保护切换控制设计方法研究。针对高超声速飞行控制及超燃冲压发动机控制中普遍存在的多控制器切换问题,描述了一种基于Min/Max规则的调节/保护切换控制系统,给出了在Min切换规则下切换子系统的稳定性条件。分析了切换的必要条件即积分饱和受限的作用及其对切换快速性的影响。分析了切换系统依赖于初始状态的动态响应过程并在初始状态参数空间里求出了最大百分比超调量的最大值,定义其为闭环切换系统的一种保守动态性能。接下来给出了面向动态性能指标的切换控制系统一般设计方法,最后在超燃冲压发动机模型及高超声速飞行器耦合模型HIT-HAV上进行了仿真试验,验证了该切换控制方法的有效性。
     最后,探讨了进行高超声速飞行器全新飞/推协调控制的方案。基于尽量降低设计难度和节约成本的考虑,提出了一种基于安全裕度的高超声速飞行器飞/推协调控制方法。其基本思想是:在不改变原有飞行器控制系统和发动机控制系统结构的前提下,引入了一种基于飞行器和发动机安全裕度的动态协调因子,用动态协调因子来引导各个控制器改变控制信号对当前的工作状态进行控制。由于安全裕度表征了飞行器和发动机工作点距离安全运行边界的远近程度,因此通过实时检测安全裕度进而改变动态协调因子的方法,就能在飞行性能和飞行安全之间进行协调控制。最后通过一个设计实例,验证了该方法在高超声速飞行器飞/推一体化控制应用中的可行性。
The scramjet-powered hypersonic air-breathing flight vehicle has a wide application background especially in space transportation and the military in the foreseeable future. And there are many key problems are urgent to be solved in hypersonic air-breathing propulsion technology. Nowadays, many military powers and organizations including the U.S., Russia, Europe, Australia, Japan, and so forth, have been engaged on this field with great human resources and financial support to conduct hypersonic air-breathing propulsion projects. And those programs in the U.S. and Russia are already under the flight test phase and will soon reach to a success. In order to reduce the gap and distance in the top defense technologies in the future between China and other great military powers, and take a place at air-breathing hypersonic propulsion technology, it is quite necessary for Chinese researchers to consider and solve some key technical problems related to the field at present.
     First, the model for the airframe-scramjet integrated hypersonic airbreathing flight vehicle with safety boundaries is developed. Based on the special request on the coupled flight dynamics analysis and control design for the modeling the hypersonic vehicle, the dissertation describes the overall diagram block for the hypersonic vehicle model HIT-HAV with a non-symmetrical configuration. By aerodynamics analyzing, CFD calculating, experimental data comparing, data fitting and other methods, the integrated hypersonic air-breathing flight vehicle and scramjet engine model HIT-HAV is built. The final finished model HIT-HAV can outputs any aerodynamic parameters, thrust and safety margins and is verified by comparison analysis.
     Next, the coupled dynamics between scramjet engine and aerodynamics is analyzed. Based on the hypersonic vehicle/ scramjet engine model HIT-HAV with safety boundaries, the impact of the integrated aerodynamics/propulsion on the flight dynamics is analyzed. The couplings between the flight vehicle and scramjet engine are revealed by model simulation. Due to the influence of the coupled dynamics on the model structure and the capacity lack in traditional control, the necessity to conduct an integrated flight/propulsion control for hypersonic air-breathing flight vehicle is discussed. Due to the multiple tasks and multiple operation modes in scramjet engine, the necessity to conduct a scramjet thrust tracking and safety protecting multiobjective switching control is discussed.
     Then, the research on the scramjet engine tracking/protecting switching control design problem is conducted. A tracking/protecting multiobjective switching control solution under Min/Max switching rule for flight control and engine control is presented and the basic principles are analyzed. Then the stabilization condition of the specific switching control problem is given and the stability of subsystems is proved. The function of the precondition and guarantee for effective switching, i.e., the integral saturation limiting, is analyzed. Consider the closed-loop system after switching under Min switching rule as a dynamic response with initial conditions and the output maximum percent overshoot are deducted, which are dependent on not only the system parameters and controller parameters, but also on the initial conditions at switching point. The global maximum value for the output maximum percent overshoot is deducted and solved in initial conditions space and is defined as a conservative dynamic performance for the closed-loop switched system. Then a general dynamic performance index oriented switching control design method is presented. The switching control method is verified by simulating both the simplified scramjet engine and the vehicle model HIT-HAV.
