用户名: 密码: 验证码:
探讨“黄芪—葛根”药对配伍规律对药效物质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药对配伍规律及其药效物质研究是解决方剂关键问题的突破口,是国家各级科技项目重点支持的领域之一。中药复方(含药对)配伍规律研究的常用方法有文献理论研究、拆方研究、药理效应变化研究、化学成分变化研究、体内化学成分及药代动力学研究及中药血清药物化学研究(即综合方法研究)。配伍规律研究在不同层面和不同角度均取得了显著的进展,但其研究思路与方法尚未成熟,仍存在许多问题,尤其是方法学有待新的突破。对其药效物质基础的研究常用方法有传统的植物化学研究法、药代动力学对血清处理分析的研究法、基于受体理论构建的生物色谱研究法及高通量筛选技术—亲和超滤技术研究法等。
     “黄芪-葛根”药对出自《证治汇补》黄芪葛根汤,黄芪补气托表,葛根生津解肌,合用能益气解表,为补气升气药对方。黄芪、葛根单独均有较多有关制剂、化学成分、有效部位或成分、药理作用及临床应用等方面的文献,其药效物质基本明确。黄芪葛根汤联用其他药物临床应用广泛,未见黄芪葛根汤配伍规律影响药效物质相关研究。本课题组前期已探索黄芪散(由本药对加桑白皮组成)改善糖尿病胰岛素抵抗及糖尿病心肌病的作用机理。本文主要在课题前期研究工作及文献调研已探明黄芪、葛根药效物质基础上,以指纹图谱技术为本研究提供方法学保证,从化学成分层面探讨配伍规律;多成分定量从有效成分层面研究其配伍规律影响药效物质的动态过程;研究本药对主要药效物质(总黄酮及总皂苷)的大孔吸附树脂纯化工艺,从有效部位层面探讨本药对配伍规律。目的
     1.对中药复方(含药对)配伍规律及其药效物质研究、“黄芪-葛根”药对配伍规律、化学成分及药效物质等进行总结,明确“黄芪-葛根”药对药味层面的配伍规律及黄芪、葛根药效物质。
     2.研究黄芪、葛根药材及“黄芪-葛根”药对不同配比的HPLC指纹图谱,考察药材及不同配比药对的异黄酮类成分谱是否因产地、提取溶剂及制备方法的改变而发生较大的变化,从化学成分层面探讨“黄芪-葛根”药对配伍规律对物质基础动态影响。
     3.克服药效物质定量研究测定成分单一等问题,建立HPLC-UV测定10种异黄酮类成分及HPLC-ELSD测定黄芪甲苷的方法,考察“黄芪-葛根”药对配伍前后及不同配比时黄酮类及皂苷类成分的溶出率变化情况,从有效成分层面探讨“黄芪-葛根”药对配伍与药效物质动态变化过程,即配伍规律对药效物质动态影响。
     4.系统研究影响大孔吸附树脂吸附分离的因素,筛选纯化“黄芪-葛根”药对药效物质(主要为总黄酮和总皂苷)的工艺条件,从有效部位层面探讨“黄芪-葛根”药对配伍规律对药效物质动态影响。
     1.检索近10年来国内外有关“中药复方”、“方剂”、“药对”、“配伍规律”、“黄芪”、“葛根”、“化学成分”、“有效部位”、“有效成分”、“黄芪葛根”药对文献,分析综述中药复方配伍规律、药对理论、临床应用、药效物质及实验研究,总结黄芪、葛根品种来源、资源分布、化学成分、药效物质及“黄芪-葛根”药对应用概况、药理作用机理及临床应用。
     2.建立“黄芪-葛根”药对及组成药材黄酮类成分指纹图谱测定方法,用HPLC-UV法,Kromasil 100-5 C18色谱柱(4.6 mm X 250 mm,5μm), Phenomenex C18保护柱(4.0mm×3.0 mm);流动相:甲醇-0.1%枸橼酸溶液,梯度洗脱,流速1.0 mL.min-1,柱温30℃,检测波长250 nm;用HPLC-PDA鉴别色谱峰纯度,参考文献资料及对照品对照法鉴别指认色谱峰;用STATA8.0统计软件分析指纹图谱相关标准化处理数据。
     3.黄酮类成分HPLC测定色谱条件同上,黄芪甲苷HPLC测定色谱柱同上,流动相乙腈-水(32:68),流速mL. min-1,漂移管温度(分流)60℃,气体压力25 Psi。测定“黄芪-葛根”药对(2:1)配伍前后不同时间点各成分的溶出量,将“黄芪-葛根”药对配伍合煎样品各成分溶出量按1/0或0/1中所测溶出量折算出理论溶出量;测定“黄芪-葛根”药对不同配比各成分溶出量,同法计算理论溶出量。
     4.以“黄芪-葛根”药对总黄酮和总皂苷吸附量为考察指标,根据树脂的吸附和解析能力,从9种国内外常用树脂中筛选出XDA-5、D101、AB-8,对优选的XDA-5吸附树脂绘制吸附等温线、漏出曲线,优化纯化工艺条件,并测定树脂纯化物中有效部位及有效成分含量。结果
     1.中药复方配伍规律是中医药理论的精华和中医药现代化的难点,常用方法有文献理论研究、拆方研究、药理效应变化研究、化学成分变化研究、体内化学成分及药代动力学研究及中药血清药物化学研究(即综合方法研究)。药理研究主要是观察复方配伍的药效变化及作用机制,分整方和拆方研究。拆方研究有撤药研究、析因分析、正交设计、均匀设计、聚类分析、基线等比增减设计等方法,析因分析又分为药对研究、药组研究及药性研究。拆方研究在寻找复方增效减毒作用的最佳组合、确定方中主要药物或活性物质、寻找方中药物最佳剂量配比关系、精简方剂等方面取得了确实的成效。但所得结论难以反应原复方的本质内涵,更难以深入揭示复方配伍的普遍规律。药理效应研究从药效学角度对方中各药作用、地位及相互关系进行探讨,证明复方中各药物间的协同或拮抗作用,方中各药具有“君臣佐使”不同地位,一定程度上验证复方组成的合理性及中药配伍应用的优越性,但药效指标选择的局限,难以客观揭示复方组方原理,且中药化学成分研究相对滞后,对复方物质基础与药效之间的关系认识不清,难以从根本上阐明其配伍规律和科学内涵。复方的化学成分是其疗效的根本,已发现大量的活性成分,为解析复方的组成贡献巨大,但复方的化学组成并不代表其在体内发挥生物效应的化学形式,必须结合效应成分数和量的变化说明配伍药物的相互关系。
     以药对配伍规律为基础的数据挖掘在发现规律和深入研究方面的突出优势,对药对和方剂的配伍理论产生了积极影响。但目前在药味层次上的数据挖掘虽可发现常用药物组合,难以充分体现药对或方剂的配伍思想。从药性层面进行研究,可发现具有特定功效药对的常见组合模式,这些组合模式能够体现中医的治法治则。
     中药药效物质基础是指中药进入人体内作用于多个靶点并产生整体功效的化学成分组,对其主要有两条基本的研究思路:一条是基于西方还原论和微观科学为基础的研究思路,将中药分成不同层次,逐层研究其与药效的关系;另一条则是基于系统论或中药作用的整体性的研究思路。将中药作为一个整体来研究其与药效的关系。在这两条基本思路的主导下,产生了多种不同的研究方法,主要有:传统的植物化学研究方法、药代动力学对血清处理分析的研究方法、基于受体理论构建的生物色谱研究方法及高通量筛选技术——亲和超滤技术研究方法等四类。中药效应物质基础经过几十年的探讨,虽然至今没有一种中药完全弄清其药效物质基础,但在药效物质基础的不同层面上还是取得了很大进展,尤其在有效成分层面。由于对中药效应物质基础理解不同、目标不同、学科背景不同、研究对象不同、采用的方法不同等对中药效应物质基础呈现多元化的趋势。
     “黄芪-葛根”药对常用于气阴两虚之高血压、糖尿病、中风后遗症等疾病的治疗。目前,已从黄芪、葛根药材中分离出100余种化合物,其中异黄酮、紫檀烷等黄酮类成分达30多种,已明确药理效应的成分有毛蕊异黄酮及其葡萄糖苷、芒柄花素及其葡萄糖苷、葛根素、大豆苷及其苷元等20多种,这些效应成分具有抗高血压、抗高血脂、抗心律失常、抗心肌缺血、改善微循环障碍、改善胰岛素抵抗等作用。黄芪、葛根总黄酮均有抗氧化、降压、预防心脑血管疾病、雌激素样活性等作用。现代临床“黄芪-葛根”药对联用其它药物治疗脑梗死、血管疾病、冠心病心绞痛、心衰、糖尿病及糖尿病肾病。黄芪散(由此药对加桑白皮组成)可改善改善糖脂代谢、提高胰岛素的敏感性,上调GLUT-4mRNA表达,改善心肌能量代谢;增强心脏抗氧化能力,抑制NF-κB和TNF-α1的表达,减轻心脏和全身炎症反应;降低TGF-β1和SMAD3 mRNA及蛋白表达等多方面的作用。
     2.经HPLC-PDA分析色谱峰纯度高,色谱图中各化合物可有效分离;比较乙醇索氏提取、乙醇及30%乙醇及水回流提取等制备方法,选择乙醇回流提取制备供试品溶液;考察流动相组成、洗脱方式、柱温、进样量等,参考文献及对照品对照法鉴定成分:黄芪药材4个、葛根药材6个、黄芪-葛根药对10个,分别为毛蕊异黄酮葡萄糖苷、芒柄花苷、毛蕊异黄酮、芒柄花素、3’-羟基葛根素、葛根素、大豆苷、染料木苷、大豆苷元、染料木素,并在色谱图中确认。对拟定的HPLC条件进行精密度、重现性及稳定性等方法学考察,其RSD值均低于3%,对黄芪、葛根药材10批醇提液、1批水提液,黄芪-葛根药对1:1、2:1、3:1、4:1、5:1及1:2比例水提液进行指纹图谱测定;统计分析结果:色谱指纹图谱相似度均大于0.93,以RRT为变量的指标聚成3类:变量(1-6号吸收峰)聚成一类,变量(7-11号吸收峰)聚成一类,变量(12、13号吸收峰)聚成一类,以PPA为变量的指标聚成3类:变量(1、3-5号吸收峰)聚成一类,变量(6-13号吸收峰)聚成一类,变量(2号吸收峰)聚成一类。主成分分析结果:第一主成分RPC1中1-8及10号吸收峰相关性较强,第二主成分RPC2中9-13号吸收峰相关性较强,第三主成分RPC3中1、5及11号吸收峰相关性较强,其中1、2、5-12号吸收峰分别为3’-羟基葛根素、葛根素、大豆苷、毛蕊异黄酮葡萄糖苷、染料木苷、芒柄花苷、大豆苷元、毛蕊异黄酮、染料木素及芒柄花素。标准化处理分析结果,“黄芪-葛根”药对配比为4:1时1-5及11号吸收峰的A/mg值最高,7、9、10及13号色谱峰在2:1配比时最高,而6、8及12号吸收峰以1:1配比时最高。
