用户名: 密码: 验证码:
鲁米诺及衍生物功能化的金纳米材料及其在化学发光生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了各种化学发光体系、多种功能化纳米材料合成及性质以及纳米材料参与的化学发光生物分析的研究现状。目前,带有化学发光的功能化纳米金材料的研究受到了人们的关注,但关于其合成的则鲜有报道。目前,构建化学发光功能化金纳米材料的方法是将化学发光分子直接通过桥联分子嫁接到金纳米材料的表面。这些化学发光分子包括钌的配合物和鲁米诺。尽管这些方法对于生物分析有很高的灵敏度,但是仍存在一些缺点。例如,操作过程需要多步反应、沉淀洗涤、减压蒸馏、过滤、分散等多个步骤才能完成,非常麻烦、耗时。这些缺点限制了这些方法的实际可应用性。基于此,本论文以化学发光功能化纳米金材料的合成及其在生物传感器中应用为研究对象。利用化学发光试剂同时作为还原和保护试剂,发展了两种常温下合成发光功能化纳米金材料的方法,制备出既具有金纳米粒子特性又能保持发光试剂发光活性的功能化纳米金材料,并以发光功能化纳米金为基元构建了免疫和DNA生物分析探针,探讨了其在化学发光和电致化学发光生物分析中的应用;分别以发光试剂和发光功能化纳米金为标记物,发展了两种基于纳米金放大技术的超灵敏电致化学发光免疫传感器。主要研究内容如下:
     1.基于N-(4-氨基丁基)-N-乙基异鲁米诺为发光标记物和纳米金放大技术,构建了一种新型的电致化学发光免疫传感器测定人免疫球蛋白G(IgG)。首先一抗可以有效的被直接固载到纳米金修饰电极上,然后通过双抗夹心的模式将被测物抗原和ABEI标记的二抗固载到修饰电极上,形成电致化学发光免疫传感器。在双阶脉冲的电化学方式下,对人IgG的检测浓度范围为5 ? 100 ng/mL,以三倍信噪比(S/N = 3)计算,其检测限为1.68 ng/mL。通过平行测定9次浓度为60 ng/mL的人IgG对该免疫传感器重现性进行评价,测定的相对标准偏差为3.79 %。该传感器的使用十分简单,灵敏度高,已被成功用于实际人血清样品中IgG的检测。
     2.建立了一种基于鲁米诺功能化纳米金同时作为标记物和发光物以及纳米金和生物素与链酶亲和素体共同放大作用的新型超灵敏电致化学发光免疫传感器。生物素化的一抗可以有效的被固载到连有链酶亲和素的纳米金修饰电极上,抗原和鲁米诺功能化纳米金标记的二抗随后通过双抗夹心的模式被进一步的固载到修饰电极上,从而得到电致化学发光免疫传感器。在双阶脉冲电压的电化学方式下,在含有1 mmol/L过氧化氢的0.02 mol/L pH=9.8碳酸盐缓冲为工作液中,该免疫传感器表现出极好的电致化学发光信号响应。利用电致化学发光强度,测定人IgG的线性范围为7.5 ? 100 pg/mL,以三倍信噪比(S/N = 3)计算,检测限为1.0 pg/mL。通过平行测定9次浓度分别为30、50、70 pg/mL的人IgG对该免疫传感器重现性进行评价,所得到的相对标准偏差的结果分别为4.4%、2.1%、2.6%,证实此电致化学发光免疫传感器的重现性较好,该免疫传感器还被成功用于对实际人血清样品中IgG的检测。与分子、酶、量子点和其它纳米金为标记的化学发光免疫分析方法相比,鲁米诺功能化纳米金用于标记时,标记过程十分简单、快速且廉价。在原理上,该传感器可以被应用到其它基于抗原与抗体的生物分子的测定。
     3.发现化学发光试剂N-(4-氨基丁基)-N-乙基异鲁米诺能够在水相室温下,通过种子生长法直接还原HAuCl4制备出不同形态的化学发光功能化纳米金材料。这种合成方法非常简单,不需要加入其它的稳定剂和还原试剂。利用紫外-可见吸收光谱、X射线光电子能谱、透射电子显微镜和X射线粉末衍射等分析手段对所合成的金纳米粒子的形貌和表面化学组成进行仔细研究。结果表明随着ABEI的量的增加可得到从球状、球状金纳米颗粒组装的链状、球状金纳米颗粒组装的准网状到球状金纳米颗粒组装的网状的不同形态的金纳米材料。在金与氮之间的弱共价作用下,N-(4-氨基丁基)-N-乙基异鲁米诺及其氧化产物被连接在金纳米颗粒的表面。同时,对所制得具有不同形态的金纳米材料的组装机理也进行了探讨。进一步的研究所合成出的纳米金材料具有优良的化学发光活性,可用于标记生物分子如蛋白质和DNA,制备生物探针,在生物分析中具有广阔的应用前景。
     4.在水相常温环境下,以发光试剂异鲁米诺作为还原剂,通过种子诱导生长法还原HAuCl4制备具有特殊形貌(蝌蚪状)的化学发光功能化的金纳米材料。我们通过透射电子显微镜和紫外-可见吸收光谱等分析手段表征和研究了所合成的蝌蚪状金纳米粒子的形貌及状态。实验发现,种子溶液和硝酸银的用量、异鲁米诺及十六烷基三甲基溴化铵的浓度对所合成的蝌蚪状金纳米材料有重要的影响。随后,对所得蝌蚪状化学发光功能化的金纳米材料生长机机理进行了详细的探讨研究。通过紫外-可见吸收光谱和荧光光谱研究了本工作所合成的金纳米材料的表面化学成分,结果发现蝌蚪状金纳米粒子表面存在发光试剂异鲁米诺及其氧化产物。同时,所合成出的蝌蚪状纳米金材料也展现出优良的化学发光活性。
In this dissertation, vatious chemiluminescence systems, the synthesis and properties of chemiluminescent functionalized gold nanomaterials (CF-AuNMs) and their applications in bioassays were reviewed. Recently, CF-AuNMs have been used for various types of biolabeling and life-related molecular diagnostics due to their unique optical, catalytic, and biocompatible properties. However, limited CF-AuNMs have been reported. Currently, the fabrication protocol of CF-GNMs is to graft the CL reagent indirect on the surface of GNMs by virtue of bridge molecules. The used CL reagents include Ru-complex and luminol. Although the protocols can achieve very high sensitivity for bioassays, there are some drawbacks. For example, indirect synthesis process needs several reaction and purification steps, thus is complicated and time-consuming. These problems limit the practical applications of these protocols. Therefore, it is highly desired to exploit the new synthesis strategy for the preparation of new CF-GNMs with high CL efficiency, stability and biocompatibility, which is of great value in the fields such as public health, food safety, and environmental science and so on. In this work, direct synthesis of CF-AuNMs using luminol and its derivatives as reductant and stabilizing reagent and their applications in CL bioassays was explored.The main results are as follows:
     1. A novel electrochemiluminescence (ECL) sandwich-type immunosensor for human immunoglobulin G (hIgG) on a gold nanoparticle modified electrode was developed by using N-(aminobutyl)-N-ethylisoluminol (ABEI) labeling. The first goat-anti-human IgG antibody was immobilized on a gold nanoparticle modified electrode, then human IgG and the ABEI-labeled second goat-anti-human IgG antibody was conjugated successively to form a sandwich-type immunocomplex. ECL was carried out with a double-step potential in carbonate buffer solution (CBS) containing 1.5 mM H2O2. The ECL intensity increased linearly with the concentration of hIgG over the range 5.0– 100 ng/mL. The limit of detection was 1.68 ng/mL (S/N = 3). The relative standard deviation was 3.79% at 60 ng/mL (n = 9). The present immunosensor is simple and sensitive. It has been successfully applied to the detection of hIgG in human serums.