     Finally, the research work on the coordinated control for airframe-scramjet integraged hypersonic vehicle is carried out. Based on a consideration to reduce design difficulty and minimize expense, a hypersonic vehicle/engine coordinated control based on safety margin is presented. The basic consideration and idea of coordinated control is: under a precondition of not to change the original flight and engine control structure, a coordinated factor based on vehicle and/or engine safety margin is brought in to guide the flight controller and engine controller to fit new or different flight conditions. As the safety margin can characterize the‘distance’or‘degree’that the present operation state of the vehicle or engine is apart the unsafe state, a coordinated control between flight performance and flight safety can be realized by detecting the safety margin in time and thereby changing the coordinated factor. The simulation under the coordinated control method is conducted on the nonlinear hypersonic flight vehicle HIT-HAV and the results show a rationality and feasibility of this method.
引文
1 Hopkins Ryan P., Raymond Nicole E., White Stuart T. and DeLong Suzanne. The analysis of conventional prompt global strike alternatives. 2010 IEEE Systems and Information Engineering Design Symposium, SIEDS2010. 2010: 135-140. DOI: 10.1109/SIEDS.2010.5469661
    2 Pollack J. Evaluating conventional prompt global strike. Bulletin of the Atomic Scientists. 2009, 65(1): 13-20. DOI: 10.2968/065001003
    3 Charles R. McClinton, Vincent L. Rausch, Joel Sitz and Paul Reukauf. Hyper-X program status. AIAA 2001-0828. Jan., 2001
    4 Hueter, U. and McClinton, C. R., NASA’s advanced space transportation hypersonic program. AIAA 2002-5175, 2002
    5 Joseph M. Hank, James S. Murphy and Richard C. Mutzman. The X-51A scramjet engine flight demonstration program. AIAA 2008-2540. April-May, 2008
    6 Matthew P. Borg and Steven P. Schneider. Effect of freestream noise on instability and transition for the X-51A lee side. AIAA 2009-396. Jan., 2009
    7 Matthew P. Borg, Steven P. Schneider and Thomas J. Juliano. Effect of freestream noise on roughness-induced transition for the X-51A forebody. AIAA 2008-592. Jan., 2008
    8 Matthew P. Borg and Steven P. Schneider. Effect of freestream noise on roughness-induced transition for the X-51A forebody. Journal of Spacecraft and Rockets. 2008, 45(6): 1106-1116. DOI: 10.2514/1.38005
    9 Schweikart L. The hypersonic revolution, Vol. III: The quest for the orbital jet: The National Aero-Space Plane Program (1983-1995). Air Force History and Museums Program. Bolling AFB, DC, 1998
    10 Chase, R. L. and Tang, M. H. A historty of the nasp program from the formation of the joint program office to the termination of the Hystp scramjet performance demonstration program. AIAA 95-6051. 1995
    11 Rdsert R. Barthelemy. The National Aero-Space Plane Program. AIAA-1989-5053. July, 1989
    12 Hicks J. W. and Trippensee G. NASA hypersonic X-Plane development of technologies and capabilities for 21st century access to space. AGARD Future Aerospace Technology in Service to the Alliance. April 1997: 12.1-12.10
    13 Schmidt D. K., Mamich H. and Chavez F. Dynamics and control of hypersonic vehicles the integration challenge for the 1990s. AIAA 91-5057. Dec., 1991
    14 W.H. Heiser, D.T. Pratt. Hypersonic Airbreathing Propulsion. AIAA, Washington, DC, 1994
    15常军涛.高超声速高超声速进气道起动/不起动模式分类及控制.哈尔滨工业大学博士学位论文. 2007, 11
    16鲍文,常军涛,郭新刚,崔涛.超燃冲压发动机进气道不起动仿真研究.航空动力学报. 2005, (5): 731-735
    17 Bar Fidany, Maj Mirmirani, and Petros A. Ioannou. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. AIAA 2003-7081. Dec., 2003
    18 Walton, J. T., Performance sensitivity of hypersonic vehicles to change angle of attack and dynamic pressure. AIAA Paper 89-2463, 1989
