用户名: 密码: 验证码:
长江河口水流输运时间的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水流输运时间用来刻画河口动力的本质,水流输运时间成功应用在研究世界上的河口物质输运动力特性,但在多级分汊河口的相关研究却为数不多。在长江河口这类大型复杂多级分汊河口水流输运时间的研究有助于丰富河口海岸动力学研究的理论和方法,不仅是我国河口海岸研究的有益的尝试,在国际大型河口研究方面将具有很强的代表性。本文基于环境水动力学模型,首先建立了长江河口及其邻近海域的三维水动力数学模型,利用大量野外观测数据对水位、流速和盐度进行了充分的验证,验证结果表明该模型能够合理地反映长江河口区域的水动力特征,为进一步定量研究长江河口物质输运及环流特征奠定了基础。研究选择长江口徐六泾作为进入河口的起点,利用河口海岸水流运动的最新的水龄理论,研究河口水流输运时间的时空分布和影响因子;采用流速、盐度分解的方法研究了长江河口控制上溯盐度的机理。以北槽深水航道工程为例,讨论了河口大型工程对河口环流以及水流输运时间的影响。得到主要的认识如下:
     系统研究了长江径流、潮汐、风和科氏力对长江水流输运的影响。长江径流是影响河口水流输运时间的主要因素,水流由徐六泾到长江口门(122.5。)所需要的时间,枯季约为洪季水龄的近两倍,枯季需要32天,洪季需要16天。长江口水流输运时间垂向分布特征存在明显的层化结构,洪季分层比枯季明显,小潮分层比大潮明显。同时发现在水流输运时间上存在与河口最大浑浊带相呼应的区域,该区域水流输运速度比上、下游都慢。研究发现长江河口潮汐的周期性混合,对调节河口水流输运时间过程起到了关键的作用。潮汐的振荡作用使得长江河口水体垂向混合作用加剧,径流作用下水体由河口向外海输运,潮汐的不对称作用和地形相互影响决定了长江河口水流输运的空间格局。在风的影响下,河口垂向混合作用加强,小潮水流输运速度加快,大小潮水龄差异减小。在多汉道的河口,风对水流输运的作用除了通过影响河口分层的方式改变水流输运外,还可以通过改变各汉道间下泄径流的分配影响水流在河口不同河段的输运时间。科氏力作用使得河口涨落潮流路分歧,对于改变水流输运的方向和水流输运时间的空间格局亦有重要的影响。
     从水流输运时间角度探讨深水航道工程对河口动力场结构的影响。深水航道工程建成后由于北槽河段阻力增加,河口上段水位抬升,各汊道下泄径流分配发生改变。北槽水流输运时间减小,最大减小约16%;南槽水流输移时间增加,最大增加可达41%。工程后南、北槽分水龄分层均增强,南北槽的水龄和盐度的垂向分布均比工程以前分层更强,垂向平均盐度水平梯度增加,重力环流增强。北槽的垂向平均的水流输运时间减小,但是由于垂向分层显著增加,工程后表层水流输运时间比工程前减小,而底层则比工程前增加更大,这种变化不利于高浓度泥沙等集中于底层的物质的向海输运。深水航道显著减小了北槽与南槽、北槽与北港的平面水流交换,导致了河口滩槽水龄格局的改变。由于北槽的水流在导堤的约束下,大量水体无法与南槽交换,从南槽下泄的径流有部分偏向导堤且沿导堤出南槽的趋势;由北槽下泄的径流,部分右转归入南槽,并在九段沙下部形成了高水龄区域。
     利用通量分解的方法对流速、盐度进行分解,研究了长江河口盐度上溯的机理。将盐度通量分解为平流输运部分、稳定剪切扩散和潮汐振荡盐通量。通过分析交换水流、盐度、稳定剪切扩散和潮汐振荡盐通量的时空变化特征,发现大潮期间潮汐振荡扩散盐通量是大潮上溯盐通量的主控因素,并决定了盐通量的大小和方向,小潮期间,稳定剪切扩散输运和潮汐振荡扩散盐通量的作用相当。对于整体而言,稳定剪切扩散输运中横向剪切扩散明显大于垂向的剪切扩散作用,表明在滩槽相间的河口体系中横向环流对纵向的盐度输运有着重要的作用。
The transport timescale of an estuary characterizes the nature of the dynamics of the estuary. Using transport timescale to study transport dynamics have been successful and proven to be an efficient tool. However, research on bifurcation estuary has very limited. The study on the transport timescale in Changjiang Estuary will provide new knowledge to understand the underlying dynamics of the estuary. It is not only a new endeavor in the Changjiang Estuary, but also a representative of bifurcation estuary in the world estuary. The study was carried out using a three-dimensional numerical model. The three-dimensional hydrodynamic model was developed for the Changjiang Estuary and adjacent coastal area using the Environmental Fluid Dynamic Code (EFDC). The model was fully calibrated with measured elevation, current and salinity. The results show that the model has the capability to reproduce the hydrodynamic characteristics of the estuary, which establishes the foundation for further quantitative investigation on the material transport and estuarine circulation in the Changjiang Estuary. The concept of the water age, a newly developed theory in recent years, is introduced to study the transport processes in the Changjiang Estuary. The decompositions of axis current and salinity approach based on physical processes were used to further investigate the underlying dynamic processes, in particularly, the mechanism controlling the flux of up-estuary salinity in the Changjiang Estuary. The impact of large estuarine projects on the circulation and transport timescale is discussed with respect to the Deep waterway project. Some main conclusions are summarized as follow:
     The impact of the river runoff, tide, wind, Coriolis force is investigated systematically. The Changjiang river runoff is the dominant factor controlling the estuarine transport timescale. Using Xuliujing as a reference location, the water parcel takes twice as much time during dry season comparing to that during the flood season to be transport out of the estuary. It takes 36 days and 20 days, respectively under high flow conditions. The vertical transport timescale in the Changjiang Estuary resembles stratification pattern as density. It has significant stratification during flood season and neap tide comparing with dry season and spring tide. A noticeable region correspond to the Turbidity Maximum is found where the water parcel moves slower compared to both the upstream and downstream. It is found that the periodic tidal mixing plays a key role in modulating the transport timescale. The runoff flushes water oceanward by intensifying mixing due to tidal oscillation. The interaction between the tidal asymmetry and bathymetry determines the spatial structure of age of in the Changjiang Estuary. Under the influence of wind, the intensification of the mixing increases the transport rate and decreases the difference of transport timescale between the spring and neap tide. The wind can change the transport timescale by altering the freshwater distribution among channels in the multi-bifurcation estuary, besides affecting the stratification. Coriolis force leads to the fluctuation of transport pathway during flood and ebb period. It has an important implication to change direction of water parcel movement, temporal and spatial pattern of the transport timescale.
