心肌梗死后左室功能变化及心室重塑的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分MRI评估兔心脏术后粘连程度的实验研究
     目的:探讨MRI对兔心肌梗死模型术后心脏与周围组织粘连程度的评估价值。
     方法:25只日本长耳白兔,开胸结扎冠状动脉制备心肌梗死模型,随机分成两组,其中常规手术组11只,改性壳聚糖防粘连膜放置组14只。术后2~3个月分别行在体MRI检查和二次开胸手术,分别评估粘连程度,结果分析采用Wilcoxon秩和检验。
     结果:MRI评估常规手术组无粘连、轻度粘连、重度粘连的动物数量分别为3只、3只、5只;防粘连膜放置组分别为4只、9只、1只。二次开胸手术评估常规手术组和防粘连膜放置组相应粘连程度的动物数量分别为2只、4只、5只和5只、7只、2只。常规手术组和防粘连膜放置组心脏与周围组织的粘连程度有统计学差异(MRI与开胸手术评估的P值分别为0.021和0.025)。MRI和开胸手术评估不同粘连程度相互吻合的动物数量分别为5只、9只、6只,两种评估方法的一致性检验Kappa值为0.69,P值<0.001。
     结论:MRI与开胸手术评估心脏术后粘连程度具有较好的一致性。MRI可以取代开胸手术评估心脏术后的与周围组织的粘连程度。
     第二部分兔心脏术后粘连对心功能影响的MRI研究
     目的:探讨兔心肌梗死模型术后心脏与周围组织的不同粘连程度对心功能的影响。
     方法:30只日本长耳白兔,开胸结扎冠状动脉制备心肌梗死模型,剔除死亡或术后严重感染的5只动物后,共有25只动物被纳入本研究。术后8周分别行在体MRI测定左室各项心功能参数,包括:EDV、ESV、SV和EF。二次开胸直视观察分为无粘连、轻度粘连、中度粘连和重度粘连共4组,观察各心功能参数随粘连程度的变化,对结果进行单因素方差分析,取P<0.05有统计学差异。
     结果:开胸手术观察心脏与周围组织粘连程度,无粘连、轻度粘连、中度粘连和重度粘连的动物数量分别为7只、5只、6只和7只。各组间EDV均值无统计学差异(P=0.33)。重度粘连组的ESV均值与其它3个粘连组之间存在显著性差异(P值均小于0.001)。各组间SV和EF均值有统计学差异(P值分别等于或小于0.001),与粘连程度之间存在线性关系。
     结论:在兔心肌梗死模型制备过程中,术后心脏与周围组织的重度粘连会明显影响心功能,尤其以收缩功能最为明显,这种动物模型在心功能的相关研究中应予剔除。
     第三部分兔心肌梗死后心室重塑的MRI研究
     目的:观察兔急性心肌梗死后心功能的变化随时间的演变规律,探讨MRI影像特征及心功能指标的变化与心室重塑的关系。
     方法:日本长耳白兔45只,采用开胸结扎法制备心肌梗死模型。分别于术前(0周)和术后1周、2周、4周、6周、8周共六个时间点分别行在体MRI检查测定各项心功能指标,包括:左室舒张末期容积(EDV)、每博输出量(SV)、射血分数(EF)、射血率峰值(PER)、充盈率峰值(PFR)。比较心肌梗死后心功能参数随时间变化规律。在每个时间点随机取5只动物的心脏离体标本,行MRI扩散张量成像(DTI)。测量表观扩散系数(ADC)值、各向异性分数(FA)值,同时重建心肌纤维走行的三维结构彩色方向图(colored orientationmap)及局部心肌走行方向的主要特征向量图(main eigenvector map)。
     结果:梗死相应部位室壁变薄,以梗死后期室壁变薄明显。左室舒张期和收缩期的曲线斜率减低。以第2周和第4周之间变化最为明显。随着梗死时间的延长,EDV呈现增加趋势(F=1.71,P=0.148),EF则明显下降(F=12.713,P<0.001)。EF随着EDV增加呈现下降趋势,线性回归分析得出一次方程:y=-5.58x+57.7,(F=8.855,R=1.30,P=0.0049)。随梗死时间的延长,PER呈进行性下降,以前4周变化明显,而PFR下降以第4至8周变化明显。心肌首过灌注曲线的上升斜率随时间呈下降趋势,但各时间点无显著性差异(P=0.305)。梗死区FA值随着梗死时间的延长而下降,而ADC值则随着梗死时间的延长呈上升趋势。FA值、ADC值在梗死中心区与边缘区比较时都有统计学差异(P=0.024),而边缘区和外围区的FA值、ADC值无统计学差异(P>0.327)。
     结论:MRI测量的心功能参数变化及心肌纤维束排列秩序的演变规律与心室重塑的病理变化基础是吻合的,MRI可以作为心肌梗死后心室重塑的预测手段。
     第四部分心肌梗死后心室重塑的MRI临床研究
     目的:观察陈旧性心肌梗死后的心功能变化,探讨MRI心功能指标对心室重塑的预测价值。
     方法:收集陈旧性心肌梗死患者33例,其中男性27例,女6例,年龄45-79岁,平均(60.2±9.5)岁。健康志愿者12例作为对照组,年龄40-62岁,平均(52.2±5.8)岁。所有患者及健康对照组均接受MRI检查。MRI测量参数包括:DIR、TIR、EDV、ESV、EF、PER、PFR,同时测量梗死心肌面积所占的百分比,以24%为分界值,分为无重塑组(≦24%)和重塑组(>24%),分析各组间的心功能参数的差异。进行ROC分析筛选能独立预测心室重塑的心功能指标。所有资料统计利用SPSS 17.0进行分析,P<0.05有显著性差异。
     结果:梗死部位室壁变薄,平均5.64 mm±1.21mm。心室轮廓不规则,局部呈膨隆状改变,其中3例见室壁瘤形成。与正常心肌信号相比,12例在DIR上呈低信号,6例在TIR上呈略高信号,15例在FIESTA可见有相对高信号。延迟增强扫描见梗死部位心肌呈明显强化。与正常对照组比较,陈旧性心肌梗死的EDV、ESV、SV均较前者增加,EF、PER和PFR等则不同程度下降。ESV与EDV的增加有线性关系(P<0.001); PER、PFR及EF均随EDV的增加呈线性下降趋势;而SV与各参数间的变化关系均无显著性差异。ROC分析各参数对心室重塑预测的结果显示:PFR、EDV.ESV的ROC曲线下面积分别为0.725、0.741、0.764,分界值分别为2.27 EDV/sec、140.23ml和79.12ml,P值分别为0.036、0.021和0.032。SV、PER和EF对心室重塑预测能力的分析结果显示P值均大于0.05。
     结论:MRI可以准确评估心肌梗死的形态学变化,可以从收缩和舒张功能全面地评估心功能变化。MRI心功能参数对预测心室重塑有重要作用。PFR、EDV、ESV可以作为独立因子预测心室重塑。
Part 1 MRI evaluation of postoperative pericardial adhesions in rabbit models of myocardial infarction
     Objective:The aim of the present study was to investigate the role of MRI in evaluating postoperative pericardial adhesions in rabbit models of myocardial infarction.