    19 K. K. Gupta, C. Bach. Computational fluid dynamics-based aeroservoelastic analysis with hyper-x applications. AIAA Journal. 2007, 45(7): 1459-1471. DOI: 10.2514/1.21992
    20 Jeffrey S. Robinson and John G. Martin. SACD’s support of the Hyper-X program. AIAA 2006-7031. Sep., 2006
    21常军涛,于达仁,鲍文.攻角引起的高超声速进气道不起动/再起动特性分析.航空动力学报. 2008, 23(5): 816-821
    22 Ronald Fry. A century of ramjet propulsion technology evolution. Journal of Propulsion and Power. 2004, 20(1): 27-58. DOI: 10.2514/1.9178
    23 Andrew Higgins. Ram accelerators: outstanding issues and new directions. Journal of Propulsion and Power. 2006, 22(6): 1170-1187. DOI: 10.2514/1. 18209
    24 Edward T. Curran. Scramjet engines: the first forty years. Journal of Propulsion and Power. 2001, 17(6): 1138-1148. DOI: 10.2514/2.5875
    25 Dugger G. L. Comparison of hypersonic ramjet engines with subsonic and supersonic combustion: high Mach number airbreathing engines. Pergamon, Oxford, U.K., 1961
    26 Bouchez M., Falempin F., Levine V., Avrashkov V. and Davidenko D. French-Russian partnership on hypersonic wide-range ramjets. AIAA Journal of Propulsion and Power. 2001, 17(6): 1177-1183
    27 Tretyakov P. K. Experimentation, modeling and computaion in flow, turbulence and combustion, Vol. 1: The study of supersonic combustion for a scramjet. Wiley, New York, 1996: 319-336
    28 Ferri A. Review of problems in application of supersonic combustion. Journal of the royal aeronautical society. 1964, 68(645): 575-597
    29 Ferri A. Mixing controlled supersonic combustion. Annual Review of Fluid Dynamics. 1973, 5: 301-338
    30 Hallion R. P. The hypersonic revolution, Vol. I: From max valier to project PRIME (1924-1967). Air Force History and Museums Program. Bolling AFB, DC, 1998
    31 Hallion R. P. The hypersonic revolution, Vol. II: From scramjet to National Aero Space Plane, (1964-1986). Air Force History and Museums Program. Bolling AFB, DC, 1998
    32 Thompson M. O. At the edge of space: The X-15 flight program. Smithsonian Institution Press, Washington DC, 1992
    33 Andrews E. H. and Mackley E. A. Review of NASA’s hypersonic research engine project. AIAA 1993-2323.June, 1993
    34 Albegov R. V., Vinogradov V. A., Zhadan G. G. and Kobyzhskii S. A. Experimental investigation of hydrogen combustion and supersonic cooling in an annular chanel. Fizika Goreniyai Vzryva. 1991, 27(6): 24-29
    35 Roudakov A., Schickhman Y., Semenov V., Novelli P. and Fourt O. Flight testing an axisymmetric scramjet: Russian recent advances. International Astronautical Federation. IAF 93-S.4.485.44th, 1993
    36 Voland R. T., Auslander A. H., Smart A. H., Roudakov A. S., Semenov V. L. and Kopchenov V. I. CIAM/NASA mach 6.5 scramjet flight and ground test. AIAA 1999-4848, Nov., 1999
    37 Voland R. and Rock K. NASP concept demonstration engine and subscale parametric engine tests. AIAA 1995-6055. Apr., 1995
    38 Chavez F. R. and Schmidt D. K. An alytical aeropropulsive aeroelastic hypersonic vehicle model with dynamic analysis. AIAA Journal of Guidance, Control and Dynamics. 1994, 17(6): 1308-1319
    39 Schmidt D. K. and Hermann J. A. Use of energy-state analysis on a generic air-breathing hypersonic vehicle. AIAA Journal of Guidance Control and Dynamics. 1998, 21(1): 71-76
    40 Chavez F. R. and Schmidt D. K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. AIAA Journal of Guidance Control and Dynamics. 1999, 22(1): 87-95
    41 Schmidt D. K. Integrated control of hypersonic vehicles. AIAA 1993-5091. Nov.-Dec., 1993
    42 Schmidt D. K. and Lovell T. A. Mission performance and design sensitivities of air-breathing hypersonic launch vehicles. AIAA Journal of Spacecraft and Rockets. 1997, 34(2): 158-164