     The impact of the Deep waterway project on the estuarine hydrodynamic is explored from new perspective of the transport timescale. The mean sea level at the upstream of the estuary rises, but barotropic pressure decreases and flow distribution between channels changes due to friction increases after building of the structure. The rate of freshwater discharge through the North Channel increases while decreases through the South Channel. The transport time decreases in the North Passage, by 16% at the peak value of the water age. The transport time increases in the south Passage, up to 41%. The distribution of salinity and water age become more stratified in both the North Passage and the South Passage after the completion of the project. The mean salinity gradient increases and the gravitational circulation intensify. The bottom transport time increases while surface decreases, although the vertical-averaged mean water age decreases. This transformation is unfavorable to flush sediment and material accumulated on the bottom. The horizontal water exchange between the North Passage and the North Passage reduces significantly due to the Deep waterway project. The water transport out the South Passage has the tendency to flow out along the dike. Part of the water transported out from the North Passage returns to the South Passage. High age zone forms in the lower part of the Jiuduan Shoal.
     The mechanism determining landward salinity flux in the Changjiang Estuary is investigated using decomposing axis current and salinity. Analysis on the exchange flow, salinity structure, steady shear dispersion and tidal oscillatory salt flux was conducted using mechanism decomposition method. It is found that the tidal oscillatory salt flux is the dominated factor controlling up-estuary salt flux during the spring tide. The tidal oscillatory salt flux determines the magnitude and direction of the total salinity flux. It is comparable between the steady shear dispersion and the tidal oscillatory salt flux during neap tide. In general, the lateral shear dispersion exceeds the vertical shear in the steady shear dispersion, indicating lateral circulation contributes the along axis salt transport.
引文
Ali, A.1995, A numerical investigation into the back water effect on flood water in the Meghna river in Bagladesh dou to the south-west monsoon wind. Estuarine, Coastal and Shelf Science 41, 689-704.
    Andrejev, O., K., Myrberg, P.A., Lundberg,2004, Age and renewal time of water masses in a semi-enclosed basin-application to the Gulf of Finland, Tellus,56A,548-558.
    Aoki, K. and Isobe, A. Numerical study of the summer temperature decrease induced by the enhancement of estuarine circulation in Fukuoka Bay. Journal of Oceanography,2006,62, 207-217.
    Baptista, A.M., E.E., Adams, and K.D., Stolzenbach,1984, Eulerian-Lagrangian analysis of pollutant transport in shallow water, Tech. Rep.296, Mass. Inst. Of Technol., R.M. Parsons Lab., Cambridge.
    Beckers, J.M., E., Delhez, E., Deleersnijder,2001, Some properties of generalized age-distribution equation in fluid dynamics, Journal of Applied Mathematics,61(5),1526-1544.
    Becker, M. L., R. A. Luettich Jr., and H. Seim (2009), Effects of intratidal and tidal range variability on circulation and salinity structure in the Cape Fear River Estuary, North Carolina, Journal of Geophysical Research,114, C04006, doi:10.1029/2008JC004972.
    Berman, T., Paldor, N., Brenner, S.2000. Simulation of winddriven circulation in the Gulf of Elat (Aqaba). Journal of Marine Systems 26,349-365.
    Bilgili A., Proehl J.A., Lynch D.R., Smith K.W., Swift M.R.,2005, Estuary/ocean exchange and tidal mixing in a Gulf of Maine Estuary:A Lagrangian modeling study, Estuary Coastal and Shelf Science,65,607-624.
    Blanton, J. O., H. Seim, C. Alexander, J. Amft, and G. Kineke (2003), Transport of salt and suspended sediments in a curving channel of a coastal plain estuary:Satilla River, GA, Estuarine, Coastal and Shelf Science,57,993-1006, doi:10.1016/S0272-7714(03)00005-2
    Blumberg, A. E., and D. M. Goodrich,1990:Modeling of windinduced destratification in Chesapeake Bay. Estuaries,13,236-249.
    Blumberg, A.F., and Mellor, G.L., A Description of a Three-dimensional Coastal Ocean Circulation Model. American Geophysical Union, New York,1987.
    Boicourt, W.C.,1982, The detection and analysis of the lateral circulation in the Potomac River estuary, report, Chesapeake Bay Inst., Baltimore, Md.
    Bolin, B. and H., Rodhe, A note on the concepts of age distribution and transit time in natural reservoirs.Tellus,1973,25,58-63.
    Bolin, B. and H., Stommel,1961, On the abyssal circulation of the world ocean Ⅳ. Origin and rate of circulation of deep ocean water as determined with aid of tracers, Deep Sea Research,8, 95-110.