     3.黄酮类成分的线性范围分别为3'-羟基葛根素76.2~1016 ng、葛根素65.8~1316 ng、大豆苷85.6~1712 ng、毛蕊异黄酮苷33.376~166.88 ng、染料木苷49.98~499.8 ng、芒柄花苷26.176~130.88 ng、大豆苷元29.68~269.8 ng、毛蕊异黄酮44.544~222.72 ng、染料木素48.5~485、芒柄花素26.56~132.8 ng,相关系数(R2)均大于0.9996,平均加样回收率分别为99.27%、102.38%、98.46%、103.06%、101.29%、99.71%、102.28%、97.89%、100.78%及98.37%,其RSD分别为1.77%、2.02%、1.43%、1.41%、1.33%、1.81%、1.32%、0.97%、1.84%及1.79%。黄芪甲苷回归方程y=1.2919x+4.1601,R2=0.9979。“黄芪-葛根”单煎及配伍合煎供试液中,各成分的溶出量在60分钟内逐步升高,之后基本平衡。将“黄芪-葛根”药对配伍合煎样品各成分溶出量按1/0或0/1中所测溶出量折算出理论溶出量,除芒柄花苷配伍后溶出量略有降低之外,其余9种成分合煎时溶出量均比单煎时高。经wilcoson signed-ranktest统计分析,芒柄花苷P>0.05,其余成分P<0.05,说明“黄芪-葛根”药对不同配比各成分的溶出量除芒柄花苷之外的其余9种成分较单一药材具有显著性差异;“黄芪-葛根”药对6种比例配伍10种成分溶出量试验,3'-羟基葛根素、葛根素、大豆苷溶出量实测值较理论值在4:1配伍时增加较多,染料木苷、大豆苷元、毛蕊异黄酮及其苷、芒柄花素及黄芪甲苷在2:1时溶出增加较多,芒柄花苷溶出量的实测值低于理论值。
     4.大孔吸附树脂XDA-5型的纯化工艺条件为:取适当浓度的黄芪提取液,上样吸附速度为2 BV/h,饱和吸附后(总黄酮的饱和吸附量为58.83 mg/mL),先以4 BV水洗脱,再分别以4 BV30%、50%及70%乙醇解析,所得纯化物中总黄酮和总皂苷比例不同。中试生产直接70%乙醇洗脱所得树脂纯化物中总黄酮、总皂苷、3’-羟基葛根素、葛根素、大豆苷、染料木苷、芒柄花苷、毛蕊异黄酮苷、大豆苷元及黄芪甲苷含大豆苷元为佐使,揭示其有效部位及有效成分层次的配伍规律。但需要药理效应试验进一步验证。大孔吸附树脂纯化工艺,为黄芪-葛根药对进一步的机理探讨及新药研发提供稳定可控的生产路线。本研究具有较高的理论创新及实际应用价值。
Investigationon the compatibility law and effective substance of Herb-pairs (HP, Yaodui or Duiyao in Chinese) is the key to elueidate the combing foundation of Traditional Chinese medicine formulas (TCMFs), and also the key researching area supported projeet by Chinese government. The common methods to study the compatibility law of TCMFs or HP including document theory research, study on separated complex prescription, pharmacological effects, components diversity, components in vivo or pharmacokinetics and serum pharmacochemistry methods. All these controbuted much to elucidating the compatibility mechanism and variation of efficacy substance(or components in HP) in different points of view and degree. However, up to now, the methodology is still a hot topic of the above researching area. To elucidating effective substance of HP, traditional phytochemistry, serum handling and analysis in pharmacokinetics, biological chromatography based on acceptor and high throughput screening--affinity ultrafiltration.
     Huangqi-gegen herb pair (HGHP, a commonly used pharmaceuticals) is from Zhengzhihuibu (by Li Yong-Cui. qing Dynasty), tonifying qi for ascending, and to treat qi deficiency and sinking syndrome. Our previous study showed Huangqisan(HGHP plus sangbaipi) interfering type 2 diabetes mellitus insulin resistance and diabetic cardiomyopathy. This study from the following three aspects conducts the research:i. summarize the data of HP and HGHP. ii.study on compatibility law and effective substance of HGHP. iii.research for purification of effective fraction of HGHP with macroporous resin.
     1. Summarized the compatibility law and effective substance of HP, the components and effective compnents of AR and PR, the compatibility law of HGHP. Provide the research thinking and technical route of this study.
     2. To research HPLC fingerprint of AR, PR and different compatibility proportion of HGHP, to inspect these inherent ingredients does or not greatly changed due to herbs, extraction, preparation changes. Preliminary investigate HGHP compatibility law dynamic influence on effective substance.
     3. To overcome determination single effective component, established 10 isoflavones components HPLC-UV and astragalosideⅣHPLC-ELSD, investigation the dissolved quantity variation of main chemical constituents during pro and post compatibility and different proportion of HGHP, revealed the compatibility law dynamic influence on effective substance of HGHP.
     4. Through systematic study many factors of influence of macroporous resin adsorption and separation, screening better macroporous resins of purification of total flavonoids and saponins of HGHP, revealed the compatibility law on effective fraction and effective substance of HGHP.
     1. Searched the articles in the past 10 years, found out and summarized the articles with the topic on TCMFs, prescription, HP, compatibility law, AR, PR, HGHP.