     Methods:Twenty-five Japanese white rabbits were randomly divided into conventional operation group (n=11) and anti-adhesion membrane placed group (n=14), both underwent chest-opening coronary artery ligation surgery. After 8 weeks, in vivo MRI and exploratory thoracotomy were performed respectively to observe the degree of adhesions according to respective criteria. Data were analyzed by Wilcoxon's rank test. The consistence between MRI and exploratory thoracotomy were detected using consistency check.
     Results:The number of none adhesion, mild adhesions and severe adhesions observed by MRI were 3,3,5 cases respectively in conventional operation group and 4,9,1 cases respectively in anti-adhesion membrane placed group; the number observed by exploratory thoracotomy were 2,4,5 cases in conventional operation group and 5,7,2 cases in anti-adhesion membrane placed group. The difference between the two groups was statistically significant. (P=0.021 from MRI, and P=0.025 from reoperation). The cases of none adhesions, mild adhesions and severe adhesions from MRI consistent with exploratory thoracotomy were 5,9,6 cases. MRI results were consistent with exploratory thoracotomy results (Kappa=0.69, p<0.001).
     Conclusions:Magnetic resonance imaging assessment of pericardial adhesions is in good agreement with exploratory thoracotomy, MRI would be a good means of adhesions evaluation after cardiac surgery.
     Part 2 Effect of postoperative pericardial adhesions on cardiac function in rabbit models by using MRI
     Objective:To elucidate the effect of the degree of postoperative pericardial adhesions on cardiac function in rabbit models of myocardial infarction.
     Methods:Thirty Japanese white rabbits underwent chest-opening coronary artery ligation surgery to obtain rabbit models of myocardial infarction. Rule out 5 animals with serious infection or death, and the remaining 25 rabbits were enrolled in this study. After 8 weeks, in vivo MRI was performed to calculate the left ventricular function; the parameters are EDV, ESV, SV and EF values. Then, exploratory thoracotomy was performed to observe the degree of adhesions according to clinical criteria:no adhesion, mild adhesions, moderate adhesions and severe adhesions. Measured data of four groups were compared with One-way ANOVA analysis.
     Results:The number of no adhesion, mild adhesions, moderate adhesions and severe adhesions observed by exploratory thoracotomy were 7,5,6,7 cases. EDV and ESV values from MRI showed no significant difference between four groups (P=0.33 and 0.95, respectively). But the value of ESV in severe adhesions showed significantly statistical differences from the other 3 groups (P<0.001, respectively). SV and EF values from MRI showed significantly statistical differences between four groups (P=0.001 and<0.001, respectively), and in a linear relation with the adherent degree. Conclusions:In the preparation of myocardial infarction model, Severe postoperative pericardial adhesions affect cardiac function significantly, particularly in the systolic function. Such models should be rejected in the studies of cardiac function.
     Part 3 Ventricular remodeling after myocardial infarction in MRI study
     Purpose:To observe the change of cardiac function after acute myocardial infarction in rabbit models, and to study MRI imaging characteristics of ventricular remodeling.