    Boon, J., van der Kaaij, T., Vos, R., Gerritsen, H.,1997. Modelling of suspended particulate matter (SPM). in the North Sea—Model set up and first sensitivity analysis. Technical Report Z2025, Delft Hydraulics, Delft, The Netherlands.
    Bowen, M. M., and W. R. Geyer,2003, Salt transport and the timedependent salt balance of a partially stratified estuary, Journal of Geophysical Research,108(C5),3158, doi:10.1029/2001JC001231.
    Braunschweig, F., Martins, F., Chambel, P., Neves, R.,2003, A methodology to estimate renewal time scales in estuaries:the Tagus Estuary case, Ocean Dynamics,53(3),137-145.
    Broecker, W. S., A. Virgilio, and T. Peng,1991, Radiocarbon age of waters in the deep Atlantic revisited, Geophysical Research Letters,18(1),1-3, doi:10.1029/90GL02707.
    Broecker, W.S., Peng, T.-H., Trumbore, S., Bonani, G., Wolfi, W.,1990. The distribution or radiocarbon in the Glacial Ocean. Global Biogeochemical Cycles 4,103-177.
    Brooks, D.A., Baca, M.W., and Lo, Y.-T,1999, Tidal circulation and residence time in a macrotidal estuary:Cobscook Bay, Maine, Estuary, Coastal and Shelf Science,49,647-665.
    Caddy, J. F., and A. Bakun,1994:A tentative classification of coastal marine ecosystems based on dominant processes of nutrient supply. Ocean Coast Manage.,23,201-211.
    Charlton, J.A., W. McNicoll, and J.R. West,1975, Tidal and freshwater induced circulation in the Tay Estuary, Proceedings of the Royal Society of Edinburgh (B),75,11-27.
    Deleersnijder, E., Campin, J.M. and Delhez, E.J.M. The concept of age in marine modeling, I. Theory and preliminary model results. Journal of Marine Systems,200128,229-267.
    Delesalle, B., and A., Sournia,1992, Residence time of water and phytoplankton biomass in coral reef lagoons, Continental Shelf Research,12,939-949.
    Delhez, E.J.M., Campin, J.-M., Hirst, A.C., Deleersnijder, E.,1999. Toward a general theory of the age in ocean modeling. Ocean Modelling,1,17-27.
    Delhez, J.M. and E., Deleersnijder,2002, The concept of age in marine modeling, Ⅱ. Concentration distribution function in the English Channel and the North Sea, Journal of Marine system,31,279-297.
    Delhez, E.J.M., Heemink, A.W., Deleersnijder, E.,2004, Residence time in a semi-enclosed domain from the solution of an adjoint problem, Estuarine, Coastal and Shelf Science,61, 691-702.
    Ding, P., Zhu, S. and Kong, Y. A three-dimensional current model with wave effects, Science in China (Series B),2001,44,92-98.
    Doney, S.C., Jenkins, W.J.,1988. The effect of boundary conditions on tracer estimates of thermocline ventilation rates. Journal of Marine Research 46,947-965.
    Doney, S.C., Jenkins, W.J.,1994. Ventilation of the deep western boundary current and abyssal western North Atlantic:estimates from tritium and 3He distributions. Journal of Physical Oceanography 24,638-659.
    Doyle, B.E., and R.E. Wilson,1978, Lateral dynamic balance in the Sandy Hook to Rockaway Point Transect, Estuarine Coastal Marine Science,6,165-174.
    Driscoll, N.W., and G. H. Haug,1998:A short circuit in thermohaline circulation:A cause for Northern Hemisphere glaciation. Science,282,436-438.
    Dyer, K.R.,1977, Lateral circulation effects in estuaries, in Symposium on Geophysics of Estuaries, pp.22-29, Natl. Acad. of Sci., Washington, D.C.
    Elliott, A. J.,1978. Observations of the meteorologically induced circulation in the Potomac estuary, Estuarine, Coastal and Marine Science 6,285-300.
    England, M.H.,1995. The age of water and ventilation timescales in a global ocean model, Journal of Physical Oceanography,25,2756-2777.
    England, M., and G. Holloway,1998, Simulations of CFC content and water mass age in the deep North Atlantic, Journal of Geophysical Research,103(C8),15885-15901.
    England, M.H., Maier-Reimer, E.,2001. Using chemical tracers to assess ocean models. Reviews of Geophysics 39,29-70.
    England, M.H., Rahmstorf, S.,1999. Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. Journal of Physical Oceanography 29,2802-2827.
    Fischer, H.B.,1972, Mass transport mechanisms in partially stratified estuaries, Journal of Fluid Mechanics,53,671-687.
    Fischer, H.B.,1976, Mixing and dispersion in estuaries, Annual Review of Fluid Mechanics,8, 107-133.
    Fischer,H.B.,List,E.J.,Koh,R.C.Y.,Imberger,J.,Brooks,N.H.,1979. Mixing in Inland and Coastal Waters. Academic Press, New York,483 pp.
    Galperin, B., Kantha, L.H., Hassid, S., Rosati, A.,1988. A quasi-equilibrium turbulent energy model for geophysical flows. Journal of Atmospheric Science 45,55-62.
    Geyer,R.W.,Signell,R.,1990.Measurements of tidal flow around a headland with a shipboard acoustic Doppler current profiler. Journal of Geophysical Research 95,3189-3197.
    Geyer, W. R., J. H. Trowbridge, and M. M. Bowen,2000:The dynamics of a partially mixed estuary. J. Phys. Oceanogr.,30,2035-2048.
    Gong,W., Shen, J., Hong, B.,2009, The influence of wind on the water age in the tidal Rappahannock River, Marine Environmental Research,68,203-216.
    Gong, W., Shen, J., Reay, W.G.. The hydrodynamic response of the York River estuary to tropical cyclone Isabel,2003. Estuarine, Coastal and Shelf Science.2007.73,695-710.