     2. An ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol functionalized gold nanoparticle (AuNP) labeling was developed by using human immunoglobulin G (hIgG) as a model analyte. The primary antibody biotin-conjugated goat-anti-human IgG was first immobilized on a streptavidin-coated AuNP modified electrode, then the antigen (human IgG) and the luminol functionalized AuNP-labeled second antibody was conjugated successively to form a sandwich-type immunocomplex, i.e. immunosensor. ECL was carried out with a double-step potential in carbonate buffer solution containing 1.0 mmol/L H2O2. Since thousand of luminol molecules were coated on the surface of AuNPs to realize labeling of multiple molecules with CL activity at a single antibody and the amplification of AuNPs and biotin-streptavidin system were utilized, luminol ECL signal could be enhanced greatly, finally resulting in extremely high sensitivity. The ECL method shows a detection limit of 1.0 pg/mL (S/N = 3) for hIgG, which is superior to all previously reported methods for the determination of hIgG. Moreover, the proposed method is also simple, stable, specific, and time-saving, avoiding the complicated stripping procedure during CL detection and the uncontrollable synthesis of irregular nanoparticles compared with other chemiluminescence immunoassay based on AuNP labeling. Additionally, the labeling procedure is also superior to that of other reported multilabeling strategies, such as Ru complex-encapsulated polymer microspheres, and most of Ru complex-encapsulated liposomes in simplicity, stability, labeling property and practical applicability. Finally, hIgG in human serums was successfully detected by this ECL immunosensor.
     3. It was found that the CF-AuNMs could be prepared by reducing HAuCl4 with N-(aminobutyl)-N-ethylisoluminol (ABEI) in aqueous solution at room temperature through a seed growth method. Transmission electron microscopy, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction analysis were used to characterize the morphology and surface component of the CF-AuNMs. The results indicated that various morphologies (mono-disperse sphericity, assembled chain of sphere AuNPs, assembled qusi-network of sphere AuNPs, assembled network of sphere AuNPs) of CF-AuNMs could be obtained. Moreover, ABEI and N-(aminobutyl)-N-(ethylphthalate) (ABEI’s oxidation product ) were bounded on the surface of the AuNPs through weak Au-N covalent bond. The assembling mechanism of the various morphologies of CF-AuNMs was discussed by theoretical calculation and UV-visible spectroscopy. Finally, the CF-AuNMs exhibited good CL activity in alkaline solution and were successfully applied in bio-probe for bioassays.
     4. Iso-luminol functionalized gold nanomaterials (AuNPs) were synthesized in high yield by a simple seeding approach using chemiluminescent (CL) reagent iso-luminol as reductant in the presence of HAuCl4, AgNO3 and cetyltrimethylammonium bromide (CTAB). The morphology characterization of iso-luminol functionalized AuNPs was performed by UV-visible spectroscopy and transmission electron microscopy, showing that tadpole-shaped gold nanoparticles (AuNTps) were obtained. Subsequent experiments reveal that the amounts of added seed colloids, added AgNO3, the concentrations of iso-luminol and CTAB in the growth solution play critical roles in the formation of well shaped AuNTps. The surface state of AuNTps was characterized by UV-visible spectroscopy and fluorescence spectroscopy, indicating that iso-luminol and 4-aminophthalate (iso-luminol’s oxidation product) were bounded on the surface of AuNTps. The CL behavior was studied by static injection CL experiments, demonstrating that AuNTps were of CL activity. Finally, the growth mechanism of AuNTps was also discussed.
引文
[1]. Robards K.,Worsfold P. J. Analytical applications of liquid-phase chemiluminescence. Analytica Chimica Acta, 1992, 266(2):147-173.
    [2]. Albrecht H. Chemiluminescence of aminophthalic hydrazide. Z. Phys. Chem, 1928, 136:321.
    [3]. Gleu K.,Petsch W. Die Chemiluminescenz der Dimethyl-diacridyliumsalze. Angewandte Chemie, 1935, 48(3):57-59.
    [4]. Hills A. J.,Zimmerman P. R. Isoprene measurement by ozone-induced chemiluminescence. Analytical Chemistry, 1990, 62(10):1055-1060.
    [5]. Garcia I. L.,Vinas P.,Gil J. A. M. Fia titration of sulfide, cysteine and thio-containing drugs with chemiluminescent detection. Fresenius Journal of Analytical Chemistry, 1993, 345(11):723-726.
    [6]. Wardencki W.,Zygmunt B. Gas-chromatographic sulfur-sensitive detectors in environmentak-analysis. Analytica Chimica Acta, 1991, 255(1):1-13.
    [7]. Mendenhall G. D. Chemiluminescence techniques for the charaterization of materials. Angewandte Chemie-International Edition in English, 1990, 29(4):362-373.
    [8]. Beck S.,Koster H. Applications of dioxetane chemiluminescent probes to molecular-biology. Analytical Chemistry, 1990, 62(21):2258-2270.
    [9]. Steele R. W. Clinical-applications of chemiluminescence of granilocytes. Reviews of Infectious Diseases, 1991, 13(5):918-925.
    [10]. Barbante G. J.,Hogan C. F.,Mechler A., et al. Electrochemiluminescence of surface bound microparticles of ruthenium complexes. Journal of Materials Chemistry, 2010:891-9.
    [11]. Li C. C.,Kang Q.,Chen Y. F., et al. Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst, 2010, 135(11):2806-2810.
    [12]. Valenti G.,Bruno C.,Rapino S., et al. Intense and Tunable Electrochemiluminescence of Corannulene. Journal of Physical Chemistry C, 2010, 114(45):19467-19472.
    [13]. Moretto L. M.,Kohls T.,Badocco D., et al. Electrochemiluminescence of Ru(bpy)(3)(2+) loaded in Nafion Langmuir-Blodgett films: Role of the interfacial ultrathin film. Journal of Electroanalytical Chemistry, 2010, 640(1-2):35-41.
    [14]. Ciana L. D.,Zanarini S.,Perciaccante R., et al. Neutral and dianionic Ru(II) bathophenanthrolinedisulfonate complexes: a route to enhance electrochemiluminescence performance in aqueous media. Journal of Physical Chemistry C, 2010:3653-8.
    [15]. Devadoss A.,Spehar-Deleze A. M.,Tanner D. A., et al. Enhanced Electrochemiluminescence and Charge Transport Through Films of Metallopolymer-Gold Nanoparticle Composites. Langmuir, 2010, 26(3):2130-2135.
    [16]. Jin J. Y.,Muroga M.,Takahashi F., et al. Enzymatic flow injection method for rapid determination of choline in urine with electrochemiluminescence detection. Bioelectrochemistry, 2010, 79(1):147-151.
    [17]. Yang X.,Yuan R.,Chai Y. Q., et al. Ru(bpy)(3)(2+)-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosensors & Bioelectronics, 2010, 25(7):1851-1855.
    [18]. Li C.,Kang Q.,Chen Y., et al. Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst, 2010, 135(11):2806-10.
    [19]. Li N.,Wang W.,Tian D. Y., et al. pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence. Chemical Communications, 2010, 46(9):1520-1522.
    [20]. Ding C. F.,Li H.,Li X. L., et al. A new strategy of photoelectrochemical analysis without an external light source based on isoluminol chemiluminescence probe. Chemical Communications, 2010, 46(42):7990-7992.
    [21]. Tsukagoshi K.,Sawanoi K.,Nakajima R. Migration behavior of isoluminol isothiocyanate-labeled alpha-amino acids in capillary electrophoresis with an absorption/chemiluminescence dual detection system. Journal of Chromatography A, 2007, 1143(1-2):288-290.