     Methods:Forty-five Japanese white rabbits underwent chest-opening coronary artery ligation surgery to obtain rabbit models of myocardial infarction. The animals were performed in vivo MRI at totla six time-point with before surgery,1 week,2 weeks,4 weeks,6 weeks,8 weeks. Cardiac function parameters were measured, including:left ventricular end diastolic volume (EDV), stroke volume (SV), ejection fraction (EF), peak ejection rate (PER) and peak filling rate (PFR). Comparison of heart function is variation with time after myocardial infarction. At each time point,5 animals randomly selected and were performed re-thoracotomy for gaining specimens of the heart. Each heart speciment was examined by MRI with the sequence of diffusion tensor imaging (DTI). The value of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were collected; meanwhile, three-dimensional reconstruction of cardiac fiber structure of colored orientationmap and the regional main eigenvector map were performed.
     Results:Left ventricular diastolic and systolic slope of the curve reduced, the change was in the most obvious between the first 2 weeks and 4 weeks. Left ventricular EDV increase in progress according to the time extending, EF was significantly decreased (F=12.713, P <0.001), and EDV showed an increasing trend (F=1.71, P=0.148). EF show a downward trend with the increase of EDV, linear regression analysis, an equation was set up with y=-5.58x+57.7, (F=8.855, R=1.30, P=0.0049). On the other hand, PER decreased progressively before 4-weeks post-infarction (P=0.034). PFR also decreased, but with no significant difference (P=0.065). Myocardial first pass perfusion rising slope of the curve decreased with time in each group showed no significant difference (P> 0.05). FA value decreased, but ADC value showed upward trend according to the post-infarction time. FA value and ADC value were significantly different between the infarct region and adjacent region (P<0.05), but there was no significantly different between adjacent region and remote region (P> 0.05).
     Conclusions:MRI measurement of parameters of cardiac function and arranged orderly of myocardial fiber bundles are consistent with the evolution of pathological changes. MRI can be used to predict ventricular remodeling after myocardial infarction.
     Part 4 The role of function parameters on prediction of ventricular remodeling postinfarction by using MRI
     Purpose:To observe the change of cardiac function of old myocardial infarction (OMI) and to investigate the role of cardiac function parameters in prediction of ventricular remodeling
     Methods:Collection of 33 patients with old myocardial infarction, including 28 males and 6 females,60.2 years±9.5(from 45 to 79 years old). Healthy volunteers as the control group with 12 patients, aged from 40 to 62 years old, mean age wae (52.2±5.8) years. All patients and healthy controls underwent MRI examination. MRI measurement of heart function parameters including:DIR, TIR, EDV, ESV, EF, PER, PFR, and measure the percentage of the area ratio of myocardial infarction. As a dividing line of 24%, patients were divided into two groups with no remodeling group and remodeling group. Parameters were nalysised of the groups of heart function. The ROC analysis was used to evaluate the preidiction of cardiac funtion patameters for ventricular remodeling. All statistics using SPSS 17.0, and P<0.05 was significant difference.
     Results:Thinning wall were observed after infarction, with an average 5.64 mm±1.21mm. The ventricual morphology after infarction was irregular, and bulging like on local wall.3 of them were accompanied with vntricular aneurysm. Compared with normal myocardium signal,12 cases showed low signal on the sequence of DIR, and 6 cases showed slightly higher signal on the sequence of TIR.15 cases showed relatively hyerintensity on the sequence FIESTA. On delayed enhancement, the regions of myocardial infarction were showed obviously hyperintensity. The ventricular function parameters EDV and ESV of old myocardial infarction were increase than control group, otherwise, the values of EF, PER and PFR were decreased. The increase of ESV has a linear relationship with EDV, but the change of PER, PFR and EF showed a negative linear relationship with EDV. The change of SV was no significantly with other paprameters. PFR, EDV, ESV can be used as independent factors for predicting ventricular remodeling, with the areas under the curve (AUC) were 0.725,0.741 and 0.764, respectivly, using ROC analysis. The cut-off values were 2.27 EDV/sec,140.23ml and 79.12ml, respectivly.
     Conclusion:MRI can evaluate the morphological changes of myocardial infarction. Systolic and diastolic function can be used to assessment of cardiac function parameters, and these parameters act important roles on predicting ventricular remodeling,
引文
1. Lee BH, Kim WH, Choi MJ, et al. Chronic heart failure model in rabbits based on the concept of the Bifurcation/Trifurcation coronary artery branching pattern. Artif Organs. 2002,26 (4):360-365.
    2. Fujita M, Morimoto Y, Ishihara M, et al. A new rabbit model of myocardial infarction without endotracheal intubation. J Surg Res.2004,116(1):124-128.
    3.沈伟,施海明,罗心平,等.兔实验性动脉粥样硬化和急性心肌梗死双模型的建立.中国实验动物学报.2010,18(4):318-321.
    4. Bolin DC, Donahue JM, Vickers ML, et al. Microbiologic and pathologic findings in an epidemic of equine pericarditis. J Vet Diagn Invest.2005,17(1):38-44.
    5. Yoshioka I, Saiki Y, Ichinose A, et al. Tagged cine magnetic resonance imaging with a finite element model can predict the severity of retrostemal adhesions prior to redo cardiac surgery. J Thorac Cardiovasc Surg.2009,137(4):957-962.
    6. Mastouri R, Sawada SG, Mahenthiran J, et al. Noninvasive imaging techniques of constrictive pericarditis. Expert Rev Cardiovasc Ther.2010,8(9):1335-1347.
