浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年7月青岛近海大型绿藻爆发,主要肇事物种为浒苔。浒苔在青岛附近海域覆盖面积约为400平方公里。是目前世界上规模最大的绿潮,仅在青岛海域打捞出的生物量就超过100万吨。卫星数据分析表明这次绿潮是在江苏外海形成,并在风场和流场的作用下漂移到青岛。据专家推测,可能是由于富营养化和青岛近海适宜的条件,使海藻通过旺盛的营养生长和放散生殖细胞进行繁殖,因而生物量快速增长,爆发了大规模的绿潮。本文通过选取浒苔为实验对象,在实验室内进行可控实验,选取氮营养盐作为研究对象,考察氮营养盐对浒苔生长的影响以及浒苔对氮营养盐的吸收动力学机制。具体内容包括:
     1.选取几种无机氮、有机氮以及它们的混合物作为氮源,浒苔可以有效利用NO_3~-、NH_4~+和有机N源酵母抽提物及中低浓度的NO_2~-和尿素;在NO_3~-、NH_4~+、和NO_3~-: NH_4~+=1:1几种无机N源中及urea-N为有机N源中,等量分批添加方式时浒苔的生长态势较好;在NO_3~-: urea-N=1:1和NH_4~+: urea-N=1:1无机和有机混合N源中,一次性添加方式时浒苔的生长态势较好;在与其他N源共同存在时浒苔可以优先利用NH_4~+。
     2.通过选取不同的理化指标,采用正交试验考察它们对浒苔氮营养盐吸收动力学及浒苔生理生态指标的影响,获得其对营养盐吸收的有关参数,并通过这些参数对浒苔的生态习性及生理特性作出判断和阐释。在相同条件下,浒苔有优先吸收NH_4~+的趋势,而且浒苔对NH_4~+的吸收速率大于对NO_3~-的吸收速率;浒苔藻体体内氮素同化首先受到吸收的制约,同时藻体体内NO_3~-含量也调节NO_3~-的吸收与同化;硝酸还原酶的活性不能用来指示浒苔对硝酸盐的吸收速率;谷氨酰胺合成酶活性来反映浒苔对NH_4~+的吸收。
     3.选取海水中含量比较高的硝酸氮和氨氮,考察浒苔对NH_4~+与NO_3~-的吸收及其相互作用,发现浒苔具有同时利用水体中较高浓度的NH_4~+和NO_3~-的能力, NH_4~+与NO_3~-对彼此的吸收具有抑制作用,但NO_3~-对NH_4~+的吸收抑制作用较弱。
     4.针对日益严重而复杂的污染现状,单一的研究营养盐或重金属对海洋浮游植物生长的影响已远远不能解决实际问题,需要综合考虑多种因素的影响。选取Pb(II)、Cu(II)、Cd(II)、Zn(II)、Fe(III)等几种常见的微量重金属元素,考察它们对浒苔营养盐吸收动力学及浒苔生理生态指标的的影响。结果表明所选取的几种重金属对浒苔的硝酸还原酶活性、体内NO_3~-诱导浓度、体内累积NO_3~-浓度和谷氨酰胺合成酶活性等均有明显影响,从而影响了浒苔对NO_3~-和NH_4~+的吸收。
In late June 2008, the waters and shores of the Olympic sailing events’Qingdao venue on China’s north-eastern coast experienced a massive green-tide covering 400 km2. The green-tide lasted over two weeks and the resultant cleanup involved more than 10,000 people and removed over one million tonnes of algae from the beach and coast of Qingdao. The green-tide was comprised of Enteromorpha prolifera which has been previously reported as one of the dominant benthic algae in the littoral zone of China.The original source of this seaweed was suspected to be from the south of the Yellow Sea as revealed bysatellite images.The floating biomass drifted with water current northward and flourished in nearshore waters around Qingdao. The initial causes were attributed to coastal eutrophication and suitable conditions in Qingdao coasts by some scientists. The vegetative growth habit of the species and spore dispersal in the water helped to enlarge biomass in the water during the outbreak stage of green tide. Our investigation looked for the response to nitrogen nutrient, and the uptake kinetics mechanism of nitrogen and ecophysiological analysis of Enteromorpha prolifera. This will provide information about the link between E. prolifera blooms and nitrogen nutrient enrichment. The details were as follows:
     1. Several kinds of inorganic nitrogen, organic nitrogen, and their mixtures were selected as nitrogen sources. The growth of E. prolifera was affected by different N sources, N concentrations, and culture methods. Our results show that NH_4~+ and NO_3~- were utilized effectively by E. prolifera, and that NO_2~- and urea at a range of several to dozens ofμmol L?1 were also effectively utilized. When supplied with another nitrogen source, NH_4~+ was preferentially assimilated by E. prolifera. A single, high-concentration addition of the N source was favorable for rapid growth of E. prolifera, whereas intermittent addition of the N source was favorable for prolonged growth.
