用户名: 密码: 验证码:
亚高寒草甸不同功能群植物N:P化学计量特征差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮(N)和磷(P)是植物的基本营养元素,其循环影响着生态系统中的大多数过程。N素的供应和循环,尤其对N限制的高山植被植物群落产生影响。植物N、P养分含量及养分在各个器官间的分配既受生长地点养分有效性的制约,也受植物自身生长型、生理特征和生活史的影响,是环境和物种系统发育共同作用的结果。在自然陆地生态系统中,N:P比已广泛用于判断植物个体、群落和生态系统的N、P养分限制格局。不同类群植物由于资源获取方式、资源利用效率和对扰动响应的不同,N:P化学计量学特征存在差异,这些差异是各类群植物适应特定环境的前提或结果。例如,豆科植物N素营养主要来源于固氮作用,而非豆科植物的N素营养主要从土壤获取,其中土壤中N的可利用性与N的矿化或硝化作用密切相关。作为N素进入生态系统的两个重要途径,豆科的固氮作用和土壤矿化速率将对N限制植被的地上N库和生产力产生重要的影响。因此,本文主要研究亚高寒草甸群落中不同类群植物的N:P化学计量学特征差异,以及这些差异相关的对不同自然N素水平的适应。
     本研究以青藏高原东北部的亚高寒草甸植被为例,分析了土壤因子和群落N:P化学计量学特征的季节变化模式以及它们之间的关系,以及群落中不同功能群植物(禾草、非豆科杂草和豆科)之间N:P化学计量学特征的差异。由于局域尺度营养分布的异质性,通过对所选样地的随机取样,获得土壤肥力梯度和群落生产力梯度。我们调查了沿着这个梯度,不同功能群植物的生物量比例的分布模式,并且探索其潜在的形成机制。本文还探讨了豆科植物和矿化作用维持群落N库和生产力上的作用。以下为本文的主要结果:
     1.2007、2008和2009年植被平均N:P比分别为9.15,9.83和11.3,根据N:P值<13可以判断,亚高寒草甸自然植被受到N营养的限制。植被生产力对N素的添加响应值平均为1.98,验证了该地区的N限制类型,与全球尺度限制类型的分布模式一致。平均植被N、P含量为20.2 mg g-1、2.23 mg g-1,两者都高于全球平均水平。正是因为N、P含量高于其它地区,N-P关系中的点均落于前人在湿地和农业生态系统提出判断N、P限制的标准曲线P%=0.15+0.065 N%之下,这与施肥和N:P比判断的结果不一致。因此,植物N、P含量的绝对值和在低地生态系统提出的N-P标准曲线并不能很好地预测高山植被的N-P限制类型。
     2.生长季初期到末期,土壤中的速效N含量下降。生长季植物生长不断地消耗速效氮,使植被受N素供应限制程度加剧。相应地,群落和各功能群植物的N:P化学计量学特征生长季中发生显著的变化。此外,禾草和非禾草植物最大生物量出现的时间不一致,在时间生态位发生了分化。
     3.土壤全N与速效氮的供应如矿化、硝化速率显著正相关(P<0.05)。土壤全氮在取样时间之间无显著差异(P>0.05),因此研究中这个稳定的指标作为局域尺度下土壤肥力的判断标准。在N限制的亚高寒草甸上,沿着土壤全N和生产力梯度,禾草、豆科的生物量比例下降。禾草相对于杂草和豆科植物具有较低的N、P含量,即较高的营养利用效率,所以,禾草更能够适应因土壤N供应而导致生产力低的自然草地。
     二次抛物线也能较好地拟合禾草比例-生产力/土壤全氮之间的关系。在更大尺度的营养梯度上,禾草比例有呈现U型分布的趋势。随着土壤N供应的进一步改善,禾草比例回升的趋势与施肥促进禾草优势度的研究是一致的。本研究在N为主要限制因子的植被上进行,仅仅解释了这个曲线的左侧部分。
     4.相对于整个群落,土壤N净矿化速率,尤其是硝化速率与非豆科植物地上N库、地上生物量的相关关系更显著。土壤N矿化主要通过增加非豆科植物的地上N库和生物量,而产生对整个群落N库和生产力的促进作用。
     5.随着豆科植物在群落中所占比例的增加,群落平均N:P比呈现显著上升趋势,因此豆科的存在改善整个群落的N状况。此外,豆科比例与非豆科植物平均N:P比的也具有显著的正相关关系,豆科固氮进入群落的N也部分供给非豆科植物吸收利用。因此,豆科的对改善群落N状况的贡献包括增加禾草、非豆科杂草的N素来源。在N限制的自然植被中,豆科的存在缓解了贫瘠土壤对群落N库和生产力的限制作用。
     本研究主要结论如下:
     1.低植被N:P比能够预测亚高寒草甸的N限制类型,而N、P营养含量的绝对值,以及前人提出的N:P标准曲线却不适用于高山植被。
     2.植被N限制程度随植物生长而加剧,其N:P化学计量学特征也发生显著的生长季变化。
     3.在N限制的植被上,高营养利用率和固氮作用分别使禾草和豆科植物更能适应贫瘠、低生产力的土壤。
     4.土壤N肥力的改善增加群落N库和地上生物量,尤其表现在对非豆科植物的促进作用。豆科植物的存在提高了群落的N:P比值,其中包括对非豆科植物N状况的改善。
Nitrogen (N) and phosphorus (P) are essential for plant growth and their cyclings play a key role in ecosystem processes. The N supply as well as the N recycle, has significant impact on ecosystem processes on