    7. Ordovas KG, Reddy GP, Higgins CB. MRI in nonischemic acquired heart disease. J Magn Reson Imaging.2008,27(6):1195-1213.
    8. Axel L. Assessment of pericardial disease by magnetic resonance and computed tomography. J Magn Reson Imaging.2004,19(6):816-26.
    9. 李连东,张存泰,阮磊,等.改性壳聚糖防粘连膜防止心肌梗死模型兔心脏与周围组织粘连.中华实验外科杂志.2010,27(6):786-788.
    10. Naito Y, Shin'oka T, Hibino N, et al. A novel method to reduce pericardial adhesion:a combination technique with hyaluronic acid biocompatible membrane. J Thorac Cardiovasc Surg.2008,135(4):850-856.
    11. Zhou J, Liwski RS, Elson C, et al. Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using NO-carboxymethyl chitosan to block cell adherence. J Thorac Cardiovasc Surg.2008,135(4):777-783.
    12. Millner RW, Lockhart AS, Bird H, et al. A new hemostatic agent:initial life-saving experience with Celox (chitosan) in cardiothoracic surgery. Ann Thorac Surg.2009, 87(2):e13-14.
    13. Ong SY, Wu J, Moochhala SM, at al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials.2008, 29(32):4323-4332.
    1. Brodoefel H, Reimann A, Klumpp B, et al. Sixty-four-slice CT in the assessment of global and regional left ventricular function:comparison with MRI in a porcine model of acute and subacute myocardial infarction. Eur Radiol.2007,17(11):2948-2956.
    2. Storey P, Chen Q, Li W, Seoane PR, et al. Magnetic resonance imaging of myocardial infarction using a manganese-based contrast agent (EVP 1001-1):preliminary results in a dog model. J Magn Reson Imaging.2006,23(2):228-234.
    3. Wu EX, Wu Y, Nicholls JM, et al. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med.2007,58(4): 687-695.
    4. Jiang Y, Pandya K, Smithies O, et al. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med.2004,52(3):453-460.
    5. Van der Laarse A, van der Wall EE. Rabbit models:ideal for imaging purposes? Int J Cardiovasc Imaging.2009,25(3):299-301.
    6. Feng Y, Xie Y, Wang H, et al. A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research. Int J Cardiovasc Imaging.2009,25(3): 289-298.
    7. Mansencal N, Tissier R, Deux JF, et al. Relation of the ischaemic substrate to left ventricular remodelling by cardiac magnetic resonance at 1.5T in rabbits. Eur Radiol. 2010,20(5):1214-1220.
    8. Leak LV, Ferrans VJ, Cohen SR, Eidbo EE, Jones M. Animal model of acute pericarditis and its progression to pericardial fibrosis and adhesions:ultrastructural studies. Am J Anat.1987; 180:373-390.
    9. Bolin DC, Donahue JM, Vickers ML, et al. Microbiologic and pathologic findings in an epidemic of equine pericarditis. J Vet Diagn Invest.2005,17(1):38-44.
    10. Moon JC, De Arenaza DP, Elkington AG, et al. The pathologic basis of Q-wave and non-Q-wave myocardial infarction:a cardiovascular magnetic resonance study. J Am Coll Cardiol.2004,44(3):554-560.
    11. Engblom H, Carlsson MB, Hedstrom E, et al. The endocardial extent of reperfused first-time myocardial infarction is more predictive of pathologic Q waves than is infarct transmurality:a magnetic resonance imaging study. Clin Physiol Funct Imaging. 2007,27(2):101-108.
    12.李连东,张存泰,阮磊,等.改性壳聚糖防粘连膜防止心肌梗死模型兔心脏与周围组织粘连.中华实验外科杂志.2010,27(6):786-788.
    13. Naito Y, Shin'oka T, Hibino N, et al. A novel method to reduce pericardial adhesion:a combination technique with hyaluronic acid biocompatible membrane. J Thorac Cardiovasc Surg.2008,135(4):850-856.
    14. Chou TC, Fu E, Wu CJ, et al. Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun.2003,302(3):480-483.
    1. 李鹏,李勇,郭志刚.中国人群血脂流行病学研究25年回顾与展望.心血管病学进展.2007,28(5):776-780.
    2.翁建平.对糖尿病流行病学、循证医学及基础研究的探索.中山大学学报:医学科学版.2010,31(2):166-178.
    3. Keenan NL, Shaw KM, Centers for Disease Control and Prevention (CDC). Coronary heart disease and stroke deaths-United States,2006. MMWR Surveill Summ. 2011,60(1):62-66.
    4. 徐长钰.济南地区急性心肌梗塞流行病学调查.心血管康复医学杂志.2010,19(5):498-500.
    5. 吴晓珺,周玲.无锡市北塘区2007-2009年5种慢性病发病和死亡情况.职业与健康.2010,26(16):e2-e3.
    6. 张在其,张斌,公保才旦,等.西宁市城东区1471例院前急救患者流行病学分析. 临床荟萃.2010,25(17):1476-1479.
    7. Mansencal N, Tissier R, Deux JF, et al. Relation of the ischaemic substrate to left ventricular remodelling by cardiac magnetic resonance at 1.5T in rabbits. Eur Radiol. 2010,20(5):1214-1220.