     2. By selecting different physical and chemical factors, the orthogonal design was used to investigate their impacts on absorption kinetics and ecophysiological indicators of E. prolifera, and access the relevant parameters of nutrient uptake kinetics for judging the ecological habits and physiological characteristics of E. Prolifera. Under the same conditions, NH_4~+ was preferentially absorbed by E. Prolifera, and the absorption rate of NH_4~+ was greater than that of NO_3~-. The nitrogen assimilation in vivo of E. prolifera was constrainted by its absorption firstly, while the accumulated NO_3~- concentration in vivo can adjust the absorption and assimilation of NO_3~-. Moreover, nitrate reductase activity (NRA) can not be used to indicate the absorption rate of NO_3~-, but glutamine synthetase activity (GS) can be used to reflect the absorption rate of NH_4~+.
     3. NO_3~- and NH_4~+ which are the most common N sources in seawater, and readily assimilated by E. Prolifera were selected as nitrogen sources to study the interaction between their absorption kinetics. The results show that E. Prolifera can take advantage of NO_3~-and NH_4~+ with higher concentrations in seawater respectively, and NO_3~-and NH_4~+ would inhibit the absorption of each other, but the inhibition action of NO_3~- on NH_4~+ was weaker..
     4. For the increasingly serious and complex pollution status, the study about the impact of single nutrients or heavy metals on marine phytoplankton growth has been far from solving practical problems, it needs to consider many factors comprehensively. Pb(II), Cu(II), Cd(II), Zn(II) and Fe(III) were selected to research their impacts on nitrogen uptake kinetics and ecophysiological indicators of E. Prolifera. The results show that these heavy metals selected can significantly affect NRA, the accumulated NO_3~- concentration in vivo, the induced NO_3~- concentration in vivo and GS of E. Prolifera, which thus affect the absorption rate of NH_4~+ and NO_3~-.
引文
Ambio. Special issue: Marine eutrophication. Ambio., 1990, 19(3)
    Amozis P A. Phosphoenol phruvate carboxylase activity in plantswith either NO3- or NH4+ as inorganic nitrogen source. Plant Physiol, 1988, 132: 23-27
    Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol., 2004, 55: 373-399
    Aslan M, Travis R I, Huffaker R C. Comparative kinetics and reciprocal inhibition of nitrate and nitrate in roots of uninduced and induced barley seedlings. Plant Physiol, 1992, 199: 1124-1133
    Baki G K A, Siefritz F, Man H M. et al. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ, 2000, 23: 515-521
    Baszynski T, Wasda L, et al. Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant, 1980, 48: 365-370
    Beevers L, Hageman R H. Nitrate reduction in higher plants. Annual Review of Plant Physiology, 1969, 20: 495-522
    Berges J A, Harrison P J. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology&Oceanography, 1995, 40(1): 82-93
    Berges J A. Miniview: Algal nitrate reductases. European Journal of Phycology, 1997, 32: 3-8
    Blasco D, Macissac J J, Packard T T, Dugdale RC. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region. Limnol. Oceanogr., 1984, 29: 275-286
    Blumwald E, Poole R J. Nitrate storage and retrieval in Beta vulgaris: effects of nitrate and chloride on proton gradients in tonoplast vesicles. Proc. Natl. Acad. Sci. USA., 1985, 82: 3683-3 687
    Bold Harold C. and Michael J. Wynne. Introduction to the Algae: Structure and Reproduction. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1978, 706 pp
    Buraynski M. Activtity of some enzymes involved in NO3- assimilation in cucumber seedlings treated with lead or cadmium. Acta Physiol. Planta, 1990, 12(2): 105-116
    Caicedo J R, vander Steen N P, Arce O, Gijzen H J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research, 2000, 34: 3829-3835
    Campbell W H. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 277-303
    Cawse P A. The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst., 1967, 92:311–315
    Cedar H, Schwartz J H. The asparagine synthetase of Escherhic coli. I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J. Biol. Chem., 1969, 244: 4112-4121
    Chettri M K, Cook C M, Vardaka E, et al. The effect of Cu, Zn and Pb on the chlorophyII content of the lichens Cladonia convolute and Cladonia rangiformis. Environ. Exper. Bot., 1998, 39(1): 1-10
    Chia L S, McRae D G, Thompson J E. Light dependence of paraquat initiated membrane deterioration in bean plants: evidence for the involvement of superoxide. Physiol Plant, 1982, 56: 492-499
    Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison P J. An optical method for the rapid measurement of microlar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol., 1999, 11: 179-184.