     2. The HPLC system (Shimadzu, Japen) was equipped with a model 10AT vp plus binary pump controller, a 772i sampler and a SPD-10A vp plus ultraviolet detector, using a Kromasil 100-5 C18 column (250×4.6 mm i.d.; 5μm particle size) connected to a phenomenex security guard column (C18,4.0×3.0 mm), the column temperature was kept constant at 30℃. The mobile phase consisting of 0.1% citric acid in water and methanol using a gradient elution, flow-rate was 1.0 mL.min-1. Aliquots of 10μL were injected into HPLC system for analysis, running 60 minute. Data were collected and analysed using CBM-10A vp plus chemstation software.
     3. Flavonoids HPLC condition sup cit, astragalosideⅣHPLC-ELSD condition: chromatographic column sup cit, drift-tube temperature was 60℃, and gas pressure was 25psi. Dissolved quantity of components convert to theory value.
     4.Through systematic study many factors of influence of macroporous resin adsorption and separation, screening better macroporous resins of purification of HGHP effective fraction (flavonoids and saponins), reference for development and industrial production of HGHP.
     1. HP, which from the previous repeated clinical practice, is clinical trial reports of herbal compatibility. HP is unitary prescription only increase not decrease, reflect the corresponding simply syndrome. HP is the core of TCMFs and in common of a series of TCMFs. HP composed of two single herbal medicines, a special kind of TCMFs, is often used in the TCM. Unique combinations of the traditionally defined TCM herbal properties are frequently used for achieving mutual enhancement, mutual assistance, mutual restraint, mutual suppression or mutual antagonism. The theory of compatibility is the core of the basic theories of TCM. HP is clinical trial reports of herbal compatibility and unitary prescription only increase not decrease, reflect the corresponding simply syndrome. HP is the core of TCMFs and in common of a series of TCMFs. Clarifying the chemical reactions occurring and chemical changes during the compatibility process of two single herbs is useful for elucidating the compatibility mechanism of TCM. Clinical pharmacodynamics of HP relies on its chemical components, so it is important to identify the components in HP and investigate the relationship between the chemical components in HP and its single herbs. Therefore, study and research of TCMFs must based on HP, under the guidance of TCM theory, adopting modern scientific and technology means to study HP of formulas corresponding syndrome, elucidating the compatibility mechanism and variation of efficacy substance (or components in HP).
     HGHP, composed of AR and PR, is from Zhengzhihuibu (by Li Yong-Cui. qing Dynasty). HGHP has been widely used in China to treat hypertension of qi-yin asthenia, diabetes due to internal heat and constipation and stroke lingering effects etc. in clinical applications. Most Chinese patent medicines like xintong oral sulution, zhengxintai capsules, zhengxintai tablets etc. contain HGHP with different proportion:1:1,1.18:1, 1.33:1,2:1 and 3.33:1. So far, compounds isolated from AR and PR is more than 100 kinds, which isoflavones up to 30 kinds. The constituents most often associated with its pharmacologic activities are Calycosin, calycosin-7-O-beta-D-glucoside, formononetin, ononin,3'-hydroxypuerarin, puerarin, daidzin, daidzein, genistin and genistein etc., being main isoflavonoids, are displayed beneficial effects such as anti-hypertention, hypolipidemic,anti-arrhythmia, anti-myocardial ischemia, improvement of microcirculaton disturbance, inhibit formation of advanced glycation end products, protective of diabetic insulin resistance etc.. Flavanoids of AR and PR possess antioxidation, decompression, cardiovascular tonic, prevention cardiovascular and cerebrovascular diseases and estrogen activities etc. effects. HGHP used with other medicine treated cerebral infarction, vascular diseases, coronary heart disease, angina pectoris, congestive heart failure, diabetic and diabetic nephropathy, etc.. Huangqi powder (HGHP affiliate sangbaipi) have ameliorate diabetic insulin resistance and diabetic cardiomyopathy effects. Calycosin, formononetin, daidzein and their glucosides, puerarin are active ingredients in AR and PR.
     2. AR and PR, commonly used as TCM, are offcially listed in the Chinese Pharmacopoeia. There are lots of studies on components, pharmacological effects and clinical application of single AR and PR. Isoflavones is shared components of two herbs. It is multicomponent complex system. Pharmacodynamic material base is synthetic action of their chemical constituents. There are quite a few HPLC methods with either MS or PAD or UV detection reported in the literature for the identification and quantification of components in single herb of either AR or PR. In addition, there is a recent report on the determination of puerarin (the most abundant isoflavonoid) in PR. From a review of the literature, it was noticed that the efficiency of the assay for quality control of pharmaceuticals is highly dependent upon the selection of the representative markers. As reported in most of the literature for AR and PR, it was readily established that calycosin-7-O-beta-D-glucoside is present in the highest quantity in AR, whilst daidzin is also found in a large quantities in PR. Therefore, the above reported assay, which did not include these active components, could not serve as a sufficient quality control tool for pharmaceuticals containing both AR and PR. A simple and efficient assay method capable of detecting fingerprint and multiple active components from both herbs is essential.
     AR and PR (family Leguminosae), commonly used as traditional Chinese medicines, are offcially listed in the Chinese Pharmacopoeia. AR, the dried root of Astragalus membranaceus. var. mongholicus (Bge.)Hsiao. or Astragalus membranaceus (Fisch.)Bge. PR, the dried root of Pueraria lobata (Willd.)Ohwi. Collected 10 batch herbs nationwide. The chromatograms of every peak purity authentication and their maximum absorption in HGHP sample solutions using HPLC-PAD at 190-400 nm. HGHP HPLC fingerprint and multi-components contents determination detected at 250 nm. Compared with ethanol soxhlet, ethanol and 30% ethanol reflux extraction, using ethanol reflux preparate samples. Inspected composition of mobile phase, elution style, column temperature, sample size, According to reference documents and reference substance confrontation method, identified components in chromatogram:4 in AR,6 in PR,10 in HGHP. Precision, repeatability, stability and Accuracy was taken, the RSD was less than 3.0% respectively. Fingerprint similarity greater than 0.93. Shown instrument and detection system for analysis meet the requirment. Sample testing results indicate that materia medica source uniform, quality stable, uniform of dissolution components in different proportion compatibility of HGHP, these inherent ingredients does not greatly changed due to herbs changes and extraction. Normalization analytic result, the A/mg value of No.1-No.5, No.11 chromatographic peak were high HGHP at proportion 4:1, whilst No.7, No.9, No.10 and No.13 were high at 2:1, No.6, No.8 and No.12 were high at 1:1.
     3. Working solutions containing all ten reference compounds were prepared by diluting the stock solution to proper concentration in order to draw calibration curves. Each calibration curve contained six different concentrations and was performed in triplicate. All calibration curves were constructed from peak areas of the reference standards versus their concentrations. The limits of detection (LOD) and quantification (LOQ) for each studied component were defined as the lowest concentration of component in the diluted standard solution producing a signal-to-noise ratio (S/N) of 3:1 and 10:1, respectively. Results obtained showed that it's a convenient, accurate and reliable. The method has been successfully applied to the simultaneous determination of 10 isoflavones in HGHP. Concluded with multi-components contents results and correlated data that puerarin was monarch effective component,3'-hydroxypuerarin, daidzin and calycosin-7-O-beta-D-glucoside were subject, genistin and other components were adjuvant and messenger. Dynamic study shown that the dissolution quantity of constituents were higher at 60 minute,9 components post compatibility were higher than those of pro compatibility at different time (significance of statistical analysis). Puerarin, daidzein and astragalosideⅣwere higher at 2:1 proportion.
     4. Optimization of purification process conditions, flavonoids and sapoins was taken as the index for investigation, the ability of adsorption and elution, adsorption kinetic curve, adsorption isotherm, leakage curve were detemined. Suitable type macroporous resin owned optimum adsorption and elution parameters. After eluted with 4BV of distilled water and 4BV of 30%,50%,70% ethanol respectively. The contents of total flavonoids, total saponins,3'-hydroxypuerarin, puerarin, daidzin, genistin, ononin, calycosin-7-O-beta-D-glucoside and daidzein were 54.39%,16.28%,6.269%,22.143%, 4.846%,0.874%,0.419%,1.161% and 0.989% in HGHP purified substance, respectively.