    8. Maytin M, Colucci WS. Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol.2002,9(3):319-327.
    9. Hori Y, Ohshima N, Chikazawa S, et al. Myocardial injury-related changes in plasma NT-proBNP and ANP concentrations in a canine model of ischemic myocardial injury. Vet J.2011 Feb 25. [Epub ahead of print].
    10. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation.1990,81(4): 1161-1172.
    11. Rouleau JL, de Champlain J, Klein M, et al. Activation of neurohumoral systems in postinfarction left ventricular dysfunction. J Am Coll Cardiol.1993,22(2):390-398.
    12. Opie LH, Commerford PJ, Gersh BJ, et al. Controversies in ventricular remodelling. Lancet.2006,367(9507):356-367.
    13. Warren SE, Royal HD, Markis JE, et al. Time course of left ventricular dilation after myocardial infarction:influence of infarct-related artery and success of coronary thrombolysis. J Am Coll Cardiol.1988,11(1):12-19.
    14. Bogaert J, Bosmans H, Maes A, et al. Remote myocardial dysfunction after acute anterior myocardial infarction:impact of left ventricular shape on regional function:a magnetic resonance myocardial tagging study. J Am Coll Cardiol,2000,35(6): 1525-1534.
    15. Clements IP. Combined systolic and diastolic dysfunction in the presence of preserved left ventricular ejection fraction. Eur J Heart Fail.2005,7(4):490-497.
    16. ArhedenH, SteedM, HigginsCB, et al. Reperfused rat myocdium subjected to various durations of ischemia:estimation of the distribution volume of contrast material with echo-planar MR imaging. Radiology,2000,215(2):520-528.
    17. Pack NA, Dibella EV, Wilson BD, et al. Quantitative myocardial distribution volume from dynamic contrast-enhanced MRI. Magn Reson Imaging.2008,26(4):532-542.
    18.侯远征,许百男,陈晓雷,等.应用弥散张量成像及纤维束示踪重建锥体束可重复性的定量研究.中国临床神经外科杂志,2010,15(4):207-214.
    19.吴锡,周激流,谢明元,罗代升,等.磁共振弥散张量成像的脑白质纤维优化重建.中国生物医学工程学报,2009,28(6):931-933.
    20. Wu EX, Wu Y, Nicholls JM, et al. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med.2007,58(4): 687-695.
    21. Scollan DF, Holmes A, Winslow R, et al. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol.1998,275(6 Pt 2):H2308-2318.
    22. Gilson WD, Kraitchman DL. Cardiac magnetic resonance imaging in small rodents using clinical 1.5 T and 3.0 T scanners. Methods.2007,43(1):35-45.
    23. Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T:a comparative study with X-ray angiography in a single center. J Am Coll Cardiol.2009,54(1):69-76.
    24. Sibley CT, Bluemke DA. Will 3.0-T make coronary magnetic resonance angiography competitive with computed tomography angiography? J Am Coll Cardiol.2009,54(1): 77-78.
    25. Prompona M, Cyran C, Nikolaou K, et al. Contrast-enhanced whole-heart coronary MRA using Gadofosveset 3.0 T versus 1.5 T. Acad Radiol.2010,17(7):862-870.
    26. Jiang Y, Pandya K, Smithies O, et al. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med.2004,52(3):453-460.
    27. Kocica MJ, Corno AF, Carreras-Costa F, et al. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardiothorac Surg.2006,29(Suppl):S21-S40.
    28. Feng Y, Xie Y, Wang H, et al. A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research. Int J Cardiovasc Imaging.2009,25(3): 289-298.
    29. Van der Laarse A, van der Wall EE. Rabbit models:ideal for imaging purposes? Int J Cardiovasc Imaging.2009,25(3):299-301.
    1. Wu Y, Chan CW, Nicholls JM, et al. MR study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J Magn Reson Imaging.2009,9(2):305-312.
    2. Parodi G, Carrabba N, Santoro GM, et al. Heart failure and left ventricular remodeling after reperfused acute myocardial infarction in patients with hypertension. Hypertension.2006,47(4):706-710.
    3. Jerosch-Herold M, Kwong RY. Magnetic resonance imaging in the assessment of ventricular remodeling and viability. Curr Heart Fail Rep.2008,5(1):5-10.
    4. Prunier F, Marescaux L, Franconi F, et al. Serial magnetic resonance imaging based assessment of the early effects of an ACE inhibitor on postinfarction left ventricular remodeling in rats. Can J Physiol Pharmacol.2005,83(12):1109-1115
    5. Kaandorp TA, Lamb HJ, Viergever EP, et al. Scar tissue on contrast-enhanced MRI predicts left ventricular remodelling after acute infarction. Heart.2007,93(3):375-376.
    6. Lund GK, Stork A, Muellerleile K, et al. Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology.2007,245(1):95-102.
    7. Thygesen K, Alpert JS, White HD, et al. Universal definition of myocardial infarction. Circulation.2007,116(22):2634-53
    8. Baer FM, Theissen P, Schneider CA, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol.1998,31(5):1040-1048.
    9. Schinkel AF, Bax JJ, Poldermans D, et al. Hibernating myocardium:diagnosis and patient outcomes. Curr Probl Cardiol.2007,32(7):375-410.