    Collos Y, Slawyk G. Nitrate reductase activity as a function of in situ nitrate uptake and environmental factors of euphotic zone profiles. Journal of Experimental Marine Biology and Ecology, 1977, 29: 119-130
    Collos Y, Slawyk G. Significance of cellular nitrate content in natural population of marine phytoplankton growing in shipboard cultures. Mar Biol., 1976, 4: 27-32
    Cren M, Hirel B. Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant and Cell Physiology, 1999, 40: 1187-1193
    Daniel-Vedele F, Filleur S, Caboche M. Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol, 1998, 1: 235-239
    Dejaegere R, Neirinckx L. Proton extrusion and ion uptake: some characteristics of the phenomenon in barley seedlings. Z. Pflanzen physiol, 1978, 89: 129-140
    Dortch O. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser., 1990, 61: l83-201
    Dortch Q, Ahmed S I, Packard T T. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatum as measures of nitrogen assimilation rates. Journal of Plankton Research, 1979, 1: 169-186
    Edwards J W, Goruzzi G M. Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell, 1989, 1: 24l-248
    Edwards J W, Walker E L, Coruzzi G M. Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc. Natl. Acad. Sci. USA, 1990, 87: 3459-3463
    Eppley R W, Coatsworth J L, Soloozano L. Studies of nitrate reductase in marine phytoplankton. Limnology and Oceanography, 1969, 14: 194-205
    Eppley R W, Packard T T, Maclsaac J J. Nitrate reductase in Peru current phytoplankton. Marine Biology, 1970, 6: 195-199
    Eppley R W. Nitrate reductase in marine phytoplankton. Hellebust, Craige J S. Handbook of Phycological Methods. Cambridge: Cambridge University Press, 1978, 217-223
    Epstein N, Mehrabian A. A measure of emotional empathy. Journal of Personality, 1972, 40: 525-543
    Ewa G, Maria S. Nickel-induced changes in nitrogen metabolism in wheat shoots. Journal of plant physiology, 2009, 166: 34-44
    Falkowski P G. Enzymology of nitrogen assimilation. Nitrogen in the Marine Environment. New York: Academic Press Inc, 1983
    Ferrario-Méry S, Murchie E, Hirel B, et al. Manipulation of the pathways of sucrose biosynthesis and nitrogen assimilation in transformed plants to improved photosynthesis and productivity. In: Foyer C, Quick W. A Molecular Approach to Primary Metabolism in Higher Plants. Taylor and Francis, London, 1997, 125-153
    Flynn K J. Algal carbon-nitrogen metabolism: A biochemical basis for modelling the interaction between nitrate and ammonium uptake. J. Plankton. Res., 199l,13(2):373-387
    Flynn M J and Hipkin C R. Interaction between iron, light, ammonium and nitrate: Insights from the construction of a dynamoic model of algal physicalogy. Phycology, 1999, 35: 1171-l190
    Fodor E, Szabo-Nagy A, Erdei L. The effects of cadmium on the fluidity and H +-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol, 1995, 147: 87-92
    Foyer C H, Notor G, Lelandais M, et a1. Short-term effects of nitrate, nitrite and ammonium assimilation and amino biosynthesis in maize. Planta, 1994, 192: 21l-220
    Foyer C H, Valadier M H, Migge A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol, 1998, 117: 283-292
    Gassmann W, Schroeder J I. Inward-rectifying K+ channels in root hairs of wheat (A mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiol, 1994, 105: 1399-1408
