用户名: 密码: 验证码:
洋山港建设对海床冲淤演变影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋山深水港位于崎岖列岛内,毗邻杭州湾,是上海港新建的大型深水港。洋山海域具有多汊道输水输沙的特征,潮流强,含沙量高。自2002年以后,港区先后实施了小洋山-镬盖塘汊道、大乌龟-颗珠山汊道和将军帽-大指头岛汊道封堵以及陆域填充和港池疏浚工程。在汊道封堵之后,港区曾出现大范围的淤积现象,一度影响后续工程规划的实施。工程施工引起的海床冲淤演变规律和原因是迫切需要解决的关键问题,对其进行深入研究在科学及应用上均有重要意义。
     本文利用1998-2010年的实测地形资料,定量分析海床冲淤演变的时空变化规律。研究结果清晰地揭示海域地形随工程进展的冲淤变化特征。堵汊工程结束后的第一年内在汊道两侧出现明显的淤积带,但是淤积率在下一个年度显著下降;港区内部东南区域每年都出现淤积;淤积从2007-2009年增加,但以后呈下降趋势。为维护航运所需15m水深,港池前沿开挖是必要的,而且经过开挖也能够维护航运所需水深。
     实测资料表明,大潮时落憩时刻含沙量最高。在洋山海域水体和悬沙输运存在明显差异,直接描述悬沙净输运更准确合理。欧拉余流在水体长期输运中占主导地位,平流输运和潮泵作用是洋山海域悬沙输运的主要动力因子,由于潮动力混合较强,垂向输运作用很小。2006年港区中南部悬沙净输运指向大山塘北侧,可能是该地区淤积的原因之
     利用工程间歇期和港区海域环境经历一段较长的适应调整期,观测和估算各汊道的水沙通量对于评估港区海域的淤积态势及洋山港的持续发展规划有重要的参考价值。本文利用ADCP和OBS在洋山港走航和定点观测的数据,采用通量守恒原理,使用横向均匀、垂向时变的网格,经过时间和空间插值,计算得到大小潮期间洋山港5个主要汊道断面的水沙通量。分析表明,港区内净输进沙约5.44万m3/天(2008年8月)。以此作为洪季的日平均净输沙量,则洪季(三个月)港区内净输进沙约489.4万m3,港区内局部表现为淤积。颗珠山汊道洪季(三个月)净输出沙量约231.3万m3,是港区内重要的出沙通道。
     为分析海床冲淤演变机理,利用Delft3D建立了洋山海域嵌套模型。在对模型进行充分率定和验证基础上,又对三个堵汊工程引起的地形演变进行了后报验证,模型基本上能够刻画堵汊工程引起的地形冲淤演变特征。水位壅高导致的流速减小是引起淤积的主要动力机制。本文又对港区未来可能进行的堵汉工程进行了地形演变预测,若实施南面两个汊道封堵,不仅在汊道附近产生明显的淤积带,而且可能在港区内西部产生大范围的淤积区。
Yangshan Deepwater Harbor, located in the Qiqu Archipelago adjecnt to Hangzhou Bay, is the new deepwater harbor of the Port of Shanghai. The study area features a series of islands with complex hydrodynamics and high sediment concentrations。Its construction since 2002 entails three types of engineering projects:closing a series of inlets, i.e., inlet between Xiaoyangshan and Huogaitang Island, inlet between Dawugui and Kezhushan Island and inlet between Jiangjunmao and Dazhitou Island; land reclamation and dredging. After the construction of 1,2 and 3, these engineering projects caused a series of morphological changes in the area. Because of the serious sedimentation in the harbor area further construction of the planned harbors has been stopped for the time being. Research on the sedimentation and its causes is urgently needed for the decision concerning further construction of more harbors.