    Gong, W., Shen, J., Jian, J.,2008, The impact of human activities on the flushing properties of a semi-enclosed lagoon:Xiaohai, Hainan, China, Marine Environmental Research,65,62-76.
    Goodrich, D.M. and Blumberg, A.F., The fortnightly mean circulation of Chesapeake Bay. Estuarine, Coastal and Shelf Science,1991,32,41-462.
    Goodrich,D.M., W. C. Boicourt, P. Hamilton, and D.W. Pritchard,1987. Wind-induced destratification in Chesapeake Bay. J. Phys. Oceanography.,17,2232-2240.
    Guo X. and Valle-Levinson, A.,2007, Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay, Continental Shelf Research,27,20-42.
    Guo Q., Lordi G.P.,2000, Method for quantifying and freshwater input and flushing time in the estuaries, Journal of Environmental Engineering,126,675-683.
    Hamrick, J.M.,1979, Salinity intrusion and gravitational circulation in partially stratified estuaries, Ph. D. dissertation,451 pp., Univ. of Calif., Berkeley.
    Hamrick, J.M.,1992. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. Special Report in Applied Marine Science and Ocean Engineering. No.317 College of William and Mary, VIMS,63pp.
    Hamrick, J.M., Wu, T.S.,1997. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models. In:Delich, G.., Wheeler, M.F., (Eds.), Next Generation Environmental Models and Computational Methods. Society for Industrial and Applied Mathematics, Pennsylvania, pp.143-161.
    Hall, T.M. and W.N., Haine,2002, On ocean transport diagnostics:The idealized age tracer and the age spectrum, Journal of Physical Oceanography,32,1987-1991.
    Hansen, D. V., and M. Rattray,1965:Gravitational circulation in straits and estuaries. J. Mar. Res., 23,104-122.
    Hass, L.W.,1977, The effect of the spring-neap tidal cycle on the vertical salinity structure of the James, York, and Rappahannock River, Virginia, U.S.A., Estuary and Coastal Marine Science,5, 485-496.
    Hibiya, T., LeBlond, P.H.,1993. The control of fjord circulation by fortnightly modulation of tidal mixing processes. Journal of Physical Oceanography 23,2042-2052.
    Hughes, F. W., and M. Rattray Jr.1980, Salt flux and mixing in the Columbia River Estuary, Estuarine Coastal Marine Science,10,479-494.
    Huzzey, L.M. and J.M., Brubaker,1988, The formation of longitudinal fronts in a coastal estuary. Journal of Geophysical Research,93,1329-1334.
    Ianniello, J. P. Non-linear induced residual currents in tidally dominated estuaries. Ph.D. dissertation, University of Connecticut,1977a,250 pp.
    Ianiello, J.P. Tidally induced residual currents in estuaries of constant breadth and depth. Journal of Marine Research,1977b,35,755-785.
    Ianiello, J.P.,1979, Tidally induced residual currents in estuaries of variable breadth and depth, Journal of Physical Oceanography,9,962-974.
    Jay, D. A., and J. D. Musiak,1994:Internal tidal asymmetry in channel flows:Origins and consequences. Mixing in Estuaries and Coastal Seas, C. Pattiaratchi, Ed., Coastal and Estuarine Studies, Vol.50, Amer. Geophys. Union,211-249.
    Jay,D.A.,Smith,J.D.,1990a.Residual circulation in shallow estuaries.1.Highly stratified, narrow estuaries.Journal of Geophysical Research 95,711-731.
    Jay,D.A.,Smith,J.D.,1990b.Residual circulation in shallow estuaries.2. Weakly stratified and partially mixed, narrow estuaries. Journal of Geophysical Research 95,733-748.
    Jenkins, W.J., Clarke, W.B.,1976. The distribution of 3He in the western Atlantic Ocean. Deep-Sea Research 23,481-494.
    Jenkins, W.J.,1987.3H and 3He in the Beta Triangle:observations of gyre ventilation and oxygen utilization rates. Journal of Physical Oceanography 17,763-783.
    Johns, B.,1970, On the determination of the tidal structure and residual current system in a narrow channel, Geophysical Journal of the Royal Astronomical Society,20,159-175.
    Karstensen, J., and M. Tomczak,1998, Age determination of mixed water masses using CFC and oxygen data, Journal of Geophysical Research,103(C9),18,599-18,609, doi:10.1029/98JC00889.
    Kasai, A., Hill, A. E. Fujiwara, T. and Simpson, J. H. Effect of the Earth's rotation on the circulation in regions of fresh influence. Journal of Geophysical Research,2000,105, 16961-16969.
    Kato, H., O. M. Phillips,1969. On the penetration of a turbulent layer into a stratified fluid. J. Fluid Mech.,37,643-655.
    Kay, D. J., D. A. Jay, and J. D. Musiak,1996:Salt transport calculations from acoustic Doppler current profiler (ADCP) and conductivity-temperature-depth (CTD) data:A methodological study. Buoyancy Effects on Coastal and Estuarine Dynamics, D. G. Aubrey and C. T. Friedrichs, Eds., Amer.Geophys. Union,195-212.
    Keeling, C.D. and B., Bolin,1967, The simultaneous use of chemical tracers in oceanic studies, I. General theory of reservoir models, Tellus,19,566-581.
    Keeling, C.D. and B., Bolin,1968, The simultaneous use of chemical tracers in oceanic studies, II. A three reservoirs model of North and South Pacific Ocean. Tellus,20,17-54.
    Kjerfve, B.,1978, Bathymetry as indicator of net circulation in well mixed estuaries, Limnology and Oceanography,23,816-821.