    10. Glaveckaite S, Valeviciene N, Laucevicius A, et al. Cardiovascular magnetic resonance imaging for detection of myocardial viability in chronic ischemic left ventricular dysfunction. Medicina.2009,45(8):585-599.
    11. Thiele H, Paetsch I, Schnaekenburg B, et al. Improved accuracy of quantitative assessment of left ventrieular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson.2002,4(3):327-339.
    12. Danilouchkine MG, Westenberg JJ, de Roos A, et al. Operator induced variability in cardiovascular MR:left venueular measurements and their reproducibility. J Cardiovase Magn Reson.2005,7(2):447-457.
    13. Vourvouri EC, Poldermans D, Bax JJ, et al. Evaluation of left ventricular function and volumes in patients with ischaemic caiomyopathy:gated single-photon emission computedtomography versus two-dimensional echoeardiography. Eur J Nucl Med. 2001,28(11):1610-1615
    14. Redfield MM, Jacobsen SJ, Burnett Jr JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community:appreciating the scope of the heart failure epidemic. JAMA.2003,289(2):194-202.
    15. Clements IP. Combined systolic and diastolic dysfunction in the presence of preserved left ventricular ejection fraction. Eur J Heart Fail.2005,7(4):490-497.
    16. Mahrholdt H, Wagner A, Honold M, et al. Images in cardiovascular medicine. Magnetic resonance assessment of cardiac function, infarct scar distribution, and ventricular remodeling in the setting of ischemic cardiomyopathy. Circulation.2003, 107(16):e103-104.
    17. Watzinger N, Lund GK, Higgins CB, et al. The potential of contrast-enhanced magnetic resonance imaging for predicting left ventricular remodeling. J Magn Reson Imaging.2002,16(6):633-640.
    18. Gerber BL, Rochitte CE, Melin JA, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation.2000,101(23): 2734-2741.
    19. Caudron J, Fares J, Bauer F, et al. Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics.2011,31(1):239-59.
    20. Stewart KJ, Ouyang P, Bacher AC, et al. Exercise effects on cardiac size and left ventricular diastolic function:relationships to changes in fitness, fatness, blood pressure and insulin resistance. Heart.2006,92(7):893-898.
    21. Skaluba SJ, Litwin SE. Mechanisms of exercise intolerance:insights from tissue Doppler imaging. Circulation.2004,109(8):972-977.
    22. Hadano Y, Murata K, Yamamoto T, et al. Usefulness of mitral annular velocity in predicting exercise tolerance in patients with impaired left ventricular systolic function. Am J Cardiol.2006,97(7):1025-8.
    23. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med.2006,355(3):260-269.
    1.赵世华,陆敏杰,张岩,等.1.5T高端MR在心血管病诊断中的应用.中华放射学杂志.2005,39(6):577-581.
    2. Vogel Claussen J, Skrok J, Dombroski D, et al. Comprehensive adenosine stress perfusion MRI defines the etiology of chest pain in the emergency room:Comparison with nuclear stress test. J Magn Reson Imaging.2009,30(4):753-762.
    3. Jerosch Herold M, Muehling O. Stress perfusion magnetic resonance imaging of the heart. Top Magn Reson Imaging.2008,19(1):33-42.
    4. Wood JC. Anatomical assessment of congenital heart disease. J Cardiovasc Magn Reson.2006,8(4):595-606.
    5. Fenchel M, Saleh R, Dinh H, et al. Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology.2007,244(2): 399-410.
    6. 陈金明,王俭,邵敏伟.磁共振成像检查对先天性心脏病封堵器位置影响的实验研究,第二军医大学学报.2007,28(8):898-900.
    7. Kefer J, Coche E, Legros G, Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol.2005,46(1):92-100.
    8. Cheng L, Gao Y, Guaricci Al, et al. Breath-hold 3D steady-state free precession coronary MRA compared with conventional X-ray coronary angiography. J Magn Reson Imaging.2006,23(5):669-673.
    9. Nguyen TD, Spincemaille P, Cham MD, et al. Free-breathing 3-dimensional steady-state free precession coronary magnetic resonance angiography:comparison of four navigator gating techniques. Magn Reson Imaging.2009,27(6):807-814
    10. Nguyen TD, Spincemaille P, Cham MD, et al. Free-breathing 3D steady-state free precession coronary magnetic resonance angiography:comparison of diaphragm and cardiac fat navigators. J Magn Reson Imaging.2008,28(2):509-514
    11. Bhat H, Zuehlsdorff S, Bi X, et al. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med.2009, 61(6):1388-1395.
    12. Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T:a comparative study with X-ray angiography in a single center. J Am Coll Cardiol.2009,54(1):69-76.
    13. Cury RC, Shash K, Nagurney JT, et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation.2008,118(8):837-844.
    14. Masci PG, Dymarkowski S, Rademakers FE, et al. Determination of regional ejection fraction in patients with myocardial infarction by using merged late gadolinium enhancement and cine MR:feasibility study. Radiology.2009,250(1):50-60.
    15. Setser RM, Kim JK, Chung YC, et al. Cine delayed-enhancement MR imaging of the heart:initial experience. Radiology.2006,239(3):856-862.