     In this paper we analyze the morphological changes in the harbor area using bathymetric data collected from 1998 to 2010. Especially since 2004 bathymetry in the area has been surveyed every year, making it possible to analyze the spatial and temporal variation of sedimentation-erosion in detail. The analyses provide a good insight into how the morphological changes are related to the various projects of the harbor construction, and how the changes develop in time. It is shown that in the year immediately after an inlet was closed accretion occurred on both sides of the closure. The sedimentation rates decrease significantly in the following years. The SE zone of the inner harbor area continuously accreted. Accretion accelerated from 2007 to 2009 but decreased thereafter. The results of the analyses indicate that routine dredging will be necessary to maintain the requisite 15-m depth requirement for berths, but a regular dredging routine is feasible.
     It is shown that suspended sediment concentration (SSC) is maximum at ebb slack during spring based on observed data. The obvious difference exists between water and suspended sediment residual transport, and it is more accurate and reasonable that calculating residual sediment transport directly. Euler transport is predominant role of water long-period transport, horizontal advection and tidal pumping take primary role in suspended sediment transport in the study area, the contribution of vertical transport is small due to strong mixed tide.The net suspended sediment transport for several stations in middle and south inner harbor area are oriented to north of Dashantang Island in 2006, which may be one of the reasons of deposition.
     It is significant for evaluating trend of harbor morphological change and planned harbor layout by measuring and calculating water and sediment fluxes of key transects, after the pause time of engineering and a longer time of adaption and adjustment of the harbor area itself. In this paper, the instruments of ADCP (Acoustic Doppler Current Profile) and OBS (Optical Backward Scatter) were applied to the five key cross-sections (CS) in the Yangshan Harbor to observe profiles of water depths, flow velocities and SSCs, respectively. Based on the flux conservation principle, the fluxes of water and sediment were calculated by the temporal and spatial interpolation on a horizontal-uniform-and-vertical-varying mesh. The net flux for sediment moving into the harbor area is about 54 400m3/day in August,2008. This value can be taken as the daily-averaged net sediment transportation rate for flood seasons, and based upon which, the net inflow sediment for a flood season (three months) is about 489 400m3, and the harbor area is in the state of deposition locally. The Kezhushan inlet is the main outflow passage for sediments, through which about 231 300m3 of sediments move out of the harbor in a flood season.
     For a better understanding of the mechanisms responsible for the observed morphological changes a detailed Yangshan waters hydrodynamic and suspended sediment model is developed based on Delft3D. The detailed model can simulate the morphological change induced by inlet closures basically after verified bed level changes induced by the three inlet closures based on parameters calibration and verification. The model results provide insights into how the morphological changes are related to the changes in hydrodynamics induced by the closures of the inlets. The paper predicts morphological change induced by planned inlet closure. Not only deposition belts occur near the inlet closure, but also large areas of deposition occur in western part of the inner harbor if the south two inlets are closed.
引文
[1]陈吉余,陈沈良,丁平兴,杨世伦。长江口南汇咀近岸水域泥沙输移途径[J]。长江流域资源与环境2001,10(2):166-172。
    [2]陈建勇,戴志军,陈吉余,等.杭州湾北岸弧形岸段悬沙净输移分析—以龙泉—南竹港岸段为例[J].泥沙研究,2009,2:53-59.