    43 Schmidt D. K. Optimum mission performance and multivariable flight guidance for airbreathing launch vehicles. AIAA Journal of Guidance Control and Dynamics. 1997, 20(6): 1157-1164. DOI: 10.2514/2.4171
    44 McRuer D. Design and modeling issues for integrated airframe/propulsion control of hypersonic flight vehicles. ACC1991, 1991: 729-734
    45 Davidson J., Lallman F. J., McMinn J. D., Martin J., Pahle J., Stephenson M., Selmon J. and Bose D. Flight control laws for NASA's Hyper-X research vehicle. AIAA 1999-4124. Aug., 1999
    46 Faulkner R. F. and Weber J. W. Hydrocarbon scramjet propulsion system development, demonstration, and application. AIAA 1999-4922. Nov., 1999
    47 Lawrence O. Brase Jr. and Darin P. Haudrich. Flutter and divergence assessment of the hyfly missile. AIAA 2009-2462. May, 2009
    48 V. V. Kislykh, A. A. Kondratov and V.L. Semenov. The program for the complex investigation of the Hypersonic Flight Laboratory (HFL) "IGLA" in the PGU of TSNHMASH. AIAA-2001-1875. April, 2001
    49 Marc Bouchez, Alexandre S. Roudakov, Valery I. Kopchenov and Vyacheslav L. Semenov. French-Russian analysis of Kholod dual-mode ramjet flight experim-ents. AIAA 2005-3320. May, 2005
    50 Sancho M., Colin Y. and Johnson C. Program overview: The French hypersonic research program PREPHA. AIAA-1993-5160. Nov.-Dec., 1993
    51 Falempin F. and Serr, L. The French PROMETHEE program: Main goals and status in 1999. AIAA 1999-4814. Nov., 1999
    52 Novelli P. and Koschel W. JAPHAR-A joint ONERA-DLR research project on high speed airbreathing propulsion. ISABE 99-7091. Sep., 1999
    53 Yatsuyanagi N. and Chinzei N. Status of scramjet research at NAL. Proc. the 20th International Symposium on Space Technology and Science, Paper 96-a-2-10, May, 1996
    54 Thomas Neuenhahn, Herbert Olivier and Allan Paull. Development of the Hyshot stability demonstrator. AIAA 2006-2960. June, 2006
    55 A.D. Gardner and K. Hannemann, J. Steelant, A. Paull. Ground testing of the Hyshot supersonic combustion flight experiment in HEG and comparison with flight data. AIAA 2004-3345. July, 2004
    56 Michiko Furudate, Bok-Jik Lee and In-Seuck Jeung. Computation of HyShot scramjet flows in the T4 experiments. AIAA 2005-3353. 2005
    57 Michael K. Smart, Neal E. Hass and Allan Paull. Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA Journal. 2006, 44(10): 2366-2375. DOI:10.2514/1.20661
    58 Jan Martinez Schramm, Sebastian Karl, Klaus Hannemann and Johan Steelant. Ground Testing of the HyShot II scramjet configuration in HEG. AIAA 2008-2547. April-May, 2008
    59 A. Ingenito, C. Bruno and D. Cecere. LES of the HyShot scramjet combustor. AIAA 2010-758. Jan., 2010
    60 Michael A. Bolender and David B. Doman. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets. 2007, 44(2): 374-387. DOI: 10.2514/1.23370
    61 Jason T. Parker, Andrea Serrani, Stephen Yurkovich, Michael A. Bolender and David B. Doman. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance Control and Dynamics. 2007, 30(3): 856-869. DOI: 10.2514/1.27830
    62 J. D. Shaughnessy, S. Z. Pinckney, J. D. McMinn et al. Hypersonic vehicle simulation model: Winged-Cone configuration. 1991, NASA-TM-102610
    63 B. N. Pamadi. A Simple analytical aerodynamic model of langley Winged-Cone aerospace plane concept. NASA-CR-194987. 1995
    64 Kelly J. Murphy, Robert J. Nowak, Richard A. Thompson, Brian R. Hollis and Ramadas Prabhu. X-33 hypersonic aerodynamic characteristics. Journal of Spacecraft and Rockets. 2001, 38(5): 670-683. DOI: 10.2514/2.3752
    65 Catherine Bahm, Ethan Baumann, John Martin, David Bose, Roger E. Beck, and Brian Strovers. The X-43A Hyper-X mach 7 flight 2 guidance, navigation, and control overview and flight test results. AIAA 2005-3275