     1. The compatible principle of monarch, minister, adjuvant and guiding drugs and sever aspects.namely, singular application, mutual reinforcement, mutual assistance, mutual restraint, mutual detoxication, mutual inhibition and incompatibility (except singular application) were main compatibility law of TCMFs. HGHP is mutual reinforcement. Those illustrate that HGHP compatibility law in theory level.
     2. AR and PR, commonly used as TCM, are offcially listed in the Chinese Pharmacopoeia. There are lots of studies on components, pharmacological effects and clinical application of AR and PR. Isoflavones is shared components of two herbs. These inherent ingredients does not greatly changed due to herbs changes and extraction (fingerprint similarity greater than 0.93). Those illustrate that HGHP compatibility law and synergistic effect in chemical components level.
     3. Concluded with multi-components contents results and correlated data that puerarin was monarch effective component,3'-hydroxypuerarin, daidzin and calycosin-7-O-beta-D-glucoside were subject, genistin and other components were adjuvant and messenger.10 components post compatibility were higher than those of pro compatibility at different time (significance of statistical analysis). Puerarin, daidzein and astragaloside IV were higher at 2:1 proportion. Those illustrate that HGHP compatibility law and synergistic effect in effective components level.
     4. Purified substance HGHP, total flavonoids and puerarin were monarch effective component. Total saponins,3'-hydroxypuerarin, daidzin and calycosin-7-O-beta-D-glucoside were subject.genistin and daidzein were adjuvant and messenger. Those illustrate that HGHP compatibility law and synergistic effect in effective fraction and effective components level.
引文
[1]吕景山.施今墨对药[M].第三版.北京:人民军医出版社,2005.
    [2]耿建国,王代娣.《伤寒论》药对配伍规律与特点[J].江苏中医,2000,21(9):6-7.
    [3]马莉,陈松育.黄芪药对理论初探[J].江西中医学院学报,2000,12(2):64.
    [4]袁春意.益母草药对应用举隅[J].新中医,2003,35(4):32.
    [5]顾蕾蕾,武露凌,李祥,等.桃仁、红花及其药对挥发油的气相质谱分析[J].中成药,2008,30(5):719.
    [6]李晓如,梁逸曾,郭方道,等.气相色谱/质谱-化学计量学法分析测定药对桃仁 红花挥发油[J].分析化学研究简报,2007,35(4):532.
    [7]李晓如,邹桥,周涛,等.梁逸曾药对荆芥-防风挥发油成分的分析[J].中国药学杂志,2008,43(18):1373.
    [8]越皓,皮子凤,宋凤瑞,等.附子不同配伍药对中生物碱成分的电喷雾质谱分析[J].药学学报,2007,42(2):201.
    [9]王瑞玲,李忠信,张同领.浅谈药对在方剂中的应用[J].临床医学,2000,20(1):57-58.
    [10]陆晓东.经验药对选介[J].浙江中医杂志,1992(7):307.
    [11]罗文群,郭建生.伍炳彩用药对经验[J].江西中医学院学报,2001,13(3):110.
    [12]朱萍,程燕,王峰.韩树勤治疗风湿性关节炎药对运用举隅[J].安徽中医临床杂志,2000,12(3):218.
    [13]熊水明,钟水清.附子药对的临床新用举隅[J].安徽中医临床杂志,2001,13(3):209.
    [14]张秋雁.桃仁-红花药对不同配比的血府逐瘀汤对急性心肌缺血的保护作用[J].中国中医药信息杂志,2005,12(5):29-30.
    [15]徐朝晖,襄萍,战光绪,等.药对麻黄地龙配比及平喘作用机制的研究[J].中国中医杂志,2006,31(3):236-237.
    [16]徐艳春,聂桂红,汪文莱.黄连配伍吴茱萸前后氨基酸的成分分析与含量测定[J].内蒙古民族大学学报(自然科学版),2003,18(6):530.
    [17]柳润辉,苏娟,徐希科,等.药对“丹参-黄芪”有效组分的最佳配伍配比研究[J].中国药学杂志,2006,41(11):815.
    [18]施旭光.HPLC测定黄芪桂枝五物汤及方中药对黄芪甲苷的含量[J].中国实验方剂学杂志,2006,(2):20.
    [19]李晓如.中药药对的化学成分研究-川芎赤芍挥发油GC/MS分析[J].高等学校化学学报,2006,(3):443-448.
    [20]邹焰,陈玮,范学良.淫羊藿、人参耐缺氧、耐疲劳及抗氧化作用的实验研究[J].遵义医学院学报,2001,24(1):15-16.
    [21]袁颖.丹皮、丹参药对清热活血作用的实验研究[J].上海中医药杂志,2005,39(1):53-55.
    [22]杨明,刘小彬,黄庆德.附子甘草配伍减毒增效机理探析[J].时珍国医国药,2003,14(4):197-198.
    [23]张少华,秦林,王平.防己对川乌急性毒性实验的影响[J].中国基层医药,2004,11(11):1281-82.
    [24]李同琴,郭秋红,仝利琪,等.党参反藜芦的动物实验研究[J].陕西中医,2003,23(8):744-745.
    [25]王红梅,赵怀舟,王象礼.丁香配伍郁金对胃肠运动影响的药理实验研究(Ⅲ)丁香配伍郁金对病理模型的影响[J].时珍国医国药,2003,14(11):654-655.
    [26]段金廒,宿树兰,唐于平,等.中药药对配伍组合的现代认识[J].南京中医药大学学报,2009,25(5):330.
    [27]王喜军.中药及中药复方的血清药物化学研究[J].世界科学技术-中医药现代化,2002,4(2):1.
    [28]中国医药网.当前中药化学研究存在的问题[J]中国药科大学学报,2003,(2):121.
    [29]顾英,冯怡,徐德生.芍药甘草效应组分血清指纹图谱与药效的相关性研究[J].中成药,2008,30(1):6-10.
    [30]Wang X J, Sun H, Fan Y L. Analysis and bioactive evaluation of the compounds absorbed into blood after oral administration of the extracts of vaccinium vitis-idaea in rat. Bio Pharm Bull,2005,28(6):1106-1108.
    [31]王喜军.中药血清药物化学的研究动态及发展趋势[J].中国中药杂志,2006,31(10):789-792.
    [32]姜鹏.麝香保心丸药效物质基础研究[D].第二军医大学,2009.
    [33]陈丽华,刘丽丽,朱卫丰.中药复方配伍研究现状与思考[J].中草药,2009,40(12):1998-2000.
    [34]赵进喜,李成卫.糖尿病临床药对新用[M].北京:中国医药科技出版社,2006,93-94.
    [35]刘家骅.药对[M].北京:人民卫生出版社,2009.
    [36]刘建,张玲娟,孙立峰,等.张锡纯对药[M].北京:人民军医出版社,2009,215.
    [37]肖培根,李大鹏,杨世林.新编中药志[M].第一卷.北京:化学工业出版社,2002.
    [38]胡世林.中国道地药材[M].哈尔滨:黑龙江科学技术出版社,1989,377.
    [39]黄璐琪.中药资源生态学[M].上海:上海科学技术出版社,2009,275.
    [40]龙兴超.全国中药材购销指南[M].北京:人民卫生出版社,2010,272.
    [41]孙文基,绳金房.天然活性成分简明手册[M].北京:中国医药科技出版社,1998.
    [42]国家中医药管理局.中华本草[M](下).上海:上海科学技术出版社,1998.
    [43]肖培根,李大鹏.新编中药志[M].第五卷.北京:化学工业出版社,2007.
    [44]黄璐琦,王永炎.中药材质量标准研究.北京:人民卫生出版社,2006.
    [45]周家驹,谢桂荣,严建新.中药原植物化学成分集.北京:科学出版社,2009.
    [46]陈静,袁明勇,郑玲利,等.黄芪的化学成分和药理作用研究[J].临床医药实践[J],2009,18(11):2217-2219.
    [47]Zhang HJ; Isolation of two new C-glucofuranosyl isoflavones from Pueraria lobata (Wild.) Ohwi with HPLC-MS guiding analysis[J]. J Asian Nat Prod Res.2010,12 (4):293-299.