    [3]曹明德,方国洪。杭州湾和钱塘江潮波的联合数值模型[J]。海洋学报,1988,10(5):521-530。
    [4]曹祖德。波浪潮流作用下的悬沙输移[J]。水道港口,1993,4:14-20。
    [5]陈倩,黄大吉,章本照。浙江近海潮汐潮流的数值模拟。海洋学报,2003,25(5):9-20。
    [6]曹惠江。长江河口枯季三维流场悬沙数值模拟[M]。华东师范大学硕士学位论文,2005。
    [7]陈斌。长江口附近海域三维悬浮泥沙的数值模拟研究[D]。中国科学院研究生院博士学位论文,2008。
    [8]陈沈良。崎岖列岛海区百年冲淤特征及其原因[J]。海洋通报,2000a,19(1):58-67。
    [9]陈沈良。崎岖列岛海区的水文泥沙及其峡道效应[J]。海洋学报,2000b,22(3):123-131。
    [10]陈沈良,谷国传,李玉中。南汇近岸水域近底层泥沙运动和边滩沉积。东海海洋,2003,21(4):15-25。
    [11]陈沈良。杭州湾口南汇咀近岸水域水沙特征与通量[J]。海洋科学,2004,28(3):18-22。
    [12]陈沈良,谷国传。杭州湾口悬沙浓度变化与模拟[J]。泥沙研究,2000,5:45-50。
    [13]陈沈良,张国安,杨世伦,虞志英。长江口水域悬沙浓度时空变化与泥沙再悬浮[J]。地理学报,2004,59(2):260-266。
    [14]陈琳,陆欣华。ADCP测量技术在长江口深水航道治理工程中的应用[J]。水运工程,2000,323(12):46-47。
    [15]陈倩,黄大吉,章本照,王敏芳。浙江近海潮汐的特征[J]。东海海洋,2003a,21(2):1-12。
    [16]陈倩,黄大吉,章本照,王敏芳。浙江近海潮流和余流的特征[J]。东海海洋,2003b,21(4):1-14。
    [17]曹沛奎,谷国传,董永发等。杭州湾泥沙运移的基本特征。见:陈吉余等著,中国海岸发育过程和演变规律[M]。上海群学技术出版社,1989,108-119。
    [18]丁平兴,胡克林,孔亚珍,等。长江河口波-流共同作用下全沙数值模拟。海洋学报,2003,25(5):113-124。
    [19]堵盘军。长江口及杭州湾泥沙输运研究[M]。华东师范大学博士论文,2007。
    [20]杜景龙,杨世伦,贺松林,等。洋山港堵汊工程对邻近海底冲淤影响分析[J]。海洋工程,2008,26(4):53-59。
    [21]付桂,李九发,戴志军,等。南汇嘴—崎岖列岛海域海床演变初步探讨[J]。华东师范大学学报(自然科学版),2007,4:34-41。
    [22]冯建军。ADCP原理及数据处理方法[J]。港工技术,2007,3:53-55。
    [23]郜昂,赵云华,杨世伦,戴仕宝,陈沈良,李鹏。径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨[J]。海洋科学进展,2008,26(1):44-50。
    [24]胡克林。波-流共同作用下长江口二维悬沙数值模拟[M]。华东师范大学博士学位论文,2003。
    [25]胡日军,吴建政,朱龙海,等。东海舟山群岛海域表层沉积物运移特性[J]。中国海洋大学学报,2009,39(3):495-500。
    [26]黄明政,续建新。台风对洋口港深水航道骤淤影响的研究[J]。水运工程,2006,10:151-155。
    [27]海洋图集编委会。渤海黄海东海海洋图集(水文)[M]。北京:海洋出版社,1992a。
    [28]海洋图集编委会。渤海黄海东海海洋图集(气象)[M]。北京:海洋出版社,1992b。
    [29]黄惠明。长江河口盐水入侵一、二维数值计算研究[D]。河海大学硕士学位论文,2006。
    [30]金镠,虞志英。淤泥质海岸挖槽回淤预测的沉积动学途径—以杭州湾试挖槽为例[J]。泥沙研究1999,5:34-43。
    [31]金中青。N-S方程的数值解和紊流模型[M]。1989
    [32]蒋国俊,陈吉余,王宗涛。舟山群岛峡道底部高程及其冲刷对浙闽沿海泥沙供给的影响[J]。海洋地质与第四纪地质,1997,17(2):29-38。
    [33]蒋国俊,姚炎明,唐子文。长江口细颗粒泥沙絮凝沉降影响因素分析[J]。海洋学报,2002,24(4):51-57。
    [34]吉顺莉。长江口南汇边滩泥沙特性实验研究[M]。河海大学硕士学位论文,2007,5。