    [22]. Yang M. L.,Liu C. Z.,Qian K. J., et al. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst, 2002, 127(9):1267-1271.
    [23]. Wen Y. Q.,Yuan H. Y.,Mao J. F., et al. Droplet detector for the continuous flow luminol-hydrogen peroxide chemiluminescence system. Analyst, 2009, 134(2):354-360.
    [24]. Alpeeva I. S.,Sakharov I. Y. Soybean peroxidase-catalyzed oxidation of luminol by hydrogen peroxide. Journal of Agricultural and Food Chemistry, 2005, 53(14):5784-5788.
    [25]. Kuroda N.,Shimoda R.,Wada M., et al. Lophine derivatives and analogues as new phenolic enhancers for the luminol-hydrogen peroxide-horseradish peroxidase chemiluminescence system. Analytica Chimica Acta, 2000, 403(1-2):131-136.
    [26]. Duarte A. J.,Rocha C.,Silveira F., et al. Luminol-Doped Nanostructured Composite Materials for Chemiluminescent Sensing of Hydrogen Peroxide. Analytical Letters, 2010, 43(17):2762-2772.
    [27]. Heller M. I.,Croot P. L. Application of a superoxide (O-2(-)) thermal source (SOTS-1) for the determination and calibration of O-2(-) fluxes in seawater. Analytica Chimica Acta, 2010, 667(1-2):1-13.
    [28]. Yamaguchi S.,Kishikawa N.,Ohyama K., et al. Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Analytica Chimica Acta, 2010, 665(1):74-78.
    [29]. Zhang B. T.,Lin J. M. Chemiluminescence and energy transfer mechanism of lanthanide ions in different media based on peroxomonosulfate system. Luminescence, 2010, 25(4):322-327.
    [30]. Francis P. S.,Barnett N. W.,Lewis S. W., et al. Hypohalites and related oxidants as chemiluminescence reagents: a review. Luminescence, 2004, 19(2):94-115.
    [31]. Selloum L.,Djelili H.,Sebihi L., et al. Scavenger effect of flavonols on HOCl-induced luminol chemiluminescence. Luminescence, 2004, 19(4):199-204.
    [32]. Magalhaes L. M.,Segundo M. A.,Reis S., et al. Automatic in vitro determination of hypochlorous acid scavenging capacity exploiting multisyringe flow injection analysis and chemiluminescence. Analytical Chemistry, 2007, 79(10):3933-3939.
    [33]. Nacapricha D.,Sangkarn P.,Karuwan C., et al. Pervaporation-flow injection with chemiluminescence detection for determination of iodide in multivitamin tablets. Talanta, 2007, 72(2):626-633.
    [34]. Chen Y. C.,Lin W. Y. Enhancement of chemiluminescence of the KlO(4)-luminol system by gallic acid, acetaldehyde and Mn2+: application for the determination of catecholamines. Luminescence, 2010, 25(1):43-49.
    [35]. Li S. F.,Li X. Z.,Xu J., et al. Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta, 2008, 75(1):32-37.
    [36]. Xu H.,Duan C. F.,Lai C. Z., et al. Inhibition and enhancement by organic compounds of luminol-KIO4-H2O2 chemiluminescence. Luminescence, 2006, 21(3):195-201.
    [37]. Liu M. L.,Lin Z.,Lin J. M. A review on applications of chemiluminescence detection in food analysis. Analytica Chimica Acta, 2010, 670(1-2):1-10.
    [38]. White E. H.,Bursey M. M. Chemiluminescence of luminol and related hydrazides: the light emission step. Journal of the American Chemical Society, 1964, 86(5):941-942.
    [39]. Rose A. L.,Waite T. D. Chemiluminescence of luminol in the presence of iron (II) and oxygen: oxidation mechanism and implications for its analytical use. Analytical Chemistry, 2001, 73(24):5909-5920.
    [40]. Li B. X.,Zhang Z. J.,Zhao L. X. Chemiluminescent flow-through sensor for hydrogen peroxide based on sol-gel immobilized hemoglobin as catalyst. Analytica Chimica Acta, 2001, 445(2):161-167.
    [41]. Kamidate T.,Maruya M.,Tani H., et al. Application of 4-Iodophenol-enhanced Luminol Chemiluminescence to Direct Detection of Horseradish Peroxidase Encapsulated in Liposomes. Analytical Sciences, 2009, 25(9):1163-1166.
    [42]. Fujiwara T.,Tanimoto N.,Nakahara K., et al. Catalytic behavior of iron (III)-8-quinolinol complex in the chemiluminescence reaction of luminol with hydrogen peroxide in reverse micelles.Chemistry Letters, 1991, 20(7):1137-1140.
    [43]. Ci Y. X.,Tie J. K.,Yao F. J., et al. Catalytic behaviour of iron (II)-oxime complexes in the chemiluminescence reaction of luminol with hydrogen peroxide. Analytica Chimica Acta, 1993, 277(1):67-72.
    [44]. Gammelgaard B.,Liao Y. P.,Jons O. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection. Analytica Chimica Acta, 1997, 354(1-3):107-113.
    [45]. Li Y. X.,Zhao D. H.,Zhu C. Q., et al. Determination of proteins at nanogram levels by their quenching effect on the chemiluminscence reaction between luminol and hydrogen peroxide with manganese-tetrasulfonatophthalocyanine as a new catalyst. Analytical and Bioanalytical Chemistry, 2002, 374(3):395-398.
    [46]. Liang S. X.,Zhao L. X.,Zhang B. T., et al. Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry A, 2008, 112(4):618-623.
    [47]. Uzu T.,Sasaki S. A new Copper(II) complex as an efficient catalyst of luminol chemiluminescence. Organic Letters, 2007, 9:4383-4386.
    [48]. Huang Y.,Zhao S. L.,Shi M., et al. Chemiluminescent immunoassay of thyroxine enhanced by microchip electrophoresis. Analytical Biochemistry, 2010, 399(1):72-77.
    [49]. Lee J. H.,Rho J. E. R.,Rho T. H. D., et al. Advent of innovative chemiluminescent enzyme immunoassay. Biosensors & Bioelectronics, 2010, 26(2):377-382.
    [50]. Liu Y. M.,Mei L.,Liu L. J., et al. Sensitive Chemiluminescence Immunoassay by Capillary Electrophoresis with Gold Nanoparticles. Analytical Chemistry, 2011, 83(3):1137-1143.
    [51]. Tian D. Y.,Duan C. F.,Wang W., et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosensors & Bioelectronics, 2010, 25(10):2290-2295.
    [52]. Tian D.,Duan C.,Wang W., et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta, 2009, 78(2):399-404.
    [53]. Chai Y.,Tian D. Y.,Wang W., et al. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system. Chemical Communications, 2010, 46(40):7560-7562.
    [54]. Knecht B. G.,Strasser A.,Dietrich R., et al. Automated microarray system for the simultaneous detection of antibiotics in milk. Analytical Chemistry, 2004, 76(3):646-654.
    [55]. Rubina A. Y.,Dyukova V.,Dementieva E., et al. Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Analytical Biochemistry, 2005, 340(2):317-329.
    [56]. Barbara I.,Eberlein-K nig B.,Behrendt H., et al. Microarrays for the Screening of Allergen-Specific IgE in Human Serum. Analytical Chemistry, 2003, 75(3):556-562.
    [57]. Maskiewicz R.,Sogah D.,Bruice T. C. Chemiluminescent reactions of lucigenin. 1. Reactions of lucigenin with hydrogen peroxide. Journal of the American Chemical Society, 1979, 101(18):5347-5354.
    [58]. Larena A.,Mart¨anez Urreaga J. Solvent effects on chemiluminescence from the hydrogen peroxide-lucigenin reaction: Kinetics of light emission in mixed polar solvents. Monatshefte f¨1r Chemie/Chemical Monthly, 1991, 122(11):907-913.