    [48]曹正中,曹园,易以军,等.膜荚黄芪中新异黄酮苷的结构鉴定[J].药学学报.1999,34(5):392-394.
    [49]Yu QT. Determination of seventeen main flavonoids and saponins in the medicinal plant Huang-qi (Radix astragali) by HPLC-DAD-ELSD[J]. J Sep Sci.2007,30 (9):1292-1299.
    [50]Chu C. Characterization of novel astragaloside malonates from Radix Astragali by HPLC with ESI quadrupole TOF MS[J].J Sep Sci.2010,33 (4-5):570-581.
    [51]Motomura K.Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products[J].J Agric Food Chem.2009,57 (17):7666-7672.
    [52]Lin CC, Wu CI, Sheu SJ. Determination of 12 pueraria components by high-performance liquid chromatography-mass spectrometry[J]. J Sep Sci.2005,28:1785-1795.
    [53]Jang DS. Puerariafuran, a new inhibitor of advanced glycation end products (AGEs) isolated from the roots of Pueraria lobata[J]. Chem Pharm Bull(Tokyo).2006,54 (9):1315-1317.
    [54]Kitamura Y. Standard infrared absorption spectrum of betaine and optimal conditions for its measurement[J].Shokuhin Eiseigaku Zasshi.2006,47 (5):232-236.
    [55]Kim JM. Constituents of the roots of Pueraria lobata inhibit formation of advanced glycation end products(AGEs)[J].Arch Pharm Res.2006,29 (10):821-825.
    [56]Zhang S. Reversal of chemical-induced liver fibrosis in Wistar rats by puerarin[J]. J Nutr Biochem.2006,17 (7):485-491.
    [57]Wong R. Effect of puerarin on bone formation[J]. Osteoarthritis Cartilage.2007,15 (8):894-899.
    [58]Wu L. Protective roles of puerarin and Danshensu on acute ischemic myocardial injury in rats[J]. Phytomedicine.2007,14 (10):652-658.
    [59]Pan HP, Li G. Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury [J]. Yakugaku Zasshi.2008,128 (11):1689-1698.
    [60]Gao L. Puerarin protects against ischemic brain injury in a rat model of transient focal ischemia[J]. Neurol Res.2009,31 (4):402-406.
    [61]Meng XH, Ni C, Zhu L. Puerarin protects against high glucose-induced acute vascular dysfunction:role of heme oxygenase-1 in rat thoracic aorta[J]. Vascul Pharmacol.2009,50 (3-4):110-115.
    [62]Teng Y. Protective effect of puerarin on diabetic retinopathy in rats[J].Mol Biol Rep.2009,36 (5):1129-1133.
    [63]Nakagawa K. Protective effect of daidzein against acute ethanol-induced lipid peroxidation in rat jejunum[J]. Kobe J Med Sci.2006,52 (5):141-149.
    [64]Choi EJ. The prooxidant, rather than antioxidant, acts of daidzein in vivo and in vitro:daidzein suppresses glutathione metabolism[J]. Eur J Pharmacol.2006,542 (1-3):162-169.
    [65]Chen JJ. By modulating androgen receptor coactivators, daidzein may act as a phytoandrogen[J].Prostate.2007,67 (5):457-462.
    [66]Kampkotter A. Isoflavone daidzein possesses no antioxidant activities in cell-free assays but induces the antioxidant enzyme catalase[J].Nutr Res.2008,28 (9):620-628.
    [67]Somjen D. Daidzein but not other phytoestrogens preserves bone architecture in ovariectomized female rats in vivo[J].J Cell Biochem.2008,103 (6):1826-1832.
    [68]Khaodhiar L. Daidzein-rich isoflavone aglycones are potentially effective in reducing hot flashes in menopausal women[J]. Menopause.2008,15 (1):125-132.
    [69]Choi EJ. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells[J]. Phytomedicine.2008, 15 (9):683-690.
    [70]Kim SH. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice[J].Phytother Res.2009,23 (5):701-706.
    [71]Dwiecki K. Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes[J]. J Photochem Photobiol B.2009,96 (3):242-248.
    [72]Guo Y. Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet[J]. Nutr Res.2009,29 (9):656-663.
    [73]Atlante A. Genistein and daidzein prevent low potassium-dependent apoptosis of cerebellar granule cells[J]. Biochem Pharmacol.2010,79 (5):758-767.
    [74]Takahashi Y. A comparative analysis of genistein and daidzein in affecting lipid metabolism in rat liver [J]. J Clin Biochem Nutr.2009,44(3):223-230.
    [75]Mishra P.Prevention of chemically induced mammary tumorigenesis by daidzein in pre-pubertal rats:the role of peroxidative damage and antioxidative enzymes[J]. Mol Cell Biochem.2009,325 (1-2):149-157.
    [76]季宇彬,张广美.中药抗肿瘤有效成分药理与应用[M].哈尔滨:黑龙江科学技术出版社,1998.
    [77]Choi EJ. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells[J]. Life Sci.2007,80(15):1403-1408.
    [78]Kgomotso T. Genistein-and daidzein 7-0-beta-D-glucuronic acid retain the ability to inhibit copper-mediated lipid oxidation of low density lipoprotein[J].Mol Nutr Food Res.2008,52 (12):1457-1466.
    [79]Harper CE. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats[J]. Prostate.2009,69 (15):1668-1682.
    [80]Ferenc P.Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells[J]. J Photochem Photobiol B.2010,98 (1):25-34.
    [81]Sehmisch S. Evaluation of bone quality and quantity in osteoporotic mice--the effects of genistein and equol[J]. Phytomedicine.2010,17 (6):424-430.
    [82]Emmerson E. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms[J]. Mol Cell Endocrinol.2010,321 (2):184-193.
    [83]Yan GR. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways[J]. Proteomics.2010,10 (5):976-986.
    [84]Wang YN. Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation [J]. J Dermatol Sci.2010,58 (1):19-27.
    [85]Choi JS. Effect of genistein on insulin resistance, renal lipid metabolism, and antioxidative activities in ovariectomized rats[J]. Nutrition.2009, 25 (6):676-685.
    [86]Fu Z. Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells[J]. Eur J Pharmacol.2009,616 (1-3):321-327.
    [87]Kim SH. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice[J]. Phytother Res.2009,23 (5):701-706.
    [88]Lowe ED.Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase[J]. J Med Chem.2008,51 (15):4482-4487.
    [89]Russo A. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells[J].J Nutr Biochem.2006,17 (2):103-108.
    [90]Hooshmand S. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile[J]. Clin Nutr.2008,27 (4):643-648.
    [91]Bitto A. Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats:a comparative study with alendronate[J].Br J Pharmacol.2009,156 (8):1287-1295.
    [92]Taylor CK.The effect of genistein aglycone on cancer and cancer risk:a review of in vitro, preclinical, and clinical studies[J].Nutr Rev.2009, 67 (7):398-415.
    [93]Choi YH. Anti-allergic effects of scoparone on mast cell-mediated allergy model[J].Phytomedicine.2009,16 (12):1089-1094.
    [94]Yang JY. Stimulation of melanogenesis by scoparone in B16 melanoma cells[J].Acta Pharmacol Sin.2006,27 (11):1467-1473.
    [95]Fang Y. Pharmacokinetics of a novel anti-asthmatic, scoparone, in the rabbit serum assessed by a simple HPLC method[J].J Ethnopharmacol.2003, 86 (1):127-130.
    [96]Erdal BEDIR, Nirmal PUGH, Ihsan CALIS,et al. Immunostimulatory Effects of Cycloartane-Type Triterpene Glycosides from Astragalus Species [J]. boil pharm bull.2000,23:834-837.
    [97]Schinella GR, Tournier HA, Prieto JM, et al. Inhibition of Trypanosoma cruzi growthby medical plant extracts [J]. Fitoterapia,2002,73:569-575.
    [98]ISAO KITAGAWA, HUIKANG WANG, MASAYUKI SAITO, et al.Saponin and Sapogenol. XXXVI. Chemical Constituents of Astragali Radix, the Root of Astragalus membranaceus BUNGE. (3). Astragalosides III, V, and VI [J]. chem pharm bull, 1983,31(2):709-715.