    Kukulka, T., and D. A. Jay.2003. Impacts of Columbia River discharge on salmonid habitat:1. A nonstationary fluvial tide model, Journal of Geophysical Research,108(C9),3293, doi:10.1029/2002JC001382.
    Lacy, J.R., Stacey, M.T., Burau, J.R., Monosmith, S.G.,2003, Interaction of lateral baroclinic forcing and turbulence in an estuary. Journal of Geophysical Research,108, C3,3089, doi:10.1029/2002JC001392.
    Leendertse, J.J., Gritton, E.C.,1971. A water quality simulation model for well mixed estuaries and coastal seas:Vol. Ⅱ, Computation Procedures, Report R-708-NYC, The Rand Corporation (Santa Monica).
    Lerczak, J. A., and W. R. Geyer,2004:Modeling the lateral circulation in straight, stratified estuaries. Journal of Physical Oceanography,34,1410-1428.
    Lerczak, James A., W. Rockwell Geyer, Robert J. Chant,2006:Mechanisms Driving the Time-Dependent Salt Flux in a Partially Stratified Estuary*. Journal of Physical Oceanography,36, 2296-2311.
    Li, C., Valle-Levinson, A., Wong, K. and Lwiza, K.M.M. Separating baroclinic flow from tidally induced flow in estuaries. Journal of Geophysical Research,1998,103,10405-10417
    Li, C. and O'Donnell, J. The effect of channel length on the residual circulation in tidally dominated channels. Journal of Physical Oceanography,2005,35,1826-1840
    Li, C.Y., O'Donnell, J.,1997. Tidally driven residual circulation in shallow estuaries with lateral depth variation. J. Geophys. Res.102,27915-27929.
    Li, M., Zhong, L., Boicourt, W.C., Zhang, S., Zhang, D.L.,2007, Hurricane-induced destratification and restratification in a partially-mixed estuary, Journal of Marine Research,65, 169-192.
    Li, Z., Weisberg, R. H.1999. West Florida continental shelf response to upwelling favorable wind forcing. Journal of Geophysical Research 104,23427-23442.
    Lin, J., Kuo, A.Y.,2003. A model study of turbidity maxima in the York River Estuary, Virginia. Estuaries 26 (5),1269-1280.
    Liu, W., W., Chen, R., Cheng, M.-H., Hsu, A., Kuo,2007, Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River Estuary, Taiwan, Continental Shelf Research,27,900-921.
    Liu, Z., Wei, H., Liu, G., and Zhang, J.,2004, Simulation of water exchange in Jiaozhou Bay with an average residence time approach, Estuarine, Coastal Shelf Science,61,25-35.
    Ludwig, W., and J.-L. Probst,1998:River sediment discharge to the oceans:Present-day controls and global budgets. Am. J. Sci.,298,265-295.
    MacCready,1999, Estuarine adjustment to change in river flow and tidal mixing, Journal of Physical Oceanography,29,708-726.
    Mao, Q., P., Shi, K., Yin, J. Gan, Y., Qi,2004, Tides and tidal currents in the Pearl River Estuary, Continental Shelf Research,24(16),1797-1808.
    McCarthy, R.,1993, Residual currents in tidally dominated, well-mixed estuaries, Tellus,45A, 325-340.
    McCarthy, R.K.,1991, A two-dimensional analytical model of density-driven residual currents in tidally dominated well-mixed estuaries, Ph. D. dissertation, Univ. of Del., Newark.
    Mellor, G.L., Yamada, T.,1982. Development of a turbulence closure model for geophysical fluid problems. Review of Geophysical and Space Physics,20,851-875.
    Middleton, J. F. (2000). Wind-forced upwelling:the role of the surface mixed layer. Journal of Physical Oceanography 30,745-763.
    Monsen, N.E., Cloern, J.E., Lucas, L.V., Monismith, S.G.,2002, A comment on the use of flushing time, residence time, and age as transport time scales, Limnology and Oceanography, 47(5),1545-1553.
    Nunes, R.A., Lennon, G.W.,1987. Eposodic stratification and gravity currents in a marine environment of modulated turbulence. Journal of Geophysical Research 92,5465-5480.
    Nunes, Vaz, R.A. and J.H., Simpson,1985, Axial convergences in a well-mixed estuary. Journal of Geophysical Research,103,637-647.
    Oguz, T., Malanotte-Rizzoli, P.1996. Seasonal variability of wind and thermohaline-driven circulation in the Black Sea:Modeling studies. Journal of Geophysical Research 101, 6551-16569.
    Oliveira, A. and A.M., Baptista,1997, Diagnostic modeling of residence times in estuaries, Water Resource Research,33(8),1935-1946.
    Okubo, A.1973, Effect of shoreline irregularities on streamwise dispersion in estuaries and other embayments, Netherland Journal of Sea Research,6,213-224.
    Parker, B.B.,1984, Frictional effects on the tidal dynamics of shallow estuary, Ph. D. Dissertation,291pp, Johns Hopkins Univ., Baltimore, Md.
    Parker, D.S., Norris, D.P., and Nelson A.W.,1972, Tidal exchange at Golden Gate, Journal of the Sanitary Engineering Division,98,305-323.
    Pilson, M.E.,1985, On the residence time of water in Narragansett Bay, Estuaries,8(1),2-14.
    Prandle, D.,1984. A modelling study of the mixing of 137Cs in the seas of the European continental shelf. Philosophical Transactions of the Royal Society of London, A310,407-436.
    Pritchard, D.W. Salinity distribution and circulation in the Chesapeake estuarine system. Journal of Marine Research,1952,11,106-123.
    Pritchard, D.W. A study of the salt balance in a coastal plain estuary. Journal of Marine Research, 1954,13,133-144
    Pritchard, D.W. The dynamic structure of a coastal plain estuary. Journal of Marine Research, 1956,15,33-42.