    [59]. Perez-Ruiz T.,Martnez-Lozano C.,Sanz A. Flow-injection chemiluminometric determination of ascorbic acid based on its sensitized photooxidation. Analytica Chimica Acta, 1995, 308(1-3):299-307.
    [60]. Montano L. A.,Ingle Jr J. Determination of cobalt by lucigenin chemiluminescence. Analytical Chemistry, 1979, 51(7):926-930.
    [61]. Pechishcheva N.,Shunyaev K. Y. Application of luminescence to the determination of trace copper. Journal of Analytical Chemistry, 2008, 63(5):412-423.
    [62]. Montano L. A.,Ingle Jr J. Investigation of the lucigenin chemiluminescence reaction. Analytical Chemistry, 1979, 51(7):919-926.
    [63]. Sasamoto H.,Maeda M.,Tsuji A. Chemiluminescent enzymatic assay for cholesterol in serum using lucigenin. Analytica Chimica Acta, 1995, 310(2):347-353.
    [64]. Ogbonna G.,Caines P. S.,Catomeris P., et al. A competitive chemiluminescent immunoassay for the sensitive measurement of apolipoprotein B 100. Clinical biochemistry, 1995, 28(2):117-122.
    [65]. Piran U.,Riordan W. J.,Livshin L. A. New noncompetitive immunoassays of small analytes. Clinical chemistry, 1995, 41(7):986.
    [66]. Veazey R. L.,Nieman T. A. Chemiluminescent determination of clinically important organic reductants. Analytical Chemistry, 1979, 51(13):2092-2096.
    [67]. Mahant V.,Miller J.,Thakrar H. Flow injection analysis with chemiluminescence detection in the determination of fluorescein-and fluorescamine-labelled species. Analytica Chimica Acta, 1983, 145:203-206.
    [68]. Kwakman P.,Brinkman U. Peroxyoxalate chemiluminescence detection in liquid chromatography. Analytica Chimica Acta, 1992, 266(2):175-192.
    [69]. Psarellis I. M.,Sarantonis E. G.,Calokerinos A. C. Flow-injection chemiluminometricdetermination of sodium cyclamate. Analytica Chimica Acta, 1993, 272(2):265-270.
    [70]. Koukli I. I.,Calokerinos A. C. Continuous-flow chemiluminescence determination of some corticosteroids. Analyst, 1990, 115(12):1553-1557.
    [71]. Zhang Z.,Baeyens W.,Zhang X., et al. Chemiluminescence detection coupled to liquid chromatography for the determination of penicillamine in human urine. Analytica Chimica Acta, 1997, 347(3):325-332.
    [72]. Ouyang J.,Baeyens W.,Delanghe J. Cerium (IV)-based chemiluminescence analysis of hydrochlorothiazide. Talanta, 1998, 46(5):961-968.
    [73]. Zhang X.,Baeyens W.,Van der Weken G., et al. Chemiluminescence determination of captopril based on a Rhodamine B sensitized cerium (IV) method. Analytica Chimica Acta, 1995, 303(1):121-125.
    [74]. Pan S. M.,Zhao L. L.,Schenkman J. B., et al. Evaluation of Electrochemiluminescent Metabolic Toxicity Screening Arrays Using a Multiple Compound Set. Analytical Chemistry, 2011, 83(7):2754-2760.
    [75]. Guo L. H.,Fu F.,Chen G. N. Capillary electrophoresis with electrochemiluminescence detection: fundamental theory, apparatus, and applications. Analytical and Bioanalytical Chemistry, 2011, 399(10):3323-3343.
    [76]. Luan L.,Lin Z. J.,Wu G. H., et al. Encoding electrochemiluminescence using Ru(bpy)(3)(2+) and fluorescein isothiocyanate co-doped silica nanoparticles. Chemical Communications, 2011, 47(13):3963-3965.
    [77]. Xiaoying W.,Xiangyi Z.,Pingang H., et al. Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform. Biosensors & Bioelectronics, 2011:3608-13.
    [78]. F hnrich K. A.,Pravda M.,Guilbault G. G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54(4):531-559.
    [79]. Gerardi R. D.,Barnett N. W.,Lewis S. W. Analytical applications of tris (2, 20-bipyridyl) ruthenium (III) as a chemiluminescent reagent. Analytica Chimica Acta, 1999, 378:1-41.
    [80]. Zorzi M.,Pastore P.,Magno F. A Single Calibration Graph for the Direct Determination of Ascorbic and Dehydroascorbic Acids by Electrogenerated Luminescence Based on Ru(bpy)32+ in Aqueous Solution. Analytical Chemistry, 2000, 72(20):4934-4939.
    [81]. Chen X.,Chen W.,Jiang Y., et al. Electrogenerated chemiluminescence based on tris (2, 2'-bipyridyl) ruthenium (II) with hydroxyl carboxylic acid. Microchemical journal, 1998, 59(3):427-436.
    [82]. Slawinska D.,Slawinski J. Chemiluminescent flow method for determination offormaldehyde. Analytical Chemistry, 1975, 47(13):2101-2109.
    [83]. Duan C. F.,Yu Y. Q.,Cui H. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst, 2008, 133(9):1250-1255.
    [84]. Zhang Q.,Wang X.,Li Z., et al. Evaluation of [alpha]-fetoprotein (AFP) in human serum by chemiluminescence enzyme immunoassay with magnetic particles and coated tubes as solid phases. Analytica Chimica Acta, 2009, 631(2):212-217.
    [85]. Seidel M.,Niessner R. Automated analytical microarrays: a critical review. Analytical and Bioanalytical Chemistry, 2008, 391(5):1521-1544.
    [86]. Coluccio D.,Nicklaus R.,Schneider S., et al. Evaluation of the Biotrin (R) rat Alpha-Glutathione S-Transferase (a-GST) enzyme immunoassay (EIA) in detecting liver changes compared to standard liver enzymes. Clinical chemistry, 2000, 46(6):539.
    [87]. Yu F. L.,Du P.,Lei X., et al. Investigation of voltammetric enzyme-linked immunoassay system based on N-heterocyclic substrate of 2,3-diaminopyridine. Talanta, 2009, 78(4-5):1395-1400.
    [88]. Niu H. A.,Yuan R.,Chai Y. Q., et al. Electrochemiluminescence of peroxydisulfate enhanced by L-cysteine film for sensitive immunoassay. Biosensors & Bioelectronics, 2011, 26(7):3175-3180.
    [89]. Shen W. Z.,Li M. Z.,Xu L. A., et al. Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay. Biosensors & Bioelectronics, 2011, 26(5):2165-2170.
    [90]. Xuemei L.,Li S.,Tianrong D. Multiplexed sensing of mercury(II) and silver(I) ions: A new class of DNA electrochemiluminescent-molecular logic gates. Biosensors & Bioelectronics, 2011:3570-6.
    [91]. Maeztu R.,Gonzalez-Gaitano G.,Tardajos G. Enhancement of the Chemiluminescence of Two Isoluminol Derivatives by Nanoencapsulation with Natural Cyclodextrins. Journal of Physical Chemistry B, 2010, 114(32):10541-10549.
    [92]. Leidy J. W. High-sensitivity 2-site immunoradiometric and immunochemiluminometric assays for rat growth hormone-releasing hormone-development of an acridinium ester based chemiluminescence assay for the avidin-coated bead system. Journal of Immunological Methods, 1994, 172(2):197-207.
    [93]. Koszegi T. Immunoluminometric detection of human procalcitonin. Journal of biochemical and biophysical methods, 2002, 53(1-3):157-164.
    [94]. Bronstein I.,McGrath P. Chemiluminescence lights up. 1989.