    [35]2000年1月-2月上海国际航运中心洋山港区一期工程港池水域水文泥沙测验资料汇编冈。交通部天津水运工程科学研究所,天津水运工程勘察设计院,2000,3。
    [36]孔亚珍,丁平兴,贺松林,等。长江口外及其邻近海域含沙量时空变化特征分析[J]。海洋科学进展,2006,24(4):446-454。
    [37]刘红,何青,王元叶,等。长江口浑浊带海域OBS标定的实验研究[J]。泥沙研究,2006,5:52-58。
    [38]刘红。长江河口泥沙混合和交换过程研究[D]。华东师范大学博士学位论文,2009
    [39]刘伟,徐剑华。上海国际航运中心洋山深水港区工程及其建设意义[J]。物流科技,2006,29:54-57。
    [40]刘蔡胤。上海洋山港港区海域潮流泥沙数值模拟及水下地形变化特征分析[D]。大连理工大学硕士学位论文,2008。
    [41]刘新成,沈焕庭。运用等面积时变网格估算长江口南北港断面净水沙通量[J]。泥沙研究,2002,2:46-52。
    [42]李身铎,顾思美。杭州湾潮波三维数值模拟[J]。海洋与湖沼,1993,24(1):7-15。
    [43]李身铎,孙卫阳。杭州湾潮致余流数值研究。海洋与湖沼,1995,26(3):254-261。
    [44]李玉中,陈沈良,谷国传。崎岖列岛海区现代沉积环境[J]。上海地质,2002,2:11-16。
    [45]李玉中,陈沈良。洋山港海域余流分离和会聚现象研究[J]。水利学报,2003,5:24-34。
    [46]李孟国。海岸河口泥沙数学模型研究进展[J]。海洋工程,2006,24(1):139-154。
    [47]李孟国,张华庆,陈汉宝,等。海岸河口多功能数学模型软件包TK-2D的开发研制[J]。水道港口,2006,27(1):51-56。
    [48]李蓓,唐士芳。河口海区开挖航道后三维潮流盐度泥沙数值模拟。水道港口,2000,4:36-41。
    [49]林全泓。强风浪过程中近岸泥沙运动的数值模拟[D]。天津大学硕士学位论文,2004。
    [50]梁丙臣。海岸、河口区波一流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用[D]。中国海洋大学博士学位论文,2005。
    [51]李娜。崎岖列岛海域洋山岛链堵汉工程后水沙条件的变化对港区海床冲淤影响研究[D]。华东师范大学硕士学位论文,2009。
    [52]李鹏,杨世伦,徐小弟,等。洋山港区动力泥沙过程研究—兼论北岛链汉道封堵的影响[J]。海洋通报,2008,27(5):56--64。
    [53]彭润泽,蒋如琴,黄永健,等。长江口泥沙絮凝沉速实验研究报告[R]。武汉水利水电学院,1987。
    [54]茹荣忠。杭州湾海域水体悬沙粒度统计分析[J]。东海海洋,2002,20(4):13-18。
    [55]乔璐璐。冬季大风事件下渤黄海环流及泥沙输运过程研究[D]。中国海洋大学博士学位论文,2008。
    [56]钱宁,万兆惠。泥沙运动力学[M]。北京:科学出版社,1991。
    [57]上海国际航运中心洋山深水港区水沙运动冲淤特征和堵汉工程影响分析[R]。华东师范大学河口海岸学国家重点实验室,长江水利委员会水文局长江口水文水资源勘测局。2006,12。
    [58]上海国际航运中心洋山深水港区施工期潮流跟踪监测分析报告冈。长江水利委员会水戈局长江口水文水资源勘测局。2008,5。
    [59]上海国际航运中心洋山深水港海域2005~2006年泥沙淤积问题研究[R]。交通部天津水运工程科 学研究所。2006,12。
    [60]上海国际航运中心洋山深水港区西港区方案潮流泥沙及海床变形数值模拟研究报告[R]。交通部天津水运工程科学研究所。2006,12。
    [61]上海国际航运中心洋山深水港区西港区规划方案潮流泥沙物理模型试验研究[R]。交通部天津水运工程科学研究所。2007,1。
    [62]上海国际航运中心洋山深水港区西港区规划方案局部动床泥沙物理模型试验研究[R]。交通部天津水运工程科学研究所。2008,1。
    [63]上海国际航运中心洋山深水港区水域水文泥沙测验资料汇编[R]。交通部天津水运工程科学研究所。2006,7。
    [64]沈焕庭。中国河口数学模拟研究的进展[J]。海洋通报,1997,16(2):80-86。沈健,沈焕庭,潘定安,等.长江河口最大浑浊带水沙输运机制分析[J].地理学报,1995,50(5):411-420.