    Geider R J, Macintyre H L, Kana T M. Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophylla:Carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser., 1997, 148: 1-3
    Gouia H, Ghorbal M H, Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol Biochem, 2000, 38: 629-638
    Guillard, R R L. Culture of phytoplankton for feeding marine invertebrates. 1975. pp 26-60. In
    Smith W.L. and Chanley M.H (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA
    Gupta A, Singhal G S. Inhibition of PSⅡactivity by copper and its effect on spectral properties on intact cells in Anacystis nidulans. Environ. Exper. Bot., 1995, 35: 435-439
    Gussarsson M, Jensen P. Effects of copper and cadmium on uptake and leakage of K+ in birch (Betula pendula) roots. Tree Physiology, 1992, 11(3): 305-313
    Haglund K, Pedersen M. Growth of Gracilaria tenuistip itata at high pH influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot. Mar., 1992, 33: 579-587
    Hanisak M D, Harlin M M. Uptake of inorganic N by Londium fragile. J. Phycol., 1978, 14: 450-454
    Hanisak M D. The nitrogen relationships of marine macroalgae. Nitrogen in the Marine Environment. New York: Academic Press Inc, 1983
    Harrison P J, Parslow J S, Conway H L, et al. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser., 1989, 52: 301-312
    Hatcher B G. An apparatus for measuring photosynthesis and respiration of intact larger marine algae and comparison of results with those from experiments with tissue segments. Mar. Biol., 1977, 43: 381-385
    Heber U. Metabolite exchange between chloroplasts and cytoplasm. Ann. Rev. Plant Physiol, 1974,25: 393-421
    Hein M, Pedersen M F, Jensen K S. Size-dependent nitrogen uptake in micro-and macroalgae. Mar. Ecol. Prog. Ser., 1995, 118: 247-253
    Hernandez I, Peralta G, Perez-Llorens J L, Verfara J J. Biomass and dynamics of growth of Ulva species on Palmones River estuary. J. Phycol., 1997, 33: 764-772
    Hernández L E, Carpena-Ruiz R, Gárate A. Alteration in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr, 1996, 19(12): 1581-1598
    Hernández L E, Gárate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil, 1997, 189: 97-106
    Hiqashi-Okaj K, Otani S, Okai Y. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Letters, 1999, 140: 21-25
    Huang C Y, Bazzaz F A. The inhibition of soybean metabolism by cadmium and lead. Plant Physiol, 1974, 54: 122-124
    Hudson R J M. Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci Total Environ., 1998, 21(9): 95 -115
    Hutchins D A, Bruland K W. Iron limited diatom growth and Si:N uptake rations in a coastal upwelling regime. Nature, 1998, 39 (3): 561-564
    Hutchinson G. E. Eutrophication: The scientific background of a contemporary practical problem. American Scientist, 1973, 61:269-279
    Hwang S P L, Williams S L, Brinkhuis B H. Changes in internal dissolved nitrogen pools asrelated to nitrate uptake and assimilation in Gracilaria tikvaniae Mclachlan. Bot. Mar., 1987, 30: 11-19
    Jaanika B, Saara B, David P F, et al. Novel morphology in enteromorpha (ulvophyceae) forming green tides. American Journal of Botany, 2002, 89 (11): 1756-1763
    Jayashree M, Muthukumar B, Arockiasamy D I. Efficiency of Spirodela polyrhiza (L.) Schleiden in absorbing and utilizing different forms of nitrogen. Journal of Environmental Biology, 1994, 17: 227-233
    Jones M N. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Wat. Res., 1984, 18: 643–646