    [95]. Schaap A.,Akhavan H.,Romano L. Chemiluminescent substrates for alkaline phosphatase:application to ultrasensitive enzyme-linked immunoassays and DNA probes. Clinical chemistry, 1989, 35(9):1863.
    [96]. Baret A.,Fert V.,Aumaille J. Application of a long-term enhanced xanthine oxidase-induced luminescence in solid-phase immunoassays. Analytical Biochemistry, 1990, 187(1):20-26.
    [97]. Ikegami T.,Yamamoto M.,Sekiya K., et al. The development of Luminomaster(tm), a fully automated chemiluminescent enzyme immunoassay system. Journal of Bioluminescence and Chemiluminescence, 1995, 10(4):219-227.
    [98]. Sun S. G.,Yang Y.,Liu F. Y., et al. Study of Highly Efficient Bimetallic Ruthenium Tris-bipyridyl ECL Labels for Coreactant System. Analytical Chemistry, 2009, 81(24):10227-10231.
    [99]. Luo J. X.,Yang X. C. Flow injection chemiluminescent immunoassay with para-phenylphenol and sodium tetraphenylborate as synergistic enhancers. Analytica Chimica Acta, 2003, 485(1):57-62.
    [100]. Xin T. B.,Liang S. X.,Wang X., et al. Determination of estradiol in human serum using magnetic particles-based chemiluminescence immunoassay. Analytica Chimica Acta, 2008, 627(2):277-284.
    [101]. Yang M.,Kostov Y.,Bruck H. A., et al. Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of staphylococcal enterotoxin B in food. Analytical Chemistry, 2008, 80(22):8532-8537.
    [102]. Yang Z.,Xie Z.,Liu H., et al. Streptavidin-Functionalized Three-Dimensional Ordered Nanoporous Silica Film for Highly Efficient Chemiluminescent Immunosensing. Advanced Functional Materials, 2008, 18(24):3991-3998.
    [103]. Marquette C. A.,Hezard P.,Degiuli A., et al. Macro-molecular chemiluminescent complex for enhanced immuno-detection onto microtiter plate and protein biochip. Sensors and Actuators B: Chemical, 2006, 113(2):664-670.
    [104]. Miao W. J.,Bard A. J. Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with Ru(bpy)(3) (2+)-containing microspheres. Analytical Chemistry, 2004, 76(23):7109-7113.
    [105]. Wu Y.,Chen C.,Liu S. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Analytical Chemistry, 2009, 81(4):1600-1607.
    [106]. Huang X.,Li L.,Qian H., et al. A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET). Angewandte Chemie, 2006, 118(31):5264-5267.
    [107]. Wang Z.,Li J.,Liu B. CdTe nanocrystals sensitized chemiluminescence and the analyticalapplication. Talanta, 2009, 77(3):1050-1056.
    [108]. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nat. Phys. Sci., 1973, 241:20-22.
    [109]. Adachi E. Coagulative Transition of Gold Nanoparticle Spheroids into Monolithic Colloids: Structure, Lifetime, and Transition Model. Langmuir, 2001, 17(13):3863-3870.
    [110]. Link S.,El-Sayed M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 2000, 19(3):409-453.
    [111]. Yu Y. Y.,Chang S. S.,Lee C. L., et al. Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B, 1997, 101(34):6661-6664.
    [112]. Murphy C. J.,Jana N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1):80.
    [113]. Zhou Y.,Wang C.,Zhu Y., et al. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chemistry of Materials, 1999, 11(9):2310-2312.
    [114]. Scnchez-Iglesias A.,Pastoriza-Santos I.,P|rez-Juste J., et al. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater, 2006, 18(19):2529-2534.
    [115]. Lee Y. W.,Kim N. H.,Lee K. Y., et al. Synthesis and Characterization of Flower-Shaped Porous Au-Pd Alloy Nanoparticles. The Journal of Physical Chemistry C, 2008, 112(17):6717-6722.
    [116]. Wang T.,Hu X.,Dong S. Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy. The Journal of Physical Chemistry B, 2006, 110(34):16930-16936.
    [117]. Brust M.,Walker M.,Bethell D., et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 1994, (7):801-802.
    [118]. Mirkin C. A.,Letsinger R. L.,Mucic R. C., et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. 1996.
    [119]. Xiao Y.,Patolsky F.,Katz E., et al. " Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science, 2003, 299(5614):1877.
    [120]. Ma Z.,Sui S. F. NakedEye Sensitive Detection of Immunoglubulin G by Enlargement of Au Nanoparticles In Vitro. Angewandte Chemie International Edition, 2002, 41(12):2176-2179.
    [121]. Elghanian R.,Storhoff J. J.,Mucic R. C., et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997, 277(5329):1078.
    [122]. Ung T.,Liz-Marz¨¢n L. M.,Mulvaney P. Optical properties of thin films of Au@ SiO2 particles. The Journal of Physical Chemistry B, 2001, 105(17):3441-3452.
    [123]. Hodak J. H.,Henglein A.,Giersig M., et al. Laser-induced inter-diffusion in AuAg core-shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49):11708-11718.
    [124]. Zhang Z. F.,Cui H.,Lai C. Z., et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry, 2005, 77(10):3324-3329.
    [125]. Xu S. L.,Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence, 2007, 22(2):77-87.
    [126]. Chen H.,Gao F.,He R., et al. Chemiluminescence of luminol catalyzed by silver nanoparticles. Journal of colloid and interface science, 2007, 315(1):158-163.
    [127]. Li S.,Tao S.,Wang F., et al. Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchimica Acta, 2010, 169(1):73-78.
    [128]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, Characterization, and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles and Their Application in a Hydrogen Peroxide Sensor. Chemistry¨CA European Journal, 2007, 13(24):6975-6984.
    [129]. Cui H.,Guo J. Z.,Li N., et al. Gold nanoparticle triggered chemiluminescence between luminol and AgNO 3. The Journal of Physical Chemistry C, 2008, 112(30):11319-11323.
    [130]. Safavi A.,Absalan G.,Bamdad F. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Analytica Chimica Acta, 2008, 610(2):243-248.
    [131]. Yuan S. R.,Yuan R.,Chai Y. Q., et al. Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP. Talanta, 2010, 82(4):1468-1471.
    [132]. Li Y. L.,Yang F.,Yang X. R. Electrochemiluminescence detection based on Ruthenium(II) tris(bipyridine) immobilised in sulfonic-functionalised titania nanoparticles by ion exchange strategy. Analyst, 2009, 134(10):2100-2105.
    [133]. Liu L. L.,Bao J. C.,Fang M., et al. Electrogenerated chemiluminescence for the sensitive detection of leucine using Ru(bpy)(3)(2+) immobilized on dendritic Pd nanoparticle. Sensors and Actuators B-Chemical, 2009, 139(2):527-531.
    [134]. Liang S. X.,Li H.,Lin J. M. Reaction mechanism of surfactant-sensitized chemiluminescence of bis (2, 4, 6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles. Luminescence, 2008, 23(6):381-385.
    [135]. Li S. F.,Zhang X. M.,Yao Z. J., et al. Enhanced Chemiluminescence of the Rhodamine 6G-Cerium (IV) System by Au- Ag Alloy Nanoparticles. The Journal of Physical Chemistry C, 2009, 113(35):15586-15592.
    [136]. Lin J. M.,Liu M. Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. The Journal of Physical Chemistry B, 2008, 112(26):7850-7855.
    [137]. Duan C.,Cui H.,Zhang Z., et al. Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. The Journal of Physical Chemistry C, 2007, 111(12):4561-4566.
    [138]. Baptista P.,Pereira E.,Eaton P., et al. Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry, 2008, 391(3):943-950.
    [139]. Wang J.,Cao Y.,Xu Y., et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers. Biosensors and Bioelectronics, 2009, 25(2):532-536.