    [65]唐建华。长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究[M]。华东师范大学硕士学位论文,2007。
    [66]田淳,刘少华。声学多普勒测流原理及其应用[M]。郑州:黄河水利出版社,2003。
    [67]武汉水利水电学院。河流动力学[M]。北京:中国工业出版社,1960。
    [68]汪德爟。计算水力学理论与应用。南京:河海大学出版社,1989。
    [69]万健。关于洋山港发展的战略思考。华东经济管理,2006,20(6):16-17。
    [70]王海龙。长江口-杭州湾水沙环境数值研究[M]。华东师范大学博士后研究工作报告,2008。
    [71]万新宁。洋山海域峡道效应对于工程的综合响应[M]。博士学位论文,华东师范大学河口海岸学国家重点实验室。2008,5。
    [72]汪亚平,高抒,李坤业。用ADCP进行走航式悬沙浓度测量的初步研究[J]。海洋与湖沼,1999,30(6):758-463。
    [73]汪亚平,高建华。河口海岸区悬沙输运量的声学多普勒流速剖面(ADCP)观测技术的初步研究[J]。科学技术与工程,2003,3(5):467-470。
    [74]王爱军,汪亚平,高抒。声学多普勒流速仪盲区数据处理及其在长江河口区的应用[J]。水利学报,2004,10:77-82。
    [75]谢文辉,陈沈良,谷国传,王宝灿。崎岖列岛邻近海域的水文泥沙特征[J]。东海海洋,2000,18(2):1-8。
    [76]辛文杰。潮流、波浪综合作用下河口二维悬沙数学模型[J]。海洋工程,1997,15(2):30-46。
    [77]徐剑华,陈良。上海港将成为东北亚转运中心。中国航海,2006,3:77-81。
    [78]项印玉。陆架环流对长江河口盐水入侵的影响。华东师范大学硕士学位论文,2008。
    [79]远赫男。从上海港物流现状看我国港口物流的整体发展趋势[J]。天津市财贸管理干部学院学报,2009,11(1):25-26。
    [80]叶烨,金志伟。发展双枢纽港推进上海国际航运中心建设[J]。港航研究,2007,3:18-20。
    [81]俞航,陈沈良,谷国传。崎岖列岛海区水沙特征及近期冲淤演变[J]。海岸工程,2008,27(1):10-20。
    [82]洋山深水港水域工程前后水沙环境和冲淤变化分析[R]。华东师范大学河口海岸学国家重点实验室,中交第三航务工程勘察设计院。2006,11。
    [83]洋山深水港区建设期及西港区方案下潮流场变化及地形响应数学模型研究报告[R]。中交上海航道勘察设计研究院有限公司。2008,1。
    [84]洋山深水港区水文地形监测资料及模型试验成果分析[R]。中交第三航务工程勘察设计院。2006,5。
    [85]虞志英,张志林。上海市国际航运中心洋山深水港区西港区海床冲淤趋势和增深研究[R]。上海:华东师范大学河口海岸学国家重点实验室,长江水利委员会长江口水文水资源勘测局,2009,3。
    [86]杨华,冯学英。上海洋山港区和进港航道水域泥沙特性及回淤分析研究。水道港口,2000,3:17-22。
    [87]英晓明,丁平兴,胡克林,吴辉。基于ADCP和OBS观测的洋山港关键断面水沙通量研究。泥沙研究,2010,2:22-30。
    [88]朱首贤,丁平兴,沙文钰,等.河口物质和水体长期输运分离的理论分析和观测验证Ⅰ物质和水体长期输运分离的理论分析[J].海洋学报,2008,30(6):24-29.
    [89]朱首贤.流、浪模式和物质长期输运分离研究[D].华东师范大学博士学位论文,2005.
    [90]张文静,朱首贤,沙文钰.二维悬沙长期输运速度的定义和机理分析[J].海洋工程,2003,21(3):56-61.