    [99]Yu J. Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats[J]. Can J Physiol Pharmacol.2006,84 (6):579-587.
    [100]Xu ME. Effects of astragaloside IV on pathogenesis of metabolic syndrome in vitro[J].Acta Pharmacol Sin.2006,27 (2):229-236.
    [101]Cheng CY.The role of astragaloside in regeneration of the peripheral nerve system[J].J Biomed Mater Res A.2006,76 (3):463-469.
    [102]Zhang WD.Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs[J]. Life Sci.2006,79 (8):808-815.
    [103]Zhang WD. Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro[J].Planta Med.2006,72 (1):4-8.
    [104]Zhang WD.Astragaloside IV dilates aortic vessels from normal and spontaneously hypertensive rats through endothelium-dependent and endothelium-independent ways[J]. Planta Med.2006,72 (7):621-626.
    [105]Jiang B.Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNFalpha in 3T3-L1 adipocytes[J]. Phytother Res.2008,22 (11):1434-1439.
    [106]Yuan W. Astragaloside IV inhibits proliferation and promotes apoptosis in rat vascular smooth muscle cells under high glucose concentration in vitro[J]. Planta Med.2008,74 (10):1259-1264.
    [107]Chen J. Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via alpha3betal integrin upregulation and integrin-linked kinase inhibition[J]. Biochem Pharmacol.2008,76 (6):796-804.
    [108]Du Q. Inhibitory effects of astragaloside Ⅳ on ovalbumin-induced chronic experimental asthma[J].Can J Physiol Pharmacol.2008,86 (7):449-457.
    [109]Chan WS. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture[J].Neurochem Int.2009,55 (6):414-422.
    [110]Wang S. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali[J]. Biol Pharm Bull.2009,32 (1):132-135.
    [111]Liu H. Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells [J]. J Ethnopharmacol.2009,122 (3):502-508.
    [112]Qu YZ. Astragaloside IV attenuates cerebral ischemia reperfusion induced increase in permeability of the blood-brain barrier in rats[J].Eur J Pharmacol.2009,606 (1-3):137-141.
    [113]Qi H.Proteomic characterization of the cellular response to chemopreventive triterpenoid astragaloside IV in human hepatocellular carcinoma cell line HepG2[J]. Int J Oncol.2010,36 (3):725-735.
    [114]Lv L. Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin[J].Phytother Res.2010,24 (2):219-224.
    [115]Kharbanda KK. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidyl ethanolamine methyltransferase pathway[J]. J Hepatol.2007,46 (2):314-321.
    [116]Beretich GR Jr. Betaine may act as a fast-acting antipsychotic by rapidly reducing blood levels of homocysteine[J].Med Hypotheses.2007,69 (2):465-466.
    [117]Kim SJ. Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation[J].Biochem Biophys Res Commun.2008,368 (4):893-898.
    [118]Abdelmalek MF. Betaine for nonalcoholic fatty liver disease:results of a randomized placebo-controlled trial[J]. Hepatology.2009,50 (6):1818-1826.
    [119]Kanbak G. Betaine (trimethylglycine) as a nutritional agent prevents oxidative stress after chronic ethanol consumption in pancreatic tissue of rats[J].Int J Vitam Nutr Res.2009,79 (2):79-86.
    [120]Lv S. Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice[J].Eur J Nutr.2009,48 (4):205-212.
    [121]Cho E. Choline and betaine intake and risk of breast cancer among post-menopausal women [J].Br J Cancer.2010,102 (3):489-494.
    [122]Ganesan B. Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats[J].Mol Biol Rep.2010,37 (3):1319-1327.
    [123]Kim JM. Constituents of the roots of Pueraria lobata inhibit formation of advanced glycation end products (AGEs) [J].Arch Pharm Res.2006,29 (10):821-825.
    [124]Lee JH.Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Thl immune response against disseminated Candidiasis in mice[J]. Vaccine.2007,25 (19):3834-3840.
    [125]Kinjo J. Hepatoprotective and hepatotoxic activities of sophoradiol analogs on rat primary liver cell cultures[J]. Biol Pharm Bull.2000,23 (9):1118-1121.
    [126]Kinjo J.Hepatoprotective constituents in plants.14. Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells[J]. Biol Pharm Bull.2003,26 (9):1357-1360.
    [127]Huh JE. Formononetin promotes early fracture healing through stimulating angiogenesis by up-regulating VEGFR-2/Flk-1 in a rat fracture model[J].Int Immunopharmacol.2009,9 (1) 2:1357-1365.
    [128]Ji ZN. In vitro estrogenic activity of formononetin by two bioassay systems[J].Gynecol Endocrinol.2006,22 (10):578-584.
    [129]Huh JE. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts[J]. Int Immunopharmacol.2010,10(4):500-507.
    [130]Fan Y. Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells[J].Eur J Pharmacol.2003,481 (1):33-40.
    [131]Wu XL.Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta[J]. Acta Pharmacol Sin.2006, 27 (8):1007-1012.
    [132]Choi SI. Alleviation of osteoarthritis by calycosin-7-O-beta-D-glucopyranoside (CG) isolated from Astragali radix (AR) in rabbit osteoarthritis (OA) model[J]. Osteoarthritis Cartilage.2007,15 (9):1086-1092.
    [133]Zhu H. In vivo and in vitro antiviral activities of calycosin-7-O-beta-D-glucopyranoside against coxsackie virus B3[J].Biol Pharm Bull.2009,32 (1):68-73.
    [134]姚美村,齐莹,毕开顺,等.黄芪药效物质基础研究[J].中国野生植物资源,2000,19(2):33-36.
    [135]Ye G.Determination of calycosin-7-0-beta-D-glucopyranoside in rat plasma and urine by HPLC[J]. Biomed Chromatogr.2007,21 (7):762-767.
    [136]Wu T, Annie Bligh SW, Gu LH, et al. Simultaneous determination of six isoflavonoids in commercial Radix Astragali by HPLC-UV[J]. Fitoterapia, 2005, (76):157-165.
    [137]Sibao C.Seasonal variations in the isoflavonoids of radix Puerariae[J].Phytochem Anal.2007,18(3):245-250.
    [138]Gui SY. Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats[J].J Ethnopharmacol.2006,103 (2):154-159.
    [139]Li X. A novel antioxidant agent, astragalosides, prevents shock wave-induced renal oxidative injury in rabbits[J]. Urol Res.2006,34 (4):277-282.
    [140]雷春利,吕文伟,陈羽,等.黄芪总皂甙对在体犬心功能的影响[J].白求恩医科大学学报,1994,20(4):326-328.
    [141]王奇玲,李云义,齐辉,等.黄芪皂甙对离体工作心脏的肌力作用及其可能机制[J].中国中药杂志,1992,17(9):557-560.
    [142]张必祺.中药黄芪及其活性部位对血管舒缩功能作用的研究[D].浙江大学,2006.
    [143]黄可儿.黄芪总苷对脾虚大鼠胃壁细胞功能及形态影响的研究[D].广州中医药大学,2006.
    [144]段萍.黄芪对恶性肿瘤化疗药增效减毒作用的临床研究[D].成都中医药大学,2001.
    [145]黄立群.黄芪活性成份的药理活性研究进展[J].赤峰学院学报(自然科学版),2009,25(9):119-120.
    [146]崔伊梅,高卫真,刘艳霞.黄芪及其有效成分黄芪苷Ⅳ在心血管药理作用的研究进展[J].天津医科大学学报,2005,11(4):656-659.
    [147]刘艳霞,刘在萍,焦建杰,等.黄芪苷Ⅳ对正常和心功能受抑制大鼠左心室心肌力学的影响[J].中草药,2001,32(4):332-334.
    [148]林毅.黄芪皂甙Ⅳ对急性心肌梗死大鼠心肌胶原的影响及机制[D].青岛大学,2006.
    [149]陈治奎.黄芪对自发性高血压大鼠的抗高血压效应及其机制的初步研究[D].浙江大学,2003.
    [150]Chen XJ. Protective effect of astragalosides on myocardial injury by isoproterenol in SD rats[J].Am J Chin Med.2006,34 (6):1015-1025.