    [1]. Christodoulides N.,Tran M.,Floriano P. N., et al. A microchip-based multianalyte assay systemfor the assessment of cardiac risk. Analytical Chemistry, 2002, 74(13): 3030-3036.
    [2]. Skogstrand K.,Thorsen P.,N0rgaard-Pedersen B., et al. Simultaneous measurement of 25inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay withxMAP technology. Clinical Chemistry, 2005, 51(10):1854-1866.
    [3]. Deng A. P.,Himmelsbch M.,Zhu Q. Z., et al. Residue Analysis of the pharmaceuticaldiclofenac in different water types using ELISA and GC-MS. Environmental Science Technology,2003, 37(15): 3422-3429.
    [4]. Van Emon J. M.,Gerlach C.,Microbiol J. Environmental monitoring and human exposureassessment using immunochemical techniques. Journal of Microbiological Methods, 1998,32(2):121-131.
    [5]. Richer M. M. Electrochemiluminescence (ECL). Chemical Reviews, 2004, 104(6):3003-3036.
    [6]. Li Y.,Qi H. L.,Peng Y. G, et al. Electrogenerated chemiluminescence aptamer-based biosensorfor the determination of cocaine. Electrochemistry Communications, 2007, 9(10):2571-2575.
    [7]. Kingt A. W. A review of recent trends in analytical applications of electrogeneratedchemiluminescence. Trends in Analytical Chemistry, 1999, 18(l):47-62.
    [8]. Li Y.,Qi H. L.,Fang F. Ultrasensitive electrogenerated chemiluminescence detection of DNAhybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags.Talanta, 2007, 72(5): 1704-1709.
    [9]. Miao W. J.,Bard A. J. Electrogenerated chemiluminescence.77.DNA hybridization detection athigh amplification with [Ru(bpy)3]2+-containing microspheres. Analytical Chemistry, 2004,76(18):5379-5386.
    [10]. Li F.,Pang Y Q.,Lin X. Q., et al. Determination of noradrenaline and dopamine inpharmaceutical injection samples by inhibition flow injection electrochemiluminescence ofruthenium complexes. Talanta, 2003, 59(3):627-626.
    [11]. Zhan W.,Bard A. J. Electrogenerated chemiluminescence.83.immunoassay of humanc-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Analytical Chemistry,2007, 79(2):459-463.
    [12]. Namba Y,Usami M.,Suzuki O. Highly Sensitive Electrochemiluminescence immunoassayusing the ruthenium chelate-Labeled antibody bound on the magnetic micro beads. AnalyticalScience, 1999, 15(11): 1087-1093.
    [13]. Yin X .B.,Qi B.,Sun X. P., et al. 4-(Dimethylamino)butyric acid labeling forelectrochemiluminescence detection of biological substances by increasing sensitivity with goldnanoparticle amplification. Analytical Chemistry, 2005, 77(11):3525-3530. des using tion as a biocompatible yridyl)ruthenium(II)-modified ceramic carbon electrode. Analytical
    [14]. Miao W. J,Bard A. J. Electrogenerated chemiluminescence. 72. determination of immobilized DNA and C-Reactive protein on Au (111) electrotris(2,2‘-bipyridyl)ruthenium(II) labels. Analytical Chemistry, 2003, 75(21):5825-5834.
    [15]. Wei H.,Liu J. F.,Zhou L. I., et al. [Ru(bpy)3]~(2+)-doped silica nanoparticles within layer-by-layer biomolecular coatings and their applicaelectrochemiluminescent tag Material. Chemistry-A European Journal, 2008, 14(12):3687-3693.
    [16]. Shi L. H.,Liu X. Q.,Li H. J., et al. Electrochemiluminescent detection based on solid-phase extraction at tris(2,2‘-bipChemistry, 2006, 78(20):7330-7334.
    [17]. Wei H.,Du Y.,Kang J. Z., et al. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2′-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation. Electrochemistry Communications, 2007, 9 (7):1474-1479.
    [18]. Zhang J.,Qi H. L.,Yi L., et al. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Analytical Chemistry, 2008, 80(8):2888-2894.
    [19]. Lucas L .J.,Chesle r J. N.,Yoon J. Y. Lab-on-a-chip immunoassay for multiple antibodies l. On-chip enzyme immunoassay of a cardiac marker using a n B. M. Thick-film electrochemical immunosensor based on stripping omatographic strip. Analytical Chemistry, itive immunoassay using N-(Aminobutyl)-N-ethylisoluminol. Analytical unoglobulin G using N-(aminobutyl)-N-ethylisoluminol as using microsphere light scattering and quantum dot emission. Biosensors and Bioelectronics, 2007, 23(5):675-681.
    [20]. Kurita R.,Yokota Y.,Sato Y., et amicrofluidic device combined with a portable surface plasmon resonance system. Analytical Chemistry, 2006, 78(15):5525-5531.
    [21]. Wang J.,Tiapotentiometric detection of a metal ion label. Analytical Chemistry, 1998, 70(9):1682-1685.
    [22]. Liu G. D.,Lin Y. Y.,Wang J., et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochr2007, 79(20):7644-7653.
    [23]. Arai K.,Takahashi K.,Kusu F. An electrochemiluminescence flow-through cell and its applications to sensChemistry, 1999, 71(11):2237-2240.
    [24]. Qi H. L.,Zhang Y.,Peng Y. G., et al. Homogenous electrogenerated chemiluminescence immunoassay for human immluminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta, 2008, 75(3)684-690.
    [25]. Cui H.,Xu Y.,Zhang Z. F. Multichannel electrochemiluminescence of luminol in neutral and . Talanta, d dance spectroscopy. Langmuir, 2005, 21(3):1022-1027. glucose oxidase to an Au I.,Radeck H.,Radecki J. Electrochemical impedance measurements for the oz M. L., Dupont-Filliard A.,Billon M.,et al. Detection of DNA hybridization by t al. Study on the electrochemiluminescence behavior of alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Analytical Chemistry, 2004, 76(14):4002-4010.
    [26]. Dodeigne C.,Thunus L.,Lejune R. Chemiluminescence as diagnostic tool. A review2000, 51(3):415-439.
    [27]. Fu Y. Z.,Yuan R.,Tang D. P., et al. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, anelectrochemical impedance techniques. Colloids and Surfaces B, 2005, 40(15):61-66.
    [28]. Pan S. L.,Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impe
    [29]. Zhao J. J.,Bardbury C. R.,Huclova S., et al. Nanoparticle-mediated electron transfer across ultrathin self-assembled films. Journal of Physical Chemistry B, 2005, 109(48):22985-22994.
    [30]. Zhang S. X.,Wang N.,Yu H. J., et al. Covalent attachment of electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry, 2005, 67(1):15-22.
    [31]. Szymanska investigation of odorants interaction with thiol layer immobilized onto gold electrode. Sensors. Acuators B, 2001, 75(1):95-100.
    [32]. Calvo-MunABEI electrochemiluminescence in DNA-chip compatible assembly. Bioelectrochemistry, 2005, 66 (1):139-143.
    [33]. Yang M.,Liu C. Z.,Qian K. J., eABEI and its application in DNA hybridization analysis. Analyst, 2002, 127(9): 1267-1271.
    [1]. Tang D. P.,Yuan R., Chai Y. Q. Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clinical Chemistry, 2007, 53(7):1323-1329.
    [2]. Skogstrand K.,Thorsen P.,Nqrgaard-Pedersen B., et al. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clinical Chemistry, 2005, 51(10):1854-1866.
    [3]. Deng A. P.,Himmelsbach M.,Zhu Q. Z., et al. Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. Environmental Science & Technology, 2003, 37(15):3422-3429.