    [91]张金善,陈永平,赵铁卫,等。大、小洋山建港总体规划中的水流泥沙问题[J]。海洋工程,2004,22(3):56-60。
    [92]左书华,时连强。南汇嘴潮滩沉积物粒度特征研究[J]。水道港口,2008,29(2):88-93。
    [93]中华人民共和国水利部。中国河流泥沙公报[M]。北京:中国水利水电出版社,2002-2009。
    [94]赵建春,戴志军,李九发,李为华。强潮海湾近岸表层沉积物时空分布特征及水动力响应[J]。沉积学报,2008,26(6):1043-1051。
    [95]朱巧云。ADCP与流速仪在洋山港的比测分析[J]。人民长江,2007,38(8):132-133。
    [96]周华君。长江口最大混浊带特性研究和三维水流泥沙数值模拟[D]。河海大学博士学位论文,1993。
    [97]张娜。风浪作用下粘性泥沙运动的三维数值模拟[D]。天津大学硕士学位论文,2004。
    [98]赵群。基于SWAN和ECOMSED模式的大风作用下黄骅港波浪潮流泥沙的三维数值模拟[J]。泥沙研究,2007,4:17-26。
    [99]张宏伟。波浪、潮流共同作用下海床长期演变的数值模型及其工程应用研究[D]。大连理工大学博士学位论文,2008。
    [100]Ariathurai, C.R., Arulanandan, K.,1978. Erosion rates of cohesive soils, ASCE, Journal of the Hydraulics Division 104 (2),279-282.
    [101]Blumberg, A.F.. A primer for Ecomsed[R]. Technical Report of Hydroqual, Inc., Mahwah N.J.,2002.
    [102]Blasse, M., Dong,C.M., Marchesielloc,P., et al.. Simulating offshore sand waves[J]. Coastal Engineering,2006,53:265-275.
    [103]Blasse, M., Dong,C.M., Marchesielloc,P., et al.. Sediment-transport modeling on Southern Californian shelves:A ROMS case study[J]. Continental Shelf Research,2007,27:&32-853.
    [104]Cancino, L., Neves, R.. Hydrodynamic and sediment suspension modeling in estuarine systems:Part I:Description of the numerical models[J]. Journal of Marine Systems,1999,22(2):105-116
    [105]Chen jing, Chen Zhongyuan, Xu Kaiqin, et al. ADP-flow velocity profile to interpret hydromorphological features of China's Yangtze Three-Gorges valley[J]. Chinese Science Bulletin, 2005,50(7):679-684.
    [106]Chen, Q.W., Mynett, A.E.,2006. Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches. Ecological Modelling 199,73-81.
    [107]Curran, K.J., Hill, P.S., Milligan, T.G., et al.,2007. Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France. Continental Shelf Research 27,1408-1421.
    [108]Dyer, K.R.. Coastal and Estuarine Sediment Dynamics [M]. A Wiley Interscience Publication John Wiley and Sons,1985,253-254.
    [109]Ding, P.X., K.L. HU, Kong Y.Z., Zhu S.X. Numerical Simulation of Total Sediment under Waves and Currents in the Changjiang Estuary.[J]. Acta Oceanologica Sinica,2003,25(5):113-124.
    [110]Delft University. SWAN Manual[R].2008.
    [111]Dinehart, R.L., Burau, J.R.. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in atidal river[J]. Journal of Hydrology,.2005(314):1-21.
    [112]Elias, E.P.L., Cleveringa, J., Buijsman, M.C., et al.. Field and model data analysis of sand transport patterns in Texel Tidal inlet (the Netherlands). Coastal Engineering,2006,53:505-529.
    [113]Eugen, R.. Evaluation of the wave conditions in Madeira Archipelago with spectral models[J]. Ocean Engineering,2008,35:1357-1371.
    [114]Fettweis, M., Francken, F., Pison, V., et al. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area[J]. Marine Geology,2006(235):63-74.
    [115]Fiechter, J., Steffen, K.L., Mooers, C.N.K., et al.. Hydrodynamics and sediment transport in a southeast Florida tidal inlet[J]. Estuarine, Coastal and Shelf Science,2006,70:297-306.