    Joseph L, Villareal T A, Lipschultz F L. A high sensitivity nitrate reductase assay and its application to vertically migrating Rhizosolenia mats. Aquatic Microbial Ecology, 1997, 12: 95-104
    Joseph L, Villareal T A. Nitrate reductase activity as a measure of nitrogen incorporation in Rhizosoleniaformosa (H. Peragallo): Internal nitrate and diel effects. Journal of Experimental Marine Biology and Ecology, 1998, 229: 159-176
    Kaiser W M, Weiner H, Huber S C. Nitrate reductase in higher plants: A case study for transduction of environmental stimulation control of catalytic activity. Physiol Plant, 1999, 105: 385~390
    Kiddon J A, Paul J F, Buffum H W, Strobel C S, Hale S S, Cobb D, Brown B S. Ecological condition of US Mid-Atlantic estuaries, 1997-1998. Marine Pollution Bulletin, 2003, 46(10): 1224-1244
    Kim H G.Rcecnt harmful algal blooms and mitigation strategies in Korea, Ocean. Res., 1997,19: 185-192
    Klobus G, Buczek J. Chlorophyll, content, cells and chloroplast number and cadmium distribution in Cd-treated cucumber plants. Acta. Physio. Plant, 1985, 7(3): 139-147
    Koch G N W, Schulib E D, Percival F, Mooney H A, Chu C. The nitrogen balance of Raphanus sativax X Pa phanistrum plant. II. Growth, nitrogen redistribution and photosynthesis under NO3- deprivation. Plant, Cell and Enviroment, 1998, 11: 755-767
    Kronzucker H J, Siddiqi M Y, Glass A. Kinetics of NH4+ influx in spruce. Plant Physiol, 1996, 110: 773-779
    Lam H M, Coschigano K T, Oliveira I C, et a1. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Physiol Plant Mol Bio1, 1996, 47: 569-593
    Lew R R, Spanswick R M. Characterization of anion effects on the nitrate sensitive ATP-dependent proton pumping activity of soybean seedling root microsomes. Plant Physiol, 1985, 77: 352-357
    Lidon F C, Henriques F S. Role of rice shoot vacuoles in copper toxity regulation. Environ. Experi. Bot., 1998, 39(3): 197-202
    Lobban C S, Harrison P J. Seaweed Ecology and Physiology. Cambridge University Press, 1994
    Lomas M W, Glibert P M. Interaction between NH4+ and NO3- uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperature. Mar. Bio.,1999, 133:54l-551
    Loque D, Ludewig U, Yuan L, von Wiren N. Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant Physiol, 2005, 137: 671-680
    Marchetti R, Provini A, Ctosa G. Nutrient load carried by the River Po into the Adriatic Sea, 1968-1987. Marine Pollution Bulletin, 1989, 20: 168-172
    McGlathery K J. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum. J. Phycol., 1996, 31: 393-401
    Mengel K, Kirby E A. Principles of Plant Nutrition. International Potash Institute, Switzerland, 1982
    Miflin B J. The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol, 1974, 54: 550-555
    Milligan A J,Harrison P J, Effects of non-steady-state iron limitation on nitrogen assimilateory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phyco1., 2000, 36: 78-86
    Morris A W, Riley J P. The determination of nitrate in sea water. Analyt. Chim. Acta., 1963, 29: 272–279
    Muggli D L, Lecourt M, Harrison P J. Effect of iron and nitrogen source on the sink ingrate, physiology and metal composition of an oceanic diatiom from the subarctic Pacif. Mar Ecol Ser., 1996, 13 (2): 215-227
    Mullin J B, Riley J P. The spectrophotometric determination of nitrate in natural waters withparticular reference to sea water. Analytica chim. acta, 1955, 12: 464-480
    Nelson T A, Lee A. A manipulative experiment demonstrates that blooms of macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat. Bot., 2001, 71: 149-154