    16.赵世华,闫朝武,杨敏福,等.磁共振心肌灌注延迟增强与核素心肌灌注/代谢显像识别存活心肌对比研究.中华心血管病杂志.2006,34(12):1072-1076.
    17.孟志华,丁彦青,全显跃,等.磁共振心肌灌注成像评价心肌梗死PTCA治疗前后心肌存活.南方医科大学学报.2009,29(3):450-453.
    18.刘盛,胡盛寿,陆敏杰,等.陈旧性心肌梗死所致心功能不全患者的影像学诊断研究.实用临床医药杂志.2009,13(1):12-16.
    19. Selvanayagam JB, Jerosch-Herold M, Porto I, et al. Resting myocardial blood flow is impaired in hibernating myocardium:a magnetic resonance study of quantitative perfusion assessment. Circulation.2005,112(21):3289-3296.
    20. Lund GK, Stork A, Muellerleile K, et al. Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology.2007,245(1):95-102.
    21. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies:an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation.2006,113(14):1807-1816.
    22. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies:a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J.2008,29 (2):270-276.
    23. Stehning C, Bornert P, Nehrke K, et al. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med.2005, 54(2):476-480.
    24.夏黎明,叶慧,冯定义,等.磁共振电影评价肥厚型心肌病局部心肌收缩功能.华中科技大学学报(医学版).2005,34(5):604-607.
    25. Sipola P, Lauerma J, Jaaskelainen P, et al. Cine MR Imaging of myocardial contractile impairment in patients with hypertrophic cardiomyopathy attributable to Aspl75Asn mutation in the alpha-tropomyosin gene. Radiology.2005; 236(3):815-824.
    26.韦云青,赵世华,陆敏杰,等.心尖肥厚型心肌病的MRI诊断,中华放射学杂志.2007,41(8):800-804.
    27. Moon JC, Mogensen J, Elliott PM, et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart.2005,91(8):1036-1040.
    28. Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hyper hypertrophic cardiomyopathy. J Am Coll Cardiol.2004,43(12):2260-2264.
    29. Boonyasirinant T, Rajiah P, Setser RM, et al. Aortic stiffness is increased in hypertrophic cardiomyopathy with myocardial fibrosis-novel insights in vascular function from magnetic resonance imaging. J Am Coll Cardiol.2009,54(3): 255-262.
    30. Tseng WY, Dou J, Reese TG, et al. Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging. 2006,23(1):1-8
    31. Calore C, Cacciavillani L, Boffa GM, et al. Contrast-enhanced cardiovascular magnetic resonance in primary and ischemic dilated cardiomyopathy. J Cardiovasc Med.2007,8(10):821-829.
    32. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation.2003,108(1):54-59.
    33. Zimmermann O, Grebe O, Merkle N, et al. Myocardial biopsy findings and gadolinium enhanced cardiovascular magnetic resonance in dilated cardiomyopathy. Eur J Heart Fail.2006,8(2):162-166.
    34. Matoh F, Satoh H, Shiraki K, et al. Usefulness of delayed enhancement magnetic resonance imaging to differentiate dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy. J Card Fail.2007,13(5):372-379.
    35. Nazarian S, Bluemke DA, Lardo AC, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation.2005,112(18):2821-2825.
    36. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular noncompaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 2005, 46(1):101-105.
    37. Sasse-Klaassen S, Probst S, Gerull B, et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation.2004, 109(22):2720-2723.
    38.孙子燕,夏黎明,王承缘,等.心肌致密化不全的MRI与超声心动图对比研究.中华放射学杂志.2007,41(8):805-808.
    39. Sato Y, Matsumoto N, Matsuo S, et al. Isolated noncompaction of the ventricular myocardium in a 94-year-old patient:depiction at echocardiography and magnetic resonance imaging. Int J Cardiol.2007,119(1):e32-34.
    40. Jassal DS, Nomura CH, Ncilan TG, et al. Delayed enhancement cardiac MR imaging in noncompaction of left ventricular myocardium. J Cardiovasc Magn Reson.2006,8(3): 489-491.
    41. Dodd JD, Holmvang G, Hoffmann U, et al. quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. AJR.2007,189(4):974-980
    42.中华医学会心血管病学分会,中华心血管病杂志编辑委员会,中国心肌病诊断与治疗建议工作组.心肌病诊断与治疗建议.中华心血管病杂志.2007,35(1):5-16.
    43.夏黎明,杨春华,邹明丽,等.致心律不齐性右室心肌病的MRI诊断.中华放射学杂志.2002,36(11):1013-1017.
    44. Hunold P, Wieneke H, Bruder O, et al. Late enhancement:a new feature in MRI of arrhythmogenie right ventricular cardiomyopathy? J Cardiovasc Magn Reson.2005, 7(4):649-655.
    45. Maksimovic R, Ekinci O, Reiner C, et al. The value of magnetic resonance imaging for the diagnosis of arrhythmogenic right ventricular cardiomyopathy. Eur Radiol,2006 16(3):560-568.
    1. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol.2000; 35(3):569-582.
    2. Francis GS. Pathophysiology of chronic heart failure. Am J Med.2001,110:37S-46S.
    3. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation.2000,101(25):2981-2988.