    [116]Fox, J.M., Hill, P.S., Milligan, T.G.,2004. Floc fraction in the waters of the Po River prodelta. Continental Shelf Research 24,1699-1715.
    [117]Grunnet, N.M., Ruessink, B.G., Walstra, D.R..The influence of tides, wind and waves on the redistribution of nourished sediment at Terschelling, The Netherlands [J]. Coastal Engineering,2005,52,617-631.
    [118]Ge, J., Ding. P., Chen. C. and Xue. P.,, Low-salinity plume in the Changjiang and adjacent coastal regions:a model-data comparison, Proceedings of the 31st International Conference of Coastal Enginnering 2008, Hamburg, Germany, pp4471-4481
    [119]Hibmaa, A., Schuttelaarsa, H.M., Vrienda, H.J.. Initial formation and long-term evolution of channel-shoal patterns[J]. Continental Shelf Research,2004,24:1637-1650.
    [120]Hu, K.L., Ding, P.X., Wang, Z.B., et al.. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems,2009,77(1):114-136.
    [121]Hardy, R.J., Bates, P.D., Anderson, M.G.. Modelling suspended sediment deposition on a fluvial floodplain using a two-dimensional dynamic finite element model[J]. Journal of Hydrology,2000,229:202-218.
    [122]Jeuken, M.C.J.L., Wang, Z.B.,2010. Impact of dredging and dumping on the stability of ebb-flood channel systems. Coastal Engineering 57,553-566.
    [123]Lesser, G.R., Roelvink, J.A., Van kester, J.A.T.M., et al.. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering,2004,51:883-915.
    [124]Lumborg, U., Pejrup, M.,2005. Modelling of cohesive sediment transport in a tidal lagoon—an annual budget. Marine Geology 218,1-16.
    [125]Lin, B.L., Falconer, R.. Numerical modelling of three-dimensional suspended sediment for estuarine and coastal waters[J]. Journal of Hydraulic Research,1996,34(4):435-456.
    [126]Le, V.S., Yamashita, T., Okunishi, T., et al.. Characteristics of suspended sediment material transport in the Ishikari Bay in snowmelt season[J]. Applied Ocean Research,2006,28:275-289.
    [127]LIANG Bing-chen, LI Hua-jun. BOTTOM SHEAR STRESS UNDER WAVE-CURRENT INTERACTION[J]. Journal of Hydrodynamics,2008,20(1):88-95.
    [128]Mead, C.T. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries [J]. Journal of Hydraulic Research,1999,37(4): 444-464.
    [129]Merckelbach, L.M.. A model for high-frequency acoustic Doppler current profiler backscatter from suspended sediment in strong currents[J]. Continental Shelf Research,2006(26):1316-1335.
    [130]Martin, D., Bertasi, F., Colangelo, M.A., et al.,2005. Ecological impact of coastal defence structures on sediment and mobile fauna:Evaluating and forecasting consequences of unavoidable modifications of native habitats. Coast Engineering 52,1027-1051.
    [131]Mehta, A.J., Partheniades, E.,1975. An investigation of the depositional properties of flocculated fine sediments. Journal of Hydraulic Research 12,361-381.
    [132]Perillo,G. M. E., Piccolo, M.C. Methodology to study estuarine cross-section[J]. Revista Geofisica,1993,38:189-206.
    [133]Perillo,G M.E., Piccolo, M. C. Importance of Grid-Cell Area in the Estimation of Estuarine Residual Fluxes[J]. Estuaries,1998,21(1):14-28.
    [134]Rattray, M., Dworski, J.G. Comparison of methods for analysis of the transverse and vertical circulation contributions to the longitudinal advective salt flux in estuaries[J]. Estuarine and Coastal Marine Science,1980,11:515-536.
    [135]Peaceman, D.W., Rachford, H.H.. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the society for Industrial and Applied Mathematics,1955,3(1):28-41.
    [136]Parchure, T.M., Mehta, A.J.,1985. Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering ASCE 111,1308-1326.
    [137]Rose, P. C., Thorne, P. D. Measurements of suspended sediment transport parameters in a tidal estuary [J]. Cont Shelf Resh,2001, (21):1551-1575.