    Noda H, Amano H, Arashima K et al. Anti-tumor activity of marine algae. Hydrobiologia, 1990, 204/205: 577-584
    O'brien M C, Wheeler P A. Short term uptake of nutrient by Enteromorpha prolifera. J. Phycol., 1987, 23: 547-556
    Ouzotmidou G, Moustakas M, Eleflheriou E P. Physiological and ultra-structural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 1997, 32(2): 154-160
    Ouzounidou G. Copper-induced changes on growth, methal content and photosynthetic function of Alyssum montanum plants. Environ. Experi. Bot., 1994, 34(2): 165-172
    Packard T T, Blasco D, Macisaac J J, et al. Variations in nitrate reductase activity in marine phytoplankton. Investigaciones Pesqueras, 1971, 35: 209-219
    Packard T T, Blasco D. Nitrate reductase activity in upwelling regions: Ammonia and light dependence. Tethys, 1974, 6: 269-280
    Paerl H W. Coastal eutrophication and harmful algae blooms: Importance of atmospheric deposition and groundwater as“new”nitrogen and other nutrient sources. Limnology and Oceanography, 1997, 42(5): 1154-1165
    Pang S J, Liu F, Shan T F, et al.Tracking the algal origin of the Ulva bloom in theYellow Sea by a combination of molecular, morphological and physiological analyses. Mar. Environ. Res., 2010, 69: 207-215
    Pawlik-Skowronska B. Correlations between toxic Pb effects and reduction of Pb-induced thiol peptides in the micro alga Stichococcus bacillaris. Environ. Pollut, 2002, 119: 119-127
    Pedersen M F, Bo rum J. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and up take. Mar. Eco. Prog. Ser., 1997, 161: 155-163
    Pedersen M F, Paling E I, Walker D I. Nitrogen uptake and allocation in the seagrass Arnphibolis antarctica. Aquatic Bot., 1997, 56: 105-117
    Poulle M, Oaks A, Bzonek P, et a1. Characterization of nitrate reductase from corn leaves and Chlorella vulgaris. Planta physiol, 1987, 85: 375-378
    Qi Y, Zhang Z, Hong Y, Lu S, Zhu C, Li Y. Occurrence of red tides on the coasts of China. Toxic Phytoplankton Blooms Sea, 1993, 3: 43-46
    Raffaelli D, Raven J, Polle L. Ecological impact of green macroalgal blooms. Oceanogr. Mar.Biol.Annu.Rev., 1998, 36: 97-125
    Raven, J A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phyto1, 1988, 109: 279-287
    Robert J M, Hudson and Francois M M.Morel Iron transport in marine phytoplankton:Kinetics of cellular and medium coordination reactions. Limno1. Oceanogr., 1990, 35(5): 1002-1020
    Rosenberg G, Probyn T A, Mann K H et al. Nutrient uptake and growth kinetics in brown seaweeds: Response to continuous and single additions of ammonium. J. Exp. Mar. Biol. Ecol., 1984,80: 125-146
    Ryther J H, Dunstan W M. Nitrogen, phosphorus, and eutrophication in the coastal marine enviornement. Science, 1971, 171: 1008-1013
    Schumarker K S, Sze H. Decrease of pH gradients in tonoplast vesicles by NO3-3 and Cl -: Evidence for a H+-coupled anion transport . Plant Physiol, 1987, 83: 490-496
    Shalaby A M, Al-Wakeel S A M. Changes in nitrogen metabolism enzyme activities of Vicia faba in response to aluminium and cadmium. Biol Plant, 1995, 37: 101-106
    Siddiqi M Y, Glass A D, Ruth T J, Rufty T W. Studies of the uptake of nitrate in barley. I. Kinetics of NO3- influx. Plant Physiol, 1990, 93: 1426-1432
    Solomonson L P, Barber M J. Assimilatory nitrate reductase: Functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 225-253