    4. Sharpe N. Left ventricular remodeling:pathophysiology and treatment. Heart Fail Monit.2003,4(2):55-61.
    5. 李鹏,李勇,郭志刚.中国人群血脂流行病学研究25年回顾与展望.心血管病学进展.2007,(5):776-780.
    6.翁建平.对糖尿病流行病学、循证医学及基础研究的探索.中山大学学报:医学科学版.2010,31(2):166-178.
    7. Keenan NL, Shaw KM, Centers for Disease Control and Prevention (CDC). Coronary heart disease and stroke deaths-United States,2006. MMWR Surveill Summ. 2011,60(1):62-66.
    8. 徐长钰.济南地区急性心肌梗塞流行病学调查.心血管康复医学杂志.2010,19(5):498-500.
    9. 吴晓珺,周玲.无锡市北塘区2007-2009年5种慢性病发病和死亡情况.职业与健康.2010,26(16):e2-e3.
    10.张在其,张斌,公保才旦,等.西宁市城东区1471例院前急救患者流行病学分析.临床荟萃.2010,25(17):1476-1479.
    11. Hockman JS, Bulkley BH. Expansion of acute myocardial infarction:an experimental study. Circulation.1982,65(7):1446-50.
    12. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res.1985,57(1):84-95.
    13. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation.1990,81(4): 1161-1172.
    14. Maytin M, Colucci WS. Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol.2002,9(3):319-327.
    15. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation.2007,116(4):434-448.
    16. Zornoff LA, Paiva SA, Duarte DR,et al. Ventricular remodeling after myocardial infarction:concepts and clinical implications. Arq Bras Cardiol.2009,92(2):150-164.
    17. Siebelink HM, Lamb HJ. Magnetic resonance imaging for myocardial viability. EuroIntervention.2010,6 Suppl G:G107-114.
    18. Glaveckaite S, Valeviciene N, Laucevicius A, et al. Cardiovascular magnetic resonance imaging for detection of myocardial viability in chronic ischemic left ventricular dysfunction. Medicina.2009,45(8):585-599.
    19. Kwong RY, Korlakunta H. Diagnostic and prognostic value of cardiac magnetic resonance imaging in assessing myocardial viability. Top Magn Reson Imaging.2008, 19(1):15-24.
    20. Rehr RB, Malloy CR, Filipchuk NG, et al. Left ventricular volumes measured by MR imaging. Radiology.1985,156(3):717-719.
    21. Shors SM, Cotts WG, Pavlovic-Surjancev B, et al. Heart failure:evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology.2003, 229(3):743-748.
    22. Sechtem U, Pflugfelder PW, Gould RG, et al. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology.1987, 163(3):697-702.
    23. Grothues F, Smith GC, Moon JC, et al. Comparison of intersrudy reproducibility of cardiovascular magnetic reso-nance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002,90(1):29-34.
    24. Kim RJ, Wu E, Rafael A, et al. The use of contrastenhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med.2000,343(20): 1445-1453.
    25. Oshinski JN, Yang Z, Jones JR, Mata JF, and French BA. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation.2001,104(23):2838-2842.
    26. Vohringer M, Mahrholdt H, Yilmaz A, et al. Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz.2007,32(2): 129-137.
    27. Takeda K, Matsumiya G, Hamada S, Left ventricular basal myocardial scarring detected by delayed enhancement magnetic resonance imaging predicts outcomes after surgical therapies for patients with ischemic mitral regurgitation and left ventricular dysfunction. Circ J.2010,75(1):148-156.
    28. Filler A. Magnetic resonance neurography and diffusion tensor imaging:origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group. Neurosurgery.2009,65(4 Suppl): A29-43.
    29.吴锡,周激流,谢明元,等.磁共振弥散张量成像的脑白质纤维优化重建.中国生物医学工程学报.2009,28(6):931-933.
    30. Sosnovik DE, Wang R, Dai G, et al. Diffusion MR tractography of the heart. J Cardiovasc Magn Reson.2009,11(1):47-61.
    31. Sosnovik DE, Wang R, Dai G, Wang T, Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ Cardiovasc Imaging.2009,2(3):206-212.
    32. Axel L. MRI of the microarchitecture of myocardial infarction:are we seeing new kinds of structures? Circ Cardiovasc Imaging.2009,2(3):169-170.
    33. Huang S, Sosnovik DE. Molecular and Microstructural Imaging of the Myocardium Curr Cardiovasc Imaging Rep.2010,3(1):26-33.
    34. Helm PA, Younes L, Beg MF, et al. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res.2006,98(1):125-132.
    35. Scollan DF, Holmes A, Winslow R, et al. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol.1998,275(6 Pt 2):H2308-2318.
    36. Chen J, Song SK, Liu W, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol.2003, 285(3):H946-954.
    37. Dou J, Reese TG, Tseng WY, et al. Cardiac diffusion MRI without motion effects. Magn Reson Med.2002,48(1):105-114.
    38. Tseng WY, Reese TG, Weisskoff RM, et al. Cardiac diffusion tensor MRI in vivo without strain correction. Magn Reson Med.1999,42(2):393-403.
    39. Wu MT, Tseng WY, Su MY, et al. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation.2006,114(10):1036-1045.