    [138]Smit, M.W.J., Reniers, A.J.H.M., Ruessink, B.G, et al.. The morphological response of a nearshore double sandbar system to constant wave forcing[J]. Coastal Engineering,2008,55:161-110.
    [139]Stanev, E.V., Flemming, B.W., Bartholoma, A., et al. Vertical circulation in shallow tidal inlets and back-barrier basins[J]. Continental Shelf Research,2001(21):198-831.
    [140]Tang, H.S., Keen, T.R., Khanbilyardi, R.. A model-coupling framework for nearshore waves, currents, sediment transport, and seabed morphology [J]. Commun Nonlinear Sci Numer Simulat,2009,14: 2935-2947.
    [141]Tonnon, P.K., Van Rijn, L.C., Walstra, D.J.R.. The morphodynamic modelling of tidal sand waves on the shoreface[J]. Coastal Engineering,2001,54:279-296. Uncles, R.J., Elliott, R.C.A., Weston, S.A.. Observed fluxes of water, salt and suspended sediment in a partly mixed estuary [J]. Estuar Coast Shelf Sci,1985,20(2):147-167.
    [142]Van der Ham, R., Winterwerp, J.C.,2001. Turbulent exchange of fine sediments in a tidal channel in the Ems/Dollard estuary. Part Ⅱ. Analysis with a 1DV numerical model. Continental Shelf Research 21,1629-1647.
    [143]van Maren, D.S.,2007. Grain size and sediment concentration effects on channel patterns of silt-laden rivers. Sedimentary Geology,202:297-316.
    [144]Van Maren, D.S.. Grain size and sediment concentration effects on channel patterns of silt-laden rivers[J]. Sedimentary Geology,2007,202:297-316.
    [145]WL|Delft Hydraulics. Delft3D-Flow User Manual, Version 3.28,2009.
    [146]Warren, J.D., Peterson B.J.. Use of a 600-kHz Acoustic Doppler Current Profiler to measure estuarine bottom type, relative abundance of submerged aquatic vegetation, and eelgrass canopy height[J]. Estuarine, Coastal and Shelf Science,2007(72):53-62.
    [147]Wolannski, E., King, B., Galloway, S. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea[J]. Estuarine coastal and shelf science,1995,40:321-337.
    [148]Wang, X.H., Pinardib, N., Malacicc, V. Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001:A numerical modelling study[J]. Continental Shelf Research,2007,27:613-633.
    [149]Warner, J.C., Sherwood, C.R., Arango, H.G, et al.. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling,2005,8:81-113.
    [150]Warnera, J.C., Sherwooda, C.R., Signella, R.P., et al.. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model[J]. Computers & Geosciences,2008, 34:1284-1306.
    [151]Wornom, S.F., Bedford, K.W.. Accurate nearshore wave predictions[J]. Coastal Engineering,2001, 43(3):161-201.
    [152]Winterwep, J.C.,2006. Stratification effects by fine suspended sediment at low, medium, and very high concentrations.Journal of Geophysical Research,111, c05012, doi:10.1029/2005JC003019.
    [153]Xu, F.M., Yan, Y.X.. Wave numerical model for shallow water[J]. China Ocean Engineering,1996, 1:668-676.
    [154]Xie, D.F., Wang, Z.B., Gao, S., et al.,2009. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Continental Shelf Research 29,1757-1767.
    [155]Xie, M.X., Zhang, W, Guo, W.J.,2010. A validation concept for cohesive sediment transport model and application on Lianyungang Harbor, China. Coastal Engineering 57,585-596.
    [156]Yang, S.L., Li, M., Dai, S.B., et al.,2006. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters 33, L06408,4 PP., doi:10.1029/2005GL025507.
    [157]Ying, X.M., Ding, P.X., Wang, Z.B., et al.,2011. Morphological impact of the construction of an offshore Yangshan Deepwater Harbour in the Port of Shanghai,China. Journal of Coastal Research (in press).
    [158]Zhang, Y, Swift, D.J.P., Fan, S.J., et al.,1999. Two-dimensional numerical modeling of storm deposition on the northern California shelf. Marine Geology 154,155-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700