    Sunda W G, Huntsman S A. Processes regulating cellular metal accumulation and physiological effect: phytoplankton as model systems. Sci Total Environ., 1998, 21(9): 165-181
    Suzuki A, Cadal P. Clutamate synthase from rice leaves. Plant Physiol, 1982, 69: 848-852
    Svein Kristiansen, Tove Farbrot. Nitrogen cycling in the Barents Sea-Seasonal Dynamics of new and regenerated production in the marginal ice zone. Limnol. Oceangr., 1994, 39(7): 1630-1642
    Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393(6687): 774-777
    Taylor R. The green tide threat in the UK-a brief overview with particular reference to langstoneharbour,south coast of England and the Ythan estuaty,east coast of Scotland. Bot. J.Scotl., 1999, 51: 195-295
    Thomas T E, Turpin D H, Harrison P J. Desiccation enhanced nitrogen up take rates in intertidal seaweeds. Mar. Biol., 1987, 94: 293-298
    Topinka T A. Nitrogen uptake by Fucus spiralis. J. Phycol., 1978, 14: 241-247
    Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolish in seagrass. Journal of Experimental Marine Biology and Ecology, 2000, 250: 133-167
    Turner R E, Rabalais N N. Changes in Mississippi River water quality this century-implications for coastal food webs. Bioscience, 1994, 41: 140-147
    Valiela I, McClelland J, Hauxwell J, Behr P J, Hersh D, Foreman k. Macroalgal blooms in shallow estuaries: control and ecophysiological and ecosystem sonsequences. Limnol. Oceanogr., 1997, 42: 1105-1118
    Vallee B I. Biochemical effects of mercury, cadmium and lead. Annu. Rev. Biochem., 1972, 41: 91-98
    Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ, 1990, 13: 195-206
    Van Bennekom A, Wetsteijn F J. The winter distribution of nutrients in the Southern Bight of the North Sea(1961-1978)and in the estuaries of the Scheldt and the Rhine/Neuse. Netherlands Journal of Sea Research, 1990, 25: 75-87
    Vargas M A, Maurino S G, Maldonado J M. Flavin-mediated photoinactivation of spinach leaf nitrate reductase involving superoxide radical and activating effect of hydrogen peroxide, J Photochem Photobiol Biol, 1987, l: 195-201
    Venrick E L, Beers J B, Heinbolkel J F. Consideration of errors in estimating kinetic parameters based on Michaels-Menten formalism in microbial ecology. Limnol. Oceangr., 1983, 28(1): 185-190
    Vona V, Rigano D M, Esposito S, et al. Growth, photosynthesis, respiration, and intracellular free amino acid profiles in the unicellular alga Cyanidium caldarium. Effect of nutrient limitation and resupply. Physiologia Plantarum, 1992, 85: 652- 658
    Wallsgrove R M, Turner J C, Hall N P, et al. Barley Mutants Lacking Chloroplast Glutamine Synthetase Biochemical and Genetic Analysis. Plant Physiol, 1987, 83: 155-158
    Wang M Y, Siddiqi M Y, Ruth T J, Glass A. Ammonium uptake by rice roots. II. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol, 1993, 103: 1259-1267
    Wang W X, Robert C H D. Metal uptake in a coastal diatom influenced by major nutrients (N, P, and Si ).Wat Res., 2001, 35(1): 315-321
    Williams S L, Fisher T R. Kinetics of 15N labeled NH4+ uptake by Cawerpa cupressoides. J. Phycol., 1985, 21: 287-296
    Wood E D, Armstrong F A J, Richards F A.Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass., U.K. 1967, 47: 23–31
    Zhang Y X. Toxicity of heavy metals to hordeum vulgare. Acta Sci Circumstantiae, 1997,17(2): 199-201
    陈朝明,龚惠群等. Cd对桑叶品质生理生化特征的影响及其机理研究.应用生态学报,1996, 7(4): 417-423