    66 Walter C. Engelund. Hyper-X aerodynamics: The X-43A airframe-integrated scramjet propulsion flight-test experiments. Journal of Spacecraft and Rockets.2001, 38(6): 801-802. DOI: 10.2514/2.3757
    67 Eugene A. Morelli, Stephen D. Derry and Mark S. Smith. Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data. AIAA 2005-5921. Aug., 2005
    68 Mark C. Davis and J. Terry White. Flight-test-determined aerodynamic force and moment characteristics of the X-43A at mach 7.0. AIAA 2006-8028. Nov., 2006
    69 Mark C. Davis and J. Terry White. X-43A Flight-test-determined aerodynamic force and moment characteristics at mach 7.0. J Journal of Spacecraft and Rockets. 2008, 45(3): 472-484. DOI: 10.2514/1.30413
    70 Walter C. Engelund, Scott D. Holland, Charles E. Cockrell Jr. and Robert D. Bittner. Aerodynamic database development for the Hyper-X airframe-integrated scramjet propulsion experiments. Journal of Spacecraft and Rockets. 2001, 38(6): 803-810.DOI: 10.2514/2.3768
    71 Ethan Baumann, Catherine Bahm, Brian Strovers, Roger Beck and Michael Richard. The X-43A six degree of freedom Monte Carlo analysis. AIAA 2008-203. Jan., 2008
    72 K. K. Gupta, C. Bach, T. Doyle and E. Hahn. CFD-based Aeroservoelastic analysis with Hyper-X applications. AIAA 2004-884. Jan., 2004
    73 Paresh Parikh, Walter Engelund, Sasan Armand and Robert Bittner. Evaluation of a CFD method for aerodynamic database development using the Hyper-X stack configuration. AIAA 2004-5385. Aug., 2004
    74 Mark C. Davis, Alexander G. Sim, Matthew Rhode and Kevin D. Johnson Sr. Wind-tunnel results of the B-52B with the X-43A stack. Journal of Spacecraft and Rockets. 2007, 44(4): 871-877. DOI: 10.2514/1.27191
    75 Eugene A. Morelli and Richard DeLoach. Wind tunnel database development using modern experiment design and multivariate orthogonal functions. AIAA 2003-653. Jan., 2003
    76 Clark A. D., Wu C., Mirmirani M., Choi S. and Kuipers M. Development of an airframe-propulsion integrated generic hypersonic vehicle model. AIAA 2006-218. Jan., 2006
    77 Mirmirani M., Wu C., Clark A. D., Choi S. and Colgren, R. Modeling for control of a generic airbreathing hypersonic vehicle. AIAA 2005-6256. Aug., 2005
    78 Bar Fidan, Matthew Kuipers, Petros A. Ioannouand and Maj Mirmirani. Longitudinal motion control of air-breathing hypersonic vehicles based on time-varying models. AIAA 2006-8074. Nov., 2006
    79 Shahriar Keshmiri and Maj D. Mirmirani. Six-DOF Modeling and simulation of a generic hypersonic vehicle for conceptual design studies. AIAA 2004-4805. Aug., 2004
    80 Shahriar Keshmiri, Richard Colgren and Maj Mirmirani. Modeling and simulation of a generic hypersonic vehicle using merged aerodynamic models. AIAA 2006-8087. Nov., 2006
    81 Shahriar Keshmiri, Richard Colgren and Maj Mirmirani. Six-DOF Modeling and simulation of a generic hypersonic for control and navigation purposes. AIAA 2006-6694. Aug., 2006
    82 Shahriar Keshmiri, Richard Colgren and Maj Mirmirani. Six DOF nonlinear equations of motion for a generic hypersonic vehicle. AIAA 2007-6626. Aug., 2007
    83车竞,唐硕.高超声速飞行器机身/超燃冲压发动机一体化设计研究.实验流体力学. 2006, 20(2): 41-44, 49
    84车竞,唐硕.高超声速飞行器后体/尾喷管一体化设计.飞行力学. 2006, 24(3): 74-77
    85高建力,唐硕,车竞,江志国.高超声速飞行器参数化几何建模研究.计算机仿真. 2008, 25(2): 49-52, 140
    86马辉,袁建平,方群.吸气式高超声速飞行器动力学特性分析.宇航学报. 2007, 28(5): 1100-1104
    87孟中杰,陈凯,黄攀峰,阎杰.高超声速飞行器/发动机耦合建模与控制.宇航学报. 2008, 29(5): 1509-1514
    88贺元元,乐嘉陵,倪鸿礼.吸气式高超声速机体/推进一体化飞行器数值和试验研究.实验流体力学. 2007, 21(2): 29-34
    89贺元元,倪鸿礼,乐嘉陵.一体化高超声速飞行器气动/推进性能评估.实验流体力学. 2007, 21(2): 63-67
    90罗世彬,罗文彩,王振国.高超声速巡航飞行器机体/推进系统一体化设计参数灵敏度分析.国防科技大学学报. 2003, 25(4): 10-14
    91 ZHANG Jie and WANG Fa-min. Hypersonic waveriders aerodynamic performance studies. Journal of Astronautics. 2007, 28(1): 203-208
    92刘燕斌,陆宇平.高超声速飞行器建模与控制的一体化设计.宇航学报. 2009, 30(6): 2176-2181
    93钟兢军,严红明.高超声速二维前体/进气道一体化优化设计研究.节能技术. 2006, 24(4): 303-307