    Qi, D., Shen, H, Zhu, J.,2003. Flushing time of the Yangtze Estuary by discharge:A model study. Journal of Hydrodynamics, Ser. B 3,63-71.
    Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C. and Ma, J. Wave-induced mixing in the upper ocean:Distribution and application in a global ocean circulation model, Geophysical Research Letter,2004,31,L 11303, doi:10.1029/2004GL019824
    Ralston, D. K., W. R. Geyer, and J. A. Lerczak (2010), Structure, variability, and salt flux in a strongly forced salt wedge estuary, Journal of Geophysical Research,115, C06005, doi:10.1029/2009JC005806.
    Rattray, M., and J. G. Dworski,1980. Comparison of methods for analysis of the transverse and vertical circulation contributions to the longitudinal advective salt flux in estuaries. Estuarine Coastal Mar. Sci.,11,515-536.
    Reynolds-Fleming, J.V., and Jr., R.A., Luettich,2004, Wind-driven lateral variability in partially mixed estuary. Estuary and Coastal Marine Science,60,395-407.
    Ridd, P.V., T., Stieglitz, P., Larcombe,1998, Density-driven secondary circulation in a tropical mangrove estuary, Estuary and Coastal Marine Science 47,621-632.
    Rippeth, T. P., N. R. Fisher, and J. H. Simpson,2001:The cycle of turbulent dissipation in the presence of tidal straining. J. Phys. Oceanogr.,31,2458-2471.
    Robinson,I.S.,1981.Tidal vorticity and residual circulation. Deep Sea Research 28A,195-212.
    Robinson, A.H.W.,1960, Ebb-flood channel systems in sandy bays and estuaries, Geography,45, 183-199.
    Roger L., Rohlmann T.,1995, Calculation of water exchange and times in the ICES-Boxes with a Eulerian Model using a half-life time approach, Dtsch Hydrogr Z,47,287-299.
    Salomon, J.C., Breton, M., Guegueniat, P.,1995. A 2D long term advection-dispersion model for the Channel and southern North Sea:Part B. Transit time and transfer function from Cap de la Hague. Journal of Marine Systems 6,515-527.
    Schroeder,W.W.,Dinnel,S.P.,Wiseman,W.J.,1990.Salinity stratification in a river dominated estuary.Estuaries 13,145-154.
    Scully, M. E., C. T. Friedrichs,2006, The importance of tidal and lateral asymmetries in stratification to residual circulation in partially mixed estuaries*. Journal of Physical Oceanography,37,1496-1511.
    Scully, M. E., C. T. Friedrichs, and J. M. Brubaker,2005:Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries,28,321-326.
    Sharpies, J., J. H. Simpson, and J. M. Brubaker,1994:Observations and modeling of periodic stratification in the Upper York River Estuary, Virginia. Estuarine Coastal Mar. Sci.,38,301-312.
    Shen, J., Boon, J.D., Kuo, A.Y.,1999. A modeling study of a tidal intrusion front and its impacts on larval dispersion in the James River estuary, Virginia. Estuaries 22,681-692.
    Shen, J., Haas, L., Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science.2004.61,449-461.
    Shen, J., Lin, J., Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science.2006.68 (12),101-112.
    Simpson, J.H., J., Browen, J., Matthews, and G., Allen,1990, Tidal straining, density current, and stirring in the control of estuarine stratification,13,125-132.
    Singnell, R.P., Butman B.,1992, Modeling tidal exchange and dispersion in Bostan Harbor, Journal of Geophysical Research,97(C10):15591-15606.
    Smith, N.P.,1979. Tidal dynamics and low frequency exchanges in the Aransas Pass, Texas. Estuaries 2,218-227.
    Stacey, M. T., S. G. Monismith, and J. R. Burau,1999:Observations of turbulence in a partially stratified estuary. J. Phys. Oceanogr.,29,1950-1970.
    Stommel,H.,Farmer,H.G.,1952. Abrupt change in width in two layer open channel flow. Journal of Marine Research 11,205-214.
    Stuiver, M., Quay, P.D., Ostlund, H.G.,1983. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219,849-851.
    Suzuki, T., Matsuyama, M.2000. Numerical experiments on stratified wind-induced circulation in Tokyo Bay, Japan. Estuarine, Coastal and Shelf Science 50,17-25.
    Swift, M.R., D.W., Fredriksson, B., Celikkol,1996, Structure of an axial convergence zone from acoustic Doppler current profiler measurements. Estuary and Coastal Marine Science,43, 109-122.
    Takeoka, H.,1984a, Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research,3,322-326
    Takeoka, H.,1984b, Exchange and transport time scales in the Seto Inland Seas, Continental Shelf Research,3,327-341.
    Thatcher, M.L. Harleman, R.F.,1972. A mathematical model for the prediction of unsteady salinity intrusion in estuaries, Massachusetts Institute of Technology, Report no 144.
    Thiele, G., Sarmiento, J.L.,1990. Tracer dating and ocean ventilation. Journal of Geophysical Research 95 (C6).,9377-9391.
    Thompson K.R., Dowd M., Shen Y., Greenberg D.A.,2002, Probabilistic characterization of tidal mixing in a coastal embayment:a Markov Chain approach, Continent Shelf Research,22, 1603-1614.
    Uncles, R.J.,2002. Estuarine physical processes research:some recent studies and progress. Estuarine, Coastal and Shelf Science,55:829-856.
    Valle-Levinson, A., Boicourt, W.C., Roman, M.R.,2003a, On the linkages among density, flow, and bathymetry gradients at the entrance to the Chesapeake Bay. Estuaries.26(6),1437-1449.