    陈胜勇,侯静,李彩凤.蛋白和核酸合成抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响.作物学报,2009, 35(3): 445-451
    段昌群,王焕校等.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究.环境科学,1992, 13(5): 31-35
    高俊莲,孙建光,陈文新.斜茎黄芪根瘤菌谷氨酰胺合成酶基因多样性研究.生物技术通报,2007 (1): 124-127
    国家海洋局. 2001-2003环境质量公报.北京:国家海洋局,2001-2003
    国家海洋局. 2002年中国海洋环境质量公报.北京:国家海洋局,2003
    国家海洋局. 20世纪末中国海洋环境质量公报.北京:国家海洋局,2000
    何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较. 农业环境科学学报,2003, 22 (3) : 274-278
    洪华生,戴民汉,黄邦钦等.厦门港浮游植物对磷酸盐吸收速率的研究.海洋与湖沼,1994, 25: 54-59
    洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响.华北农学报,1991, 6(3): 70-75
    黄邦钦,洪华生,戴民汉.环境因子对海洋浮游植物吸收磷酸盐速率的影响.海洋学报,1994, 15: 64-67
    贾玉海.中国海洋湖沼药物学.北京:学苑出版社. 1996, 318
    焦念志.海洋浮游生物氮吸收动力学及粒级特征.海洋与湖沼,1995, 26: 191-198
    李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展.生物学杂志, 2001, 18(4): 1-3
    李常健,林清华,张楚富等. NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响.武汉大学学报:自然科学版,1999, 45(4): 497-500
    李德萍,杨育强,董海鹰等. 2008年青岛海域浒苔大暴发天气特征及成因分析.中国海洋大学学报,2009,39(6): 1165-1170
    李荣春. Cd、Pb及其复合污染对烟叶生理生化指标的影响.云南农业大学学报,1997, 12 (1) : 45-50
    李瑞香,吴晓文,韦钦胜等.不同营养盐条件下浒苔的生长.海洋科学进展,2009,27(2):211-216
    李铁,史致丽,仇赤斌,王巧玲.中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究.海洋与湖沼,1999, 30(6): 640-645
    李元,王焕校,吴玉树等. Cd、Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报,1992, 12(2): 147-153
    梁宗英,林祥志,马牧等.浒苔漂流聚集绿潮现象的初步分析.中国海洋大学学报,2008, 38(4): 601-604
    刘静雯,董双林.海藻的营养代谢及其对主要营养盐的吸收动力学.植物生理学通讯,2001,37(4): 325-329
    罗立新,孙铁珩等.镉胁迫对小麦叶片细胞膜脂过氧化的影响.中国环境科学,1998, 18(1): 72-75
    乔方利,马德毅,朱明远等. 2008年黄海浒苔爆发的基本状况与科学应对措施.海洋科学进展,2008, 26(3): 409-410
    上海植物生理学会,植物生理学实验手册.上海科学技术出版社,1985, 223-235
    沈志良.渤海湾及其东部水域化学要素的分布.海洋科学集刊,1999, 41: 51-59
    田千桃,霍元子,王阳阳等.浒苔对NH4+ -N与NO3--N吸收的相互作用. 2010,34(7):41-45 汪沛洪.植物生物化学.北京:中国农业出版社,1993, 218
    王东军,陈立军.重金属对藻类的毒害作用.有色矿冶,2005, 21 (3): 40-41
    王建伟,阎斌伦,林阿朋等.浒苔(Enteromorpha prolifera)生长及孢子释放的生态因子研究. 海洋通报,2007, 26(2): 60-65
    王小纯,安帅,熊淑萍等.小麦叶片谷氨酰胺合成酶的分离纯化及鉴定.麦类作物学报,2010, 30(1): 83-86
    王修林,张莹莹,杨茹君等.不同浓度的营养盐(NO3-N, PO4-P)条件下Pb (Ⅱ)对2种海洋赤潮藻生长影响的研究.中国海洋大学学报,2005, 35 (1): 133-136
    王学奎.氮钙光对小麦谷氨酰胺合成酶和氮同化的影响.湖北:华中农业大学,2000: 9-13
    王艳,唐海溶,蒋磊,李韶山.硝酸盐对球形棕囊藻生长和硝酸还原酶活性的影响.植物学通报, 2006, 23(2): 138-144
    吴晓文,李瑞香,徐宗军等.营养盐对浒苔生长影响的围隔生态实验.海洋科学进展,2010, 28(4):538-544
    夏斌,马绍赛,崔毅等.黄海绿潮(浒苔)暴发区温盐、溶解氧和营养盐的分布特征及其与绿潮发生的关系.渔业科学进展,2009, 30(5): 94-101
    徐大伦,黄晓春,杨文鸽等.浒苔营养成分分析.浙江海洋学院学报(自然科学版),2003, 22(4): 318-320
    徐宁,吕颂辉,段舜山等.营养输入的改变对赤潮发生的影响.海洋环境科学,2004, 23(2): 20-24
    徐勤松,施国新,郝怀庆. Cd、Cr (V I)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响.广西植物,2001, 21(1): 87-90
    颜昌宙,曾阿妍,金相灿等.不同浓度氨氮对轮叶黑藻的生理影响.生态学报,2007, 27(3): 1050-1055
    杨丹慧,许春辉等.镉离子对菠菜叶绿体光系统II的影响.植物学报,1989, 31(9): 702-707
    杨东方,李宏.浅析浮游植物生长的营养盐限制及其判断方法.海洋科学,2000, 24(12): 47 -50
    杨居荣,贺建群,张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996, 16 (2) : 1132117
    杨居荣、贺建群等. Cd污染对植物生理生化的影响.农业环境保护,1995, 14(5): 193-197
    杨宇峰,费修绠。大型海藻对富营养化海水养殖区生物修复的研究与展望。青岛海洋大学学报,2003,33 (1):53 - 57
    于立红,康立娟,于晓斌等.蔬菜中硝酸盐污染程度快速测定方法的研究.吉林农业大学学报,2005, 27(1): 76-78
    余国莹,吴玉树等.不同化合形态镉、锌及其复合污染对小麦生理的影响.生态学报,1992, 12(1): 93-96
    余日安.镉与DNA损伤、癌基因表达、细胞凋亡.国外医学卫生学分册,2000, 27 (6) : 359-363
    袁永泽,林清华,张楚富等.蔗糖对水稻幼苗叶片谷氨酰胺合成酶和1,5-二磷酸核酮糖羧化酶加氧酶的影响.武汉植物学研究,2002, 20(3): 219-222
    张诚,邹景忠.尖刺拟菱形藻氮磷吸收动力学以及氮磷限制下的增殖特征.海洋与湖沼,1997, 28(6): 599-603
    张寒野,吴望星,宋丽珍等.条浒苔海区试栽培及外界因子对藻体生长的影响.中国水产科学,2006, 13(5): 781-786
    张苏平,刘应辰,张广泉,管磊.基于遥感资料的2008年黄海绿潮浒苔水文气象条件分析.中国海洋大学学报,2009,39(5): 870-876
    周慧萍,蒋巡天,王淑如等.浒苔多糖的降血脂及其对SOD活力和LPO含量的影响.生物化学杂志,1995, 11(2): 161-164