    94吴宏鑫,孟斌.高超声速飞行器控制研究综述.力学进展. 2009, 39(6) :756-766
    95 Mooij E. Numerical investigation of model reference adaptive control for hypersonic aircraft. Journal of Guidance Control and Dynamics. 2001, 24(2): 315-323
    96 Xu H., M.D. Mirmirani and P.A. Ioannou. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance Control and Dynamics. 2004, 27(5): 829-838
    97 Haojian Xu, Pierre Leung, Maj Mirmirani, Helen Boussalis and Petros Ioannou.高超音速飞行器自适应滑模控制技术研究.战术导弹控制技术. 2005, 49(2): 90-100
    98 Lisa Fiorentini, Andrea Serrani, Michael Bolender and David Doman.. Nonlinear robust/adaptive controller design for an air-breathing hypersonic vehicle model. AIAA-2007-6329. Aug., 2007
    99 Stephen E. Reiman, C.H.D., Howard P. Lee and Hussein M. Youssef. Adaptivereconfigurable dynamic inversion control for a hypersonic cruise vehicle. AIAA-2008-7466. Aug., 2008
    100 Haojian Xu, M.M. and Petros A. Ioannou. Robust neural adaptive control of a hypersonic aircraft. AIAA-2003-5641. Aug., 2003
    101刘燕斌,陆宇平,何真.高超音速飞机鲁棒自适应控制的研究.宇航学报. 2006, 27(04): 620-624, 629
    102高道祥,孙增圻,罗熊,杜天容.基于Backstepping的高超声速飞行器模糊自适应控制.控制理论与应用. 2008, 25(05): 805-810
    103高道祥,孙增圻.高超声速飞行器离散模糊自适应控制.空间控制技术与应用. 2009, 35(5): 13-19
    104 Matthew Kuipers, Petros Ioannou, Bar?s Fidan, and Maj Mirmirani. Analysis of an adaptive mixing control scheme for an airbreathing hypersonic vehicle model. American Control Conference, ACC2009. 2009: 3148-3153. DOI: 10.1109/AC C.2009.5160574
    105 Gibson T.E., L.G. Crespo and A.M. Annaswamy. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. American Control Conferen-ce, ACC2009. 2009: 3178-3183. DOI: 10.1109/ACC.2009.5160746
    106 Meng B. and H. Wu. Adaptive control based on characteristic model for a hypersonic flight vehicle. Chinese Control Conference, CCC 2007. 2007: 720-724. DOI: 10.1109/CHICC.2006.4346800
    107 M. Kuipers, M. Mirmirani, P. Ioannou and Y. Huo. Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle. AIAA-2007-6326. 2007
    108 Andrea Serrani, Alicia M. Zinnecker, Lisa Fiorentini, Michael A. Bolender and David B. Doman. American Control Conference, ACC2009. 2009: 3172-3177. DOI: 10.1109/ACC.2009.5160694
    109鹿存侃,闫杰,杨淑君,钟都都.基于模型参考的高超声速飞行器自适应滑模控制.计算机测量与控制. 2009, 17(07): 1320-1322
    110 Mirmirani Maj and Xu Haojian. Robust adaptive sliding control for a class of MIMO nonlinear systems. AIAA-2001-4168. 2001
    111 Abbas LK, Qian C, Marzocca P, et al. Active aerothermoelastic control of hypersonic double-wedge lifting surface. Chinese Journal of Aeronautics. 2008, 21(1): 8-18
    112刘燕斌,陆宇平.基于变结构理论的高超音速飞机纵向逆飞行控制.信息与控制. 2006, 35(03): 388-392
    113 Li Hui-feng, S.W.-c., Li Zhao-ying and Xue Song-bai. Index approach law basedsliding control for a hypersonic aircraft. AIAA-2009-1734. Feb., 2009
    114李惠峰,孙文冲.基于指数趋近律的高超声速飞行器滑模控制器设计.空间控制技术与应用. 2009, 35(04): 39-43
    115李惠峰,王健,孙文冲.基于遗传算法的高速飞行器滑模控制律设计.北京航空航天大学学报. 2009, 35(09): 1144-1147
    116 Yang J., J. Hu and X. Lv. Design of sliding mode tracking control for hypersonic reentry vehicles. Chinese Control Conference, 2007. CCC 2007. 2007: 2-5. DOI: 10.1109/CHICC.2006.4346794
    117 Bo Hu, Xuping Xu, P. J. Antsaklis. Stability anlysis for a class of nonlinear switched systems. Proc. 38th IEEE Conf. Decision and Control, 1999. 1999(5): 4374-4379. DOI: 10.1109/CDC.1999.833231
    118 Liberzon D. and A.S. Morse. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine. 1999, 19(5): 59-70
    119 Boskovic J.D. and R.K. Mehra. Multi-mode switching in flight control. The 19th AIAA/IEEE Digital Avionics Systems Conferences, DASC2000. 2000(2): 6F2/1-6F2/8
    120 Sung-Han Park, Sup Choi, Jong-Min Ahn and In-Je Cho. Research flight control computer development for the flight control switching mechanism. International Conference on Control, Automation and Systems, ICCAS07. 2007: 1247-1250. DOI: 10.1109/ICCAS.2007.4406526