    Valle-Levinson, A., and J. O'Donnel,1996, Tidal interaction with buoyancy-driven flow in a coastal plain estuary, in Buoyancy Effects on Coastal and Estuarine Dynamics, Coastal Estuarine Stud., vol.53, edited by D.G. Aubrey and C.T. Friedrichs, pp.265-281, AGU, Washington.
    Valle-Levinson, A., Delgado, J.A., Atkinson, L.P.,2001. Reversing water exchange patterns at the entrance to a semiarid coastal lagoon. Estuarine Coastal and Shelf Science 53,825-838
    Valle-Levinson, A., Reyes, C., Sanay, R.,2003b, Effects of the bathymetry, friction, and rotation on estuary-ocean exchange. Journal of Physical Oceanography.33.2375-2393.
    Wang, C.-F, HSU, M.-H, Kuo, A.Y.,2004, Residence time of the Danshuei River estuary, Taiwan, Estuarine, Coastal and Shelf Science,60,381-393.
    Wang, D. P.1979 Wind-driven circulation in the Chesapeake Bay, Winter,1975, Journal of Physical Oceanography 9,564-572.
    Wang Y., Shen J., He Q.,2010. A numerical model study of the transport timescale and change of estuarine circulation due to waterway constructions in the Changjiang Estuary[J], China. Journal of Marine Systems.82.154-170.
    Weisberg, R. H.1976 The nontidal flow in the Providence River of Narragansett Bay:A stochastic approach to estuarine circulation. Journal of Physical Oceanography 6,721-734.
    West, J.R., and J.S. Mangat,1986, The determination and prediction of longitudinal dispersion coefficients in a narrow, shallow estuary, Estuarine Coastal Shelf Science,42,771-785.
    Wilson, R.E.,1976, Gravitational circulation in Long Island Sound, Estuarine and Coastal Marine Science,4,443-453.
    Wilson, R.E., and R. J. Filadelfo,1986, Subtidal current variability in the Lower Hudson Estuary, in Physics of Shallow Estuaries and Bays, edited by J. van de Kreeke, pp.152-142, Springer-Verlag, New York.
    Wilson, R.E., K.-C. Wong, and R. Filadelfo,1985, Low frequency sea level variability in the vicinity of the East River tidal strait, Journal of Geophysical Research,90,954-960.
    Wong, K.C.,1987. Tidal and sub-tidal variability in Delaware's inland bays. Journal of Physical Oceanography 17,413-422.
    Wong, K.C.,1994. On the nature of transverse variability in a coastal plain estuary. Journal of Geophysical Research.99.14209-14222.
    Wu, H., Zhu, J. Choi, B.Y.,2010, Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary:A model-guided study, Continental Shelf Research.30,1891-1905.
    Xia, M., Xie, L., Pietrafesa, L.J., Modeling of the Cape Fear River Estuary plume. Estuaries and Coasts.2007.30 (4),698-709.
    Xie, L., Eggleston, C. B.1999. Computer simulation of wind induced estuarine circulation patterns and estuary-shelf exchange processes:The potential role of wind forcing on larval transport. Estuarine, Coastal and Shelf Science 49,221-234.
    Yamanaka R., Nakatsuji K.,2002, Tide and wind-induced currents in Bohai Sea. Second International Workshop on Coastal Eutrophication, Tianjin, China,142-150.
    Yang, C.T. and Sayre, W.W.,1971, Stochastic model for sand dispersion, Journal of the Hydraulics Division,97,265-288.
    Yuan, D., Lin, B., Falconer, R.A.,2007, A modeling study of residence time in a macro-tidal estuary, Estuarine, Coastal and Shelf Science,71,401-411.
    Zimmerman, J.T.F.,1974, Circulation and water exchange near a tidal watershed in the Dutch Wadden Sea, Netherland Journal of Sea Research,8,126-138.
    Zimmerman, J.T.F.,1976. Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea, Part I:distribution of salinity and calculation of mixing time scales. Netherland Journal of Sea Research 10,149-191.
    陈吉余,何青.2009.特枯水情与长江口咸潮入侵.2006年长江特枯水情对上海淡水资源安全的影响[M].北京:海洋出版社,38-82.
    陈吉余,沈焕庭,恽才兴,等.1988.绪论.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1-4.
    陈景秋,赵万星,季振刚.2005.重庆两江汇流水动力模型[J].水动力学研究与进展,A辑,20(增刊):829-835.
    陈异晖.2005.基于EFDC模型在滇池水质模拟.云南环境科学[J].24(4).28-30.
    陈宗镛,黄蕴和,周天华,汤恩祥,于宜法,田晖,1991,长江口平均海面的初步研究[J],海洋与湖沼,22(4),315-320.
    丁平兴,胡克林,孔亚珍,朱首贤.长江河口波—流共同作用下的全沙数值模拟[J],海洋学报,2003,25,113-124.
    懂礼先,苏纪兰,1999,象山港水交换数值研究,Ⅱ.模型应用和水交换研究[J],海洋与湖沼, 30(5),465-470.
    杜伊,周良明,郭佩芳,朱庆林,2007,罗源湾海水交换三维数值模拟[J],海洋湖沼通报,7(1),7-13.
    侯立军,刘敏,许世远,杨毅,刘巧梅,欧冬妮.2002,长江河口近岸水体自然净化作用及其初步评价[J].长江流域资源与环境.11(3).245-249.
    胡克林.2003.波-流共同作用下长江口二维悬沙数值模拟[D].华东师范大学博士学位论文.
    胡松,朱建荣,傅得健,吴辉.2003.河口环流和盐水入侵Ⅱ—径流量和海平面上升的影响[J],青岛海洋大学学报,33(3),337-342
    胡四一,2009a,人类活动对长江河口的影响与对策[J].中国水利.9.23-26.