    [151]Zhang ZC. Effect of astragaloside on cardiomyocyte apoptosis in murine coxsackievirus B3 myocarditis [J]. J Asian Nat Prod Res.2007,9(2):145-151.
    [152]Chen W. Effects of Astragalus polysaccharides on chymase, angiotensin-converting enzyme and angiotensin Ⅱ in diabetic cardiomyopathy in hamsters[J].J Int Med Res.2007,35 (6):873-877.
    [153]Zhang YW. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-kappaB and IkappaB in renal cortex of streptozotoxin-induced diabetic rats[J].J Ethnopharmacol.2007,114(3):387-392.
    [154]Tin MM. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft[J]. Carcinogenesis.2007, 28 (6):1347-1355.
    [155]Mao XQ. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism[J]. Phytomedicine.2009,16 (5):416-425.
    [156]Ko JK.The protective action of radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines[J]. Cytokine.2009, 47 (2):85-90.
    [157]Wang YF. Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha[J]. Phytother Res.2010,24 (3):393-398.
    [158]张京.大剂量黄芪注射液治疗缺血性脑卒中临床分析[J].中西医结合心脑血管病杂志,2004,2(4):205-7.
    [159]张世明.黄芪注射液联合葛根素注射液治疗急性脑梗死40例疗效观察[J].新中医,2004,36(6):31-32.
    [160]张京.葛根黄芪饮促进缺血性脑卒中患者神经功能恢复及对血液流变学的影响[J].中国临床康复,2004,8(22):4521-23.
    [161]张京.葛根黄芪饮治疗缺血性脑卒中临床观察[J].中西医结合心脑血管病杂志2004,2(2):112-113.
    [162]姜子恩,卢绍禹,李娜,等.葛根素和黄芪注射液治疗周围血管疾病的临床观察[J].中国中西医结合外科杂志,2003,9(6):459-460.
    [163]周萍.葛根素黄芪注射液治疗椎-基底动脉供血不足[J].医药论坛杂志,2004,25(22):17-18.
    [164]刘风琴.葛根素黄芪注射液联合治疗心绞痛30例[J].中西医结合心脑血管病杂志,2004,2(7):421.
    [165]张慧霞.葛根素黄芪联合应用治疗冠心病心绞痛的疗效观察[J].辽宁中医学院学报,2005,7(1):38.
    [166]王玲玲,王智多,赵炳霞.黄芪、葛根素与氧透射载体疗法治疗难治性心力衰竭40例疗效观察[J].吉林医学,2000,21(5):315-316.
    [167]申罗英,谢颖.黄芪注射液与葛根素合用治疗心力衰竭50例[J].医药导报,2004,23(1):26.
    [168]尹翠梅,郭俊杰,刘亚丽,等.黄芪并葛根注射液治疗Ⅱ型糖尿病临床观察[J].中国中医基础医学杂志,2001,7(1):57-59.
    [169]许武红,符燕.黄芪、葛根合剂配合科素亚联合治疗糖尿病肾病的疗效观察[J].吉林医学,2006,27(1):83-84.
    [170]王春怡.黄芪散干预2型糖尿病胰岛素抵抗机制及制剂基础研究[D].广州中医药大学,2009.
    [171]陈艳芬,王春怡,李卫民,等.古方黄芪散降糖作用的实验研究[J].广东药学院学报,2010,26(1):73-76.
    [172]陈艳芬.黄芪散对糖尿病心肌病变的干预作用及其机制研究[D].广州中医药大学,2009.
    [173]周金黄.展望21世纪中医药学发展前景[J].中国中西医结合杂志,1998,18(5):285-291.
    [174]张永祥.六味地黄汤的现代药理学及化学的初步研究[J].基础医学与临床,2000,20(5):15-19.
    [175]孙洋,陈婷,徐强.从药对的角度考察复方配伍规律[J].世界科技-中医药现代化.2004,6(1):17-20.
    [176]李贵海,涂晓龙.常用中药药对分析与应用[M].北京:人民卫生出版社,2009.
    [1]罗国安,梁琼麟,王义明.中药指纹图谱质量评价、质量控制与新药研发[M].北京:化学工业出版社,2009.
    [2]顾英,冯怡,李玉敏.指纹图谱在中药物质基础研究中的应用[J].中成药,2007,2007,29(7):1048-1051.
    [3]李绍平,赵静,钱正明,等.色谱技术在中药有效成分辨识中的应用进展[J]中国科学:化学,2010,40(6):651-667.
    [4]宁黎丽,毕开顺,王瑞,等.吴茱萸汤药效物质基础的方法学研究[J].药学学报,2000,35(2):131-134.
    [5]姚美村,齐莹,毕开顺,等.黄芪药效物质基础研究[J].中国野生植物资源,2000,19(2):33-36.
    [6]张溪,齐炼文,李萍,等.体外细胞模型和高效液相质谱联用分析预测黄芪中的活性成分[J].分析化学,2008,36(6):745-749.
    [7]白毅.中药与天然药物研究领风骚-2009年中国药学会科学技术奖撷英.中国医药报.2009-12-01.
    [8]崔听.葛根物质基础研究获新进展.中国医药报,2006-11-21.
    [9]李梅青,盛旋,邵学广.反相高效液相色谱法用于葛根黄酮提取物的分离与主要活性成分的测定[J].分析化学,2003,31(2):178-180.
    [10]陈庆梅,王玉枝,朱洪彬.中药葛根提取物中抗氧化活性成分的筛选[J].分析化学,2009,37(2):212-213.
    [11]谢培山.中药色谱指纹图谱[M].北京:人民卫生出版社,2004,185,322-335.
    [12]韩萍.大别山野葛HPLC指纹图谱库的构建及其植物化学物对乙醇神经毒性保护作 用的研究[D].四川大学,2005.
    [13]刘火安.葛根等中药材高效液相色谱指纹图谱的研究[D]重庆大学,2006.
    [14]顾志平,陈碧珠,冯瑞芝,等.中药葛根及其同属植物的资源利用和评价[J].药学学报.1996,31(5):387-393.
    [15]郭建平,孙其荣,周全,等.葛根总黄酮不同提取工艺的探讨[J].中草药.1995,26(10):522.
    [16]KINJO J E, FURUSAWA J I, BABA J, et al. Studies on the constituents of pueraria lobata. Ⅲ Isoflavonoids and related compounds in the roots and the voluble stems[J].Chem Pharm Bull,1987,35 (12):4846.
    [17]张晓塔,王明奎.彭树捧,等.葛根的化学成分研究(英文)[J].中草药,2002,33(1):11.
    [18]张璐,陈民辉,蔡美明,等.HPLC和LC-MSn分析葛根素及其注射剂中的有关物质[J].中国生化药物杂志,2008,29(6):361.
    [19]黄璐琦,王永炎.中药材质量标准研究[M].北京:人民卫生出版社,2006,600,641.
    [20]刘斌.倪健.中药有效部位及成分提取工艺和检测方法[M].北京:中国中医药出版社,2007.
    [21]石子仪,鲍忠,姜勇,等.不同来源黄芪药材中毛蕊异黄酮葡萄糖苷和芒柄花素的定量分析.中国中药杂志.2007,32(9):779-783.
    [22]孙振球.医学统计学第2版[M].北京:人民卫生出版社,2005.
    [23]劳伦斯.汉密尔顿(Hamilton. L).应用STATA做统计分析[M].重庆:重庆大学出版社,2008.
    [24]胡可云,田凤占,黄厚宽.数据挖掘理论与应用[M].北京:北京交通大学出版社,2008.
    [25]张福良.聚类分析与中药质量研究[M].北京:人民卫生出版社,1994.
    [1]Fischman J. Herbs and prescriptions can make a risky mixture. US News World Rep,2000,128(17):64-65.
    [2]Zhang H. Simultaneous determination of 12 chemical constituents in the traditional Chinese Medicinal Prescription Xiao-Yao-San-Jia-Wei by HPLC coupled with photodiode array detection. J Pharm Biomed Anal.2008, (48) 5:1462-1466.
    [3]国家药典委员会.中华人民共和国药典[S].一部.北京:中国医药科技出版社,2010:619-620.
    [4]王春怡,李卫民.HPLC ELSD法测定不同产地黄芪中黄芪甲苷的含量[J].辽宁中医药大学学报,2008,10(10):144-145.