    121 Fenghua He, Denggao Ji, Kemao Ma and Yu Yao. Switching logic design based on finite-time gain measure for a flight vehicle with multiple actuators. 2009 IEEE Aerospace conference. 2009: 1-5. DOI: 10.1109/AERO.2009.4839543
    122刘晓锋.航空发动机调节保护系统多目标控制问题研究.哈尔滨工业大学博士学位论文. 2008, 6
    123刘晓锋,隋岩峰,何保成,于达仁.涡扇发动机多回路切换系统稳定性分析.航空动力学报. 2006, 21(3): 601-605
    124于达仁,刘晓锋,隋岩峰.考虑切换特性的航空发动机多回路控制系统设计.航空动力学报. 2007, 22(8): 1378-1383
    125 Yu D., Liu X., Bao W. and Xu Z. Multiobjective robust regulating and protecting control for aeroengines. Journal of Engineering for Gas Turbines and Power. IEEE Transactions of the ASME. 2009, 131(6): 061601.1-061601.10
    126刘燕斌,陆宇平,何真.高超声速飞机纵向通道的多级模糊逻辑控制.南京航空航天大学学报. 2007, 39(06): 716-721
    127李惠峰,王健.基于遗传算法的高速飞行器模糊控制律设计.北京航空航天大学学报. 2008, 34(11): 1250-1253
    128 Yan Binbin, Lu Cunkan, Yu Weiwei and Yan Jie. Fuzzy CMAC control design for an airbreathing hypersonic cruise vehicle. 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009. 2009: 298-301. DOI: 10.1109/ICIEA. 2009. 5138209
    129 DaoXiang Gao, ZengQi Sun and TianRong Du. Dynamic surface control for hypersonic aircraft using fuzzy logic system. 2007 IEEE International Conference on Automation and Logistics. 2007: 2314-2319. DOI: 10.1109 /ICAL. 2007. 4338963
    130李惠峰,王健.基于遗传算法的高速飞行器模糊飞控一体化.北京航空航天大学学报. 2009, 35(01): 44-47
    131 Li H. and J. Wang. Fuzzy logic control based on genetic algorithm to integrated flight control for hypersonic vehicles. Journal of Beijing University of Aeronautics and Astronautics. 2009, 35(1): 44-47
    132刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制.控制与决策. 2007, 22(03): 313-317.
    133 Chen Jie, Pan Changpeng and Wu Jinhua. Dynamic surface backstepping control design for one hypersonic vehicle. International Conference on Mechatronics and Automation, 2009. ICMA 2009, 4770-4774. DOI: 10.1109/IC MA.2009.5246455
    134 Gao D.-X., Z.-Q. Sun and T.-R. Du. Discrete-time controller design for hypersonic vehicle via back-stepping. Control and Decision. 2009, 24(3): 459-463, 467
    135方炜,姜长生.空天飞行器再入过程姿态预测控制律设计.系统工程与电子技术. 2007, 29(8): 1317-1321
    136 Yan-Li Du, Qing-Xian Wu, Chang-Sheng Jiang, Li Zhou and Nai-Bao He. Optimal generalized predictive control for a near-space vehicle based on nonlinear disturbance observer. Chinese Control and Decision Conference 2008, CCDC 2008. 2008: 5059-5063. DOI: 10.1109/CCDC.2008.4598293
    137 Yanli Du, Qingxian Wu, Changsheng Jiang, Jie Wen. Attitude tracking of a near-space hypersonic vehicle using robust predictive control. 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 2008. ISSCAA 2008. 2008, 1-6. DOI: 10.1109/ISSCAA.2008.4776353
    138方炜,姜长生.一类基于模糊系统的非线性鲁棒自适应预测控制.西安交通大学学报. 2008, 42(6): 669-673
    139方炜,姜长生.基于自适应模糊系统的空天飞行器非线性预测控制.航空学报.2008, 29(4): 988-994
    140方炜,姜长生.空天飞行器的自适应变论域模糊预测控制.控制与决策. 2008, 23(12): 1373-1377, 1388
    141都延丽,吴庆宪,姜长生,周丽.基于FLNDO的近空间飞行器鲁棒最优预测控制(英文).宇航学报. 2009, 30(4): 1489-1497
    142 Liu Y.-B. and Y.-P. Lu. Longitudinal inversion control based on H infinity optimal control theory for hypersonic vehicle. Systems Engineering and Electronics. 2006, 28(12): 1882-1885
    143 Howard P. Lee, Stephen E. Reiman, Charles H. Dillon and Hussein M. Youssef. Robust nonlinear dynamic inversion control for a hypersonic cruise vehicle. AIAA 2007-6685. Aug., 2007
    144鲁波,陆宇平,方习高.高超声速飞行器的神经网络动态逆控制研究.计算机测量与控制. 2008, 16(7): 966-968
    145崔涛.超燃冲压发动机控制方法研究.哈尔滨工业大学博士学位论文. 2005, 11
    146刘晓锋.航空发动机调节/保护系统多目标控制问题研究.哈尔滨工业大学博士学位论文. 2008, 6
    147韩捷初.冲压发动机的最优控制.推进技术. 1981, 02(01): 1-6
    148 Sachs G. and M. Dinkelmann. Reduction of coolant fuel losses in hypersonic flight by optimal trajectory control. Journal of Guidance Control and Dynamics. 1996, 19(6): 1278-1284