    胡四一,2009b,人类活动对长江河口的影响与对策[J].人民长江.9.1-4.
    胡四一,2009c,人类活动决定河口表情[J].中国三峡.7.20-25
    姬厚德,潘伟然,张国荣,骆智斌,2006,筼筜湖纳潮量与海水交换时间的计算[J],厦门大学学报(自然科学版),45,660-663.
    姜恒志,沈永明,汪守东.2009.瓯江口三维潮流和盐度模拟研究[J].水动力学研究与进展,A辑,24.63-70.
    匡国瑞,杨殿容,喻祖祥,潘若琰,张玉林,方胜民,周德坚,1987,海湾水交换研究—乳山东湾环境容量初步探讨[J],海洋环境科学,6,13-23.
    李九发,戴志军,刘新成等,2010,长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J],泥沙研究,3,31-37.
    李九发,茅志昌,孙介民.1998.长江口南汇边滩及邻近水域洪季水文泥沙条件分析[A].长江河口动力过程和地貌演变[C].上海海洋学科技出版社,253-267.
    李兰,武见.2010.梯级水库三维环境流体动力学数值预测和水温分层与累积影响规律研究[J].水动力研究与进展A辑.25.155-164.
    刘高峰,朱建荣,沈焕庭,吴华林,吴家学.2005.河口涨落潮水沙输运机制研究[J].泥沙研究.5.51-57.
    刘绿柳,杨志峰,沈珍瑶,2003,水体交换与传输的时间维特征[J],自然资源学报,18,87-93.
    刘志国,2007,长江口水体表层泥沙浓度的遥感反演与分析[D].华东师范大学博士学位论文, 62-63.
    娄海峰,黄世昌,谢亚力,2005,象山港内水体交换数值研究[J],浙江水利科技,140,8-12.
    吕新刚,赵昌,夏长水,乔方利,2010,胶州湾水交换及湾口潮余流特征的数值研究[J],海洋学报,32(2),20-30.
    吕迎雪.2009.海湾水交换数值模拟方法的研究及其应用[D].天津大学硕士学位论文
    浦泳修,黄韦艮,许建平.长江冲淡水扩展方向的周、旬时段变化[J],东海海洋,2002,20,1-5.
    庞海龙,高会旺,宋萍萍,游大伟,陈举.夏季珠江冲淡水扩散路径分析[J],海洋预报,2006,23,58-63.
    潘定安,沈涣庭,茅志昌.长江口混浊带的形成机理与特点[J].海洋学报,1999,21(4),62-69.
    齐珺,杨志峰,熊明,沈珍瑶,牛军锋.2008.长江水系武汉段水动力过程三维数值模拟[J].水动力学研究与进展,A辑,23(2):212-219.
    沈焕庭,茅志昌,谷国传,等.1983.南水北调对长江河口盐水入侵的影响[A].见:远距离调水-中国南水北调和国际调水经验[C].北京:科学出版社,211-216.
    沈焕庭,古国传,李九发.1988.长江口潮波特性及其对河槽演变的影响.[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社.73-79.
    沈涣庭,潘定安.1988.长江河口潮流特性及其与河槽演变的关系[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社.80-90.
    沈涣庭,潘定安,李九发,谷国传.1988,长江河口余流特性及其与河槽演变的关系[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,102-107.
    沈涣庭,朱慧芳,茅志昌.1988,长江河口余流及其对悬沙输移的影响[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,122-130.
    沈林杰,陈道信,黄惠明.2009,温州围垦工程对河口水交换能力的影响[J],海洋学研究,27(4),72-76.
    孙英兰,张越美,2003,丁字湾物质输运及水交换能力研究[J],青岛海洋大学学报,33,1-5.
    王聪,林军,陈丕茂,章守义,2008,大亚湾水交换的数值模拟研究[J],南方水产,4(4),8-13.
    王聪,林军,陈丕茂,章守义,2009,年平均风场作用下大亚湾水交换的数值模拟[J],18(3),351-358.
    王红.2007.三维多组分泥沙数学模型及其应用[D].天津大学硕士学位论文
    魏皓,田恬,周锋,赵亮,2002,渤海湾水交换的数值研究[J],青岛海洋大学学报,32,519-525.
    吴挺峰,胡艳,崔广柏.2009.长江福山倒套二维水沙数值模拟[J].泥沙研究.2.46-52.
    薛惠洁,柴扉,王丽娅,陈介中.珠江口及其邻近海域环流模式结构,中国海洋学文集——南海海流数值计算及中尺度特征研究,2001,147-160.
    恽才兴.1983.长江河口潮滩冲淤和滩槽泥沙交换[J].泥沙研究.4.43-52.
    恽才兴.2004.长江口近期演变规律[M].北京:海洋出版社,34-47.
    张丽珍.2008.黄骅港海域泥沙运动的三维数学模型[D].天津大学硕士学位论文
    张玮,周凯.2009,灌河口双导堤整治工程对岸滩演变的影响分析[J],水运工程,10,41-46.
    赵亮,魏皓,赵建中,2002,胶州湾水交换的数值研究[J],海洋与湖沼,33(1),23-29.
    朱建荣.夏季长江口外水下河谷西侧上升流产生的动力机制[J],科学通报,2003,48,2488-2492
    朱建荣,胡松,傅德健,吴辉.河口环流和盐水入侵Ⅰ:模式及控制数值试验[J],青岛海洋大学学报,2003,33,180-184
    朱小兵,高抒,陈妙红,葛晨东,朱大奎,2003,海南岛博鳌港水体交换的初步研究[J],热带海洋学报,22,71-77.
    左书华,李九发,万新宁,沈焕庭,付桂.2006.长江河口悬沙浓度变化特征分析[J].泥沙研究.3.68-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700