    [5]中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准[S].中药成方制剂(第五册),1991.
    [6]中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准[S].中药成方制剂(第十三册),1997.
    [7]中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准[S].中药成方制剂(第十九册),1998.
    [8]国家药典委员会.中华人民共和国药典[S].一部.北京:化学工业出版社,2005.
    [9]张伯礼,高秀梅.复方丹参方的现代研究组分配伍研制现代中药的理论与实践[M].北京:人民卫生出版社,2008.
    [10]王小如.中药复杂体系中重大科学问题探讨[M].厦门:厦门大学出版社,1998.
    [11]何清湖.中西医结合思路与方法[M].北京:中国中医药出版社,2008.
    [1]顾觉奋.离子交换与吸附树脂在制药工业上的应用[M].北京:中国医药科技出版社.2008.
    [2]朱浩,侯世祥,孙毅毅,等.大孔吸附树脂吸附纯化不同中药有效部位特性研究[J].中国中药杂志,1998,23(10):607-610.
    [3]侯世祥,田恒康.大孔吸附树脂在中药复方分离纯化工艺中的应用[J].中药新药与临床药理,2000,(3):131-133.
    [4]王玉堂.人参中人参皂苷的提取、分离和测定[D].吉林大学,2008.
    [5]解辉.无患子皂苷分离纯化的研究[D].合肥工业大学,2008.
    [4]傅勇,雷鹏,韩玉梅,等.大孔吸附树脂法制备无患子皂苷及其抑菌活性表征[J].中药材.2010,33(2):267-272.
    [6]鄢文,程冰洁,刘强,等.大孔吸附树脂纯化番石榴叶总皂苷的工艺研究[J].安徽中医学院学报,2008,27(1):49-51.
    [7]李坤平,潘天玲,贲永光,等.均匀设计法优选大孔树脂纯化七叶莲总皂苷工艺研究[J].林产化学与工业,2009,29(2):110-114.
    [8]王巧娥.甘草有效成分的新型提取技术及高速逆流色谱分离方法研究[D].厦门大学,2004.
    [9]李庆国,李卫民.大孔树脂吸附知母总皂苷热力学研究[J].辽宁中医药大学学报,2009,11(6):232-233.
    [10]谭文.湖南绞股蓝皂苷提取纯化工艺的研究[D].湖南农业大学,2008.
    [11]乔静.广西桔梗总皂甙提取纯化工艺研究[D].西北大学,2007.
    [12]师文添.大豆皂苷的分离检测[D].上海交通大学,2007.
    [13]冯达星,余楚钦,钟鸣.大孔树脂富集纯化岗梅根中总皂苷的研究[J].广东药学院学报,2004,20(3):218-220.
    [14]李润美.岗梅总皂苷及其制剂的制备工艺研究[D].广州中医药大学,2010.
    [15]刘雄.大孔吸附树脂富集纯化柴胡总皂苷的研究[J].分析测试技术与仪器,2007,(1):22-24.
    [16]王春怡,李卫民,高英.HPLC-ELSD法测定不同产地黄芪中黄芪甲苷的含量[J].辽宁中医药大学学报,2008,10(10):144-145.
    [17]李锋涛,陈毓,黄文强,等.D-101大孔吸附树脂富集粉葛中总黄酮的工艺优选[J].海峡药学,2008,(12):13-15.
    [18]向大雄,李焕德,朱叶超,等.大孔吸附树脂分离纯化葛根总黄酮的研究[J].中国药学杂志,2003,38(1):35-37.
    [19]韩旭,许丽娜,许有威,等.枳壳总黄酮在D101大孔吸附树脂上的吸附特性研究 [J].大连医科大学学报,2008,30(1):22-24.
    [20]林朝朋,芮汉明,许晓春.应用大孔吸附树脂吸附分离墨旱莲总黄酮的研究[J].河南工业大学学报(自然科学版),2005,26(1):50-53.
    [21]王雅君,郭澄,刘皋林,等.应用大孔吸附树脂吸附分离技术制备菟丝子总黄酮的研究[J].中药材,2004,27(11):861-862.
    [22]韦国锋,黄祖良,何有成.大孔吸附树脂分离纯化仙人掌中总黄酮的研究[J].离子交换与吸附,2010,26(1):47-52.
    [23]齐柳娅,郁建平,田晶,等.大孔吸附树脂分离纯化追风伞总黄酮的研究[J].2010,27(1):37-40.
    [24]赵丽恋,刘韶,罗杰英.大孔吸附树脂-超声波辅助解吸附法纯化淫羊藿中的总黄酮[J].中国中药杂志,2009,34(6):702-704.
    [25]杨国荣,钱锦花,倪朝敏,等.AB-8大孔吸附树脂分离提取鱼腥草总黄酮的研究[J].广东化工,2009,36(5):131-133.
    [26]袁春玲,郭伟英,金丽萍.大孔吸附树脂纯化连钱草总黄酮工艺研究[J].中药材,2009,32(12):1894-1898.
    [27]黄松.血水草总生物碱提取纯化工艺研究[D].湖南中医学院,2003.
    [28]向海艳.虎杖中白藜芦醇的分离纯化研究[D].中南大学,2005.
    [29]刘斌,石任兵.大孔吸附树脂吸附分离技术在中药复方纯化分离中的应用[J].世界科学技术,2003,5(5):39-45.
    [30]刘杨.通脉缓释片的药学研究[D].成都中医药大学,2007.
    [31]曲远均.肿节风有效部位研究[D].山东中医药大学,2009.
    [32]郁建生.大孔吸附树脂分离纯化千里光总黄酮[A].2008年中国药学会学术年会暨第八届中国药师周论文集[C],2008.
    [33]张斐.博落回及银杏叶中有效成分的提取、制备分离[D].湖南师范大学,2004.
    [34]胡正明,马海勇,程建民.大孔吸附树脂纯化黄芪多糖工艺的研究[J].现代医药卫生,2010,26(2):164-165.
    [35]肖培根.新编中药志[M]第一卷.北京:化学工业出版社,2002,876.
    [36]王阶,郭丽丽,王永炎.中药方剂有效成(组)分配伍研究[J].中国中药杂志.2006,31(1):5-9.
    [37]潘细贵,汪洋,雷湘,等.大孔吸附树脂纯化黄芪总皂苷的提取工艺研究[J].中国医院药学杂志.2005,25(11):1029-1031.
    [38]石忠峰,陈蔚文,李卫民,等.大孔吸附树脂纯化黄芪总皂苷的研究[J].中草药.2005,36(9):1322-1325.
    [39]刘遵峰,刘雪萍,梁晓勇,等.黄芪总黄酮和总苷的分离[J].南开大学学报(自然科学版).2003,36(3):22-25.
    [40]史作清.施荣富.吸附分离树脂在医药工业中的应用[M].北京:化学工业出版社,2008.
    [41]司丹丹.黄芪有效成分提取以及纳滤在提取中的应用研究[D].江南大学,2008.
    [42]郭建平,孙其荣,周全,等.葛根总黄酮不同提取工艺的探讨[J].中草药.1995,26(10):522.
    [43]潘见,陈强,谢惠明,等.大孔树脂对葛根黄酮的吸附分离特性研究[J].农业工程学报,1999,15(1):236-240.
    [44]向大雄,李焕德,朱叶超,等.大孔吸附树脂纯化葛根总黄酮的研究[J].中国药学杂志,2003,38(1):35-37.
    [45]桂本,郭嘉,池汝安,等.大孔吸附树脂对葛根总黄酮吸附性能的研究[J].应用化工,2007,36(5):451-453.
    [46]刘火安,王伯初,戴传云,等.利用大孔树脂从葛根中分离纯化总黄酮(英文)[J].中国药学(英文版),2006,15(2):121-126.
    [47]刘斌.倪健.中药有效部位及成分提取工艺和检测方法[M].北京:中国中医药出版社.2007.
    [48]王明军.中药及其方剂有效部位研究新方法探析[A].“以岭医药杯”第八届全国青年药学工作者最新科研成果交流会论文集[C],2006.
    [49]王小如.中药复杂体系中重大科学问题探讨[M].厦门:厦门大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700