    149 Bao W., H. Xiao and T. Cui. Research on optimal regulating rule for scramjet control. AIAA-2006-8026. Nov., 2006
    150 Tao C., Y. Daren and B. Wen. Distributed parameter control method for dual-mode scramjets. AIAA-2006-4617. July, 2006
    151 Sanjay Garg and Duane L. Mattern. Integrated flight/propulsion control system design based on a centralized approach. NASA TM-102137,1989
    152 Sanjay Garg Application of an integrated methodology for propulsion and airframe control design to a STOVL aircraft. NASA TM-106729, 1994
    153 Sanjay Garg. Partitioning of centralized integrated flight/propulsion control design for decentralized implementation. IEEE Transactions on Control Systems Technology. 1993, 1(2): 93-100. DOI: 10.1109/87.238402
    154 Declan G. Bates, Sarah L. Gatley, Ian Postlethwaite and Andrew J. Berry. Integrated flight and propulsion control system design using H∞loop-shaping techniques. Proceedings of the 38th IEEE Conference on Decision and Control, CDC1999. 1999, 2: 1523-1528. DOI: 10.1109/CDC.1999.830211
    155 S.L. Gatleya, D.G. Batesa, M.J. Hayesb and I. Postlethwaite. Robustness analysis of an integrated flight and propulsion control system usingμand theν–gap metric. Control Engineering Practice. 2002, 10(3): 261-275
    156 Ian Postlethwaite and Declan G. Bates. Robust integrated flight and propulsion controller for the Harrier aircraft. Journal of Guidance Control and dynamics. 1999, 22(2): 286-290. DOI: 10.2514/2.4376
    157 Ian Postlethwaite and Declan G. Bates. Robust integrated flight and propulsion (IFPC) system design for the VAAC harrier STOVL aircraft. UKACC Internati-onal Conference on Control. 1998, 2: 1516-1521
    158 Sarah L. Gatley, Declan G. Bates and Ian Postlethwaite. A partitioned integrated flight and propulsion control system with engine safety limiting. Control Engineering Practice. 2000, 8(8): 845-859. DOI: 10.1016/S0967-0661(00)000 14-9
    159 Nabil Aoufa, Declan G. Batesb, Ian Postlethwaiteb and Benoit Bouleta. Scheduling schemes for an integrated flight and propulsion control system. Control Engineering Practice. 2002, 10(7): 685-696. DOI:10.1016/S09670661 (02)00028-X
    160 C. M. Ha. Integrated Flight/propulsion control system design via neural network. 1993 International Symposium on Intelligent Control, USA. 1993, 116-121. DOI: 10.1109/ISIC.1993.397647
    161 M. Yasar, A. Ray, and J F Horn. A comprehensive control strategy for integrated flight/propulsion systems. Proc. IMechE, Part G: J. Aerospace Engineering. 2008, 222(6): 843-859. DOI: 10.1243/09544100JAERO297
    162 Sheng-Wen Chen, Pang-Chia Chen, Ciann-Dong Yang and Yaug-Fea Jeng. Total energy control system for helicopter flight/propulsion integrated controller design. Journal of Guidance, Control, and Dynamics. 2007, 30(4), 1030-1039. DOI: 10.2514/1.26670
    163赵阳旭,马瑞.综合飞行/推进控制(IFPC)技术综述.推进技术. 1999, 20(1): 108-111
    164姜再明,张曙光.飞行/推进综合控制设计研究.北京航空航天大学学报. 2003, 29(11): 1042-1046
    165郭迎清,田童军.某新机综合飞行/推进系统H∞控制器设计.航空动力学报. 2003, 18(4): 524-529
    166王曦,林永霖,吴永康. H∞控制在飞行/推进综合控制系统中的应用.航空动力学报. 2004, 19(5), 695-702 24(3): 80-84
    168杨凌宇,郭亮,柳嘉润,申功璋.大迎角综合飞行/推进控制系统设计与仿真.北京航空航天大学学报. 2007, 33(6): 709-713
    169陈迟,李华聪.基于LM I的综合飞行/推进控制系统设计.计算机仿真. 2010, 27(1): 67-70
    170王健,何麟书.以冲压发动机为动力的飞行/推进综合控制.推进技术. 2009, 30(6): 735-739
    171孟中杰,陈凯,黄攀峰,阎杰.高超声速飞行器/发动机耦合建模与控制.宇航学报. 2008, 29(5): 1509-1514
    172 M. M. Ondaryuk and C. M. Ilyashenko. Straight Air-Reactive Engines. Public Chizdatelstvo Obornnoy Promyshlennsti. Moscow, 1958
    173 APL of John Hopkins University. Ramjet Technology. PB-Report 1965-1974
    174刘强.冲压推进的高超声速飞行器非线性控制方法研究.哈尔滨工业大学博士学位论文. 2004, 6
    175曹少中.非线性协调控制理论研究及应用.科学出版社, 2009
    176 Karl Johan Astrom, Bjorn Wittenmark. Adaptive Control (Second Edition). Pearson Education. 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700