    [4]. Shelver W. L.,Parrotta C. D.,Slawecki R., et al. Development of a magnetic particle immunoassay for polybrominated diphenylethers and application to environmental and food matrices. Chemosphere, 2008, 73(4):S18-S19.
    [5]. Bi S.,Zhou H.,Zhang S. S. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosensors and Bioelectronics, 2009, 24(10):2961-2966.
    [6]. Yan X. Y.,Guo Y. S.,Bi S., et al. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination ofα-fetoprotein amplified by double-codified gold nanoparticles labels. Biosensors and Bioelectronics, 2009, 24(8):2707-2711.
    [7]. Zheng Y.,Chen H.,Liu, X. P., et al. An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome. Talanta, 2008, 77(2): 809-814.
    [8]. Yang M. H.,Kostov Y.,Bruck H. A., et al. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Analytical Chemistry, 2008, 80(22):8532-8537.
    [9]. Trevino J.,Calle A.,Rodriguez-Frade J. M., et al. Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta, 2009,78(3):1011-1016.
    [10]. Calvo-Munoz. M. L.,Dupont-Filliard A. D.,Billon M., et al. Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly. Bioelectrochemistry, 2005, 66(1): 139-143.
    [11]. Dreveny D.,Klammer C.,Michalowsky J., et al. Flow-injection- and sequential-injection immunoassay for triiodothyronine using acridinium ester chemiluminescence detection. Analytica Chimica Acta, 1999, 398(2):183-190.
    [12]. Wei H.,Du Y.,Kang J. Z., et al. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2′-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation. Electrochemistry Communications, 2007, 9 (7):1474-1479.
    [13]. Samsonova J. V.,Rubtsova M. Y.,Kiseleva A.V., et al. Chemiluminescent multiassay of pesticides with horseradish peroxidase as a label. Biosensors and Bioelectronics, 1999, 14(3): 273-281.
    [14]. Vetcha S.,Wikins E.,Yates T. Detection of hantavirus infection in hemolyzed mouse blood using alkaline phosphatase conjugate. Biosensors and Bioelectronics, 2002, 17 (10):901-909.
    [15]. Miao W.,Bard A. J. Electrogenerated chemiluminescence.77.DNA hybridization detection at high amplification with [Ru(bpy)3]~(2+)-containing microspheres. Analytical Chemistry, 2004, 76(18):5379-5386.
    [16]. Miao W.,Bard A.J. Electrogenerated chemiluminescence.80.c-reactive protein determination at high amplification with [Ru(bpy)3]~(2+)-containing microspheres. Analytical Chemistry, 2004, 76(23):7109-7113.
    [17]. Zhan W.,Bard A. J. Electrogenerated chemiluminescence.83.immunoassay of human c-reactive protein by using Ru(bpy)3~(2+)-encapsulated liposomes as labels. Analytical Chemistry, 2007, 79(2):459-463.
    [18]. Yoon C. H.,Cho J. H.,Oh H. I.,et al. Development of a membrane strip immunosensor utilizing ruthenium as an electro-chemiluminescent signal generator. Biosensors and Bioelectronics, 2003, 19(4):289-296.
    [19]. Egashira N.,Morita S. I.,Hifumi E., et al. Attomole detection of hemagglutinin molecule of influenza virus by combining an electrochemiluminescence sensor with an immunoliposome that encapsulates a Ru complex. Analytical Chemistry, 2008, 80(11):4020-4025.
    [20]. Liu G. D.,Wang J.,Wu H., et al. Versatile apoferritin nanoparticle labels for assay of protein. Analytical Chemistry, 2006, 78(21):7417-7423.
    [21]. Wang J. Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis, 2007, 19(8):769-776.
    [22]. Kerman K.,Saito M.,Yamamura S., et al. Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends in Analytical Chemistry, 2008, 27(7):585-592.
    [23]. Qi H. L.,Peng Y. G. Gao, Q., et al. Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors, 2009, 9(1):674-695.
    [24]. Andrew-Lyon L.,Musik M. D.,Natan, M. J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Analytical Chemistry, 1998, 70(24):5177-5183.
    [25]. Grubisha D. S.,Lipert R. J.,Park H. Y., et al. Femtomolar detection of prostate-specificantigen: An immunoassay based on surface-enhanced raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21):5936-5943.
    [26]. Henry J.,Anand A.,Chowdhury M., et al. Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins. Analytical Biochemistry, 2004, 334(1):1-8.
    [27]. Chu X.,Fu X.,Chen K., et al. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosensors and Bioelectronics, 2005, 20(9):1805-1812.
    [28]. Fan A. P.,Lau C.,Lu J. Z. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry, 2005, 77(10):3238-3242.
    [29]. Wang Z. P.,Hu J. Q.,Jin Y., et al. In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clinical Chemistry, 2006, 52(10):1958-1961.
    [30]. Duan C. F.,Yu, Y. Q.,Cui, H. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst, 2008, 133(9):1250-1255.
    [31]. Dodeigne C.,Lejeune L. T. Chemiluminescence as diagnostic tool. Talanta, 2000, 51(3):415-439.
    [32]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chemistry-A European Journal, 2007, 13(24):6975-6984.
    [33]. Wang W.,Xiong T.,Cui, H. Fluorescence and electrochemiluminescence of luminol-reduced gold nanoparticles: photostability and platform effect. Langmuir, 2008, 24(6):2826-2833.
    [34]. Cui H.,Xu Y.,Zhang Z. F. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Analytical Chemistry, 2004, 76(14):4002-4010.
    [35]. Arai K.,Takahashi K.,Kusu F. An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(Aminobutyl)-N-ethylisoluminol. Analytical Chemistry, 1999, 71(11):2237-2240.
    [36]. Qi H. L.,Zhang Y.,Peng Y. G., et al. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta, 2008, 75(3):684-690.
    [37]. Tian D. Y.,Duan C. F., Wang W., et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta, 2009, 78(2):399-404.
    [38]. Yin X. B.,Qi B.,Sun X. P., et al. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Analytical Chemistry, 2005, 77(11):3525-3530.
    [39]. Li Z. P.,Liu C. H.,Fan Y. S., et al. A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels. Analytical Biochemistry, 2006, 359(2):247-252.
    [40]. Ni J.,Lipert R. J.,Brent-Dawson G., et al. Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids. Analytical Chemistry, 1999, 71(21):4903-4908.
    [41]. Mao X.,Jiang J. H.,Luo Y., et al. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta, 2007, 73(3):420-424.
    [42]. Chen J. J.,Wang C. G.,Irudayaraj J. Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy. Journal of Biomedical Optics, 2009, 14(1):0405041.
    [43]. Sun B. Q.,Xie W. Z.,Yi, G. S., et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. Journal of Immunological Methods, 2001, 249(1):85-89.
    [44]. Liu G. D.,Lin Y. Y., Wang J., et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Analytical Chemistry, 2007, 79(20):7644-7653.
    [45]. Huang Y.,Wen Q.,Jiang J. H., et al. A novel electrochemical immunosensor based on hydrogen evolution inhibition by enzymatic copper deposition on platinum nanoparticle-modified electrode. Biosensors and Bioelectronics, 2008, 24(4):600-605.
    [1]. Bretschneider J. C.,Reismann M.,Plessen G. V., et al. Photothermal control of the activity of HRP-functionalized gold nanoparticles. Small, 2009, 5 (22):2549-2553.
    [2]. Peterle T.,Ringler P.,Mayor M. Gold nanoparticles stabilized by acetylene-functionalized multidentate thioether ligands: building blocks for nanoparticle superstructures. Advanced Functional Materials, 2009, 19(21):3497-3506.
    [3]. Aili D.,Selegard R.,Baltzer L., et al. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small, 2009, 5 (21):2445-2452.
    [4]. Bi S.,Zhou H.,Zhang S. H. A novel synergistic enhanced chemiluminescence achieved by a multiplex nanoprobe for biological applications combined with dual-amplification of magnetic nanoparticles. Chemical Science, 2010, 1(6):681-687.
    [5]. Bajaj A.,Rana S.,Miranda O. R., et al. Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chemical Science, 2010, 1(1):134-138.
    [6]. Bertoncello P.,Forster R. J. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosensors and Bioelectronics, 2009, 24(11):3191-3200.
    [7]. Zhu D. B.,Tang Y. B.,Xing D., et al. PCR-Free Quantitative detection of genetically modified organism from raw Materials. An electrochemiluminescence-based bio bar code method. Analytical Chemistry, 2008, 80(10):3566-3571.
    [8]. Zhou X. M.,Xing D.,Zhu D. B., et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity. Analytical Chemistry, 2009, 81(1):255-261.
    [9]. Roux S.,Garcia B.,Bridot J. L., et al. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir, 2005, 21(6):2526-2536.
    [10]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chemistry-A European Journal, 2007, 13(24):6975-6984.
    [11]. Tian D. Y.,Duan C. F.,Wang W., et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosensors and Bioelectronics, 2010, 25(10):2290-2295.
    [12]. Chai Y.,Tian D. Y.,Wang W., et al. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling andamplification of gold nanoparticles and biotin–streptavidin system. Chemical Communications, 2010, 46(40):7560-7562.
    [13]. Yang M. L.,Liu C. Z.,Qian K. J., et al. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst, 2002, 127(9):1267-1271.
    [14]. Nikoobakht B.,El-Sayed M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10):957-1962.
    [15]. Link S.,El-Sayed M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B, 1999, 103(40):8410-8426.
    [16]. Arai K.,Takahashi K.,Kusu F. An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(Aminobutyl)-N-ethylisoluminol. Analytical Chemistry, 1999, 71(11):2237-2240.
    [17]. Leff D. V.,Brandt L.,Heath J. R. Synthesis and characterization of hydrophobic,organically-soluble gold nanocrystals functionalized with primary amines. Langmuir, 1996, 12(20):4723-4730.
    [18]. Kumar A., Mandal S., Selvakannan P. R., et al. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir, 2003, 19(15):6277-6282.
    [19]. Selvakannan P. R.,Mandal S.,Phadtare S., et al. Capping of gold Nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir, 2003, 19(8):3545-3549.
    [1]. Habouti S.,Matefi-Tempfli M.,Solterbeck C. H., et al. Self-standing corrugated Ag and Au-nanorods for plasmonic applications. Journal of Materials Chemistry, 2011, 21(17):6269-6273.
    [2]. Thomas C. R.,George S.,Horst A. M., et al. Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms. Acs Nano, 2011, 5(1):13-20.
    [3]. Zhang J.,Liu X. H.,Wang L. W., et al. Au-Functionalized Hematite Hybrid Nanospindles: General Synthesis, Gas Sensing and Catalytic Properties. Journal of Physical Chemistry C, 2011, 115(13):5352-5357.
    [4]. Zhou L.,Gao C.,Hu X. Z., et al. General Avenue to Multifunctional Aqueous Nanocrystals Stabilized by Hyperbranched Polyglycerol. Chemistry of Materials, 2011, 23(6):1461-1470.
    [5]. Zinovyeva V. A.,Vorotyntsev M. A.,Bezverkhyy I., et al. Highly Dispersed Palladium-Polypyrrole Nanocomposites: In-Water Synthesis and Application for Catalytic Arylation of Heteroaromatics by Direct C-H Bond Activation. Advanced Functional Materials, 2011, 21(6):1064-1075.
    [6]. Fernandez C. A.,Bekhazi J. G.,Hoppes E. M., et al. Advancements Toward the Greener Processing of Engineered Nanomaterials - Effect of Core Size on the Dispersibility and Transport of Gold Nanocrystals in Near-Critical Solvents. Small, 2009, 5(8):961-969.
    [7]. Ipe B. I.,Yoosaf K.,Thomas K. G. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors. Journal of the American Chemical Society, 2006, 128(6):1907-1913.
    [8]. Lin Z. H.,Chang H. T. Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced Raman spectroscopy. Langmuir, 2008, 24(2):365-367.
    [9]. Burda C.,Chen X.,Narayanan R., et al. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4):1025-1102.
    [10]. Busbee B. D.,Obare S. O.,Murphy C. J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Advanced Materials, 2003, 15(5):414-416.
    [11]. S¨¢nchez-Iglesias A.,Pastoriza-Santos I.,P¨|rez-Juste J., et al. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater, 2006, 18(19):2529-2534.
    [12]. Nehl C. L.,Liao H.,Hafner J. H. Optical properties of star-shaped gold nanoparticles. Nano Letters, 2006, 6(4):683-688.
    [13]. Liu B.,Xie J.,Lee J., et al. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. The Journal of Physical Chemistry B, 2005, 109(32):15256-15263.
    [14]. Hu J.,Zhang Y.,Liu B., et al. Synthesis and properties of tadpole-shaped gold nanoparticles. Journal of the American Chemical Society, 2004, 126(31):9470-9471.
    [15]. Huang L.,Wang M.,Zhang Y., et al. Synthesis of gold nanotadpoles by a temperature-reducing seed approach and the dielectrophoretic manipulation. The Journal of Physical Chemistry C, 2007, 111(44):16154-16160.
    [16]. Velev O.,Kaler E. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir, 1999, 15(11):3693-3698.
    [17]. Thomas K. G.,Kamat P. V. Chromophore-functionalized gold nanoparticles. Accounts of Chemical Research, 2003, 36(12):888-898.
    [18]. Wang W.,Xiong T.,Cui H. Fluorescence and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles: Photostability and Platform Effect. Langmuir, 2008, 24(6):2826-2833.
    [19]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, Characterization, and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles and Their Application in a Hydrogen Peroxide Sensor. Chemistry¨CA European Journal, 2007, 13(24):6975-6984.
    [20]. Tian D. Y.,Zhang H. L.,Chai Y., et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe. Chemical Communications, 2011, 47(17):4959-4961.
    [21]. Chai Y.,Tian D. Y.,Wang W., et al. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system. Chemical Communications, 2010, 46(40):7560-7562.
    [22]. Brown K. R.,Walter D. G.,Natan M. J. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape. Chemistry of Materials, 1999, 12(2):306-313.
    [23]. Hu J.,Zhang Y.,Liu B., et al. Synthesis and Properties of Tadpole-Shaped Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126(31):9470-9471.
    [24]. Ishikawa H.,Tamaru H.,Miyano K. Optical coupling between a microresonator and an adjacent dielectric structure: effects of resonator size. Journal of the Optical Society of America B-Optical Physics, 2001, 18(6):762-769.
    [25]. Liu M.,Kira A.,Nakahara H. Silver(I) Ion Induced Monolayer Formation of 2-Substituted Benzimidazoles at the Air/Water Interface. Langmuir, 1997, 13(18):4807-4809.
    [26]. Nikoobakht B.,El-Sayed M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 2003, 15(10):1957-1962.
    [27]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chemistry-a European Journal, 2007, 13(24):6975-6984.
    [28]. Zhang Z.-F.,Cui H.,Lai C.-Z., et al. Gold Nanoparticle-Catalyzed LuminolChemiluminescence and Its Analytical Applications. Analytical Chemistry, 2005, 77(10):3324-3329.
    [29]. Yang X.-Y.,Guo Y.-S.,Bi S., et al. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of [alpha]-fetoprotein amplified by double-codified gold nanoparticles labels. Biosensors and Bioelectronics, 2009, 24(8):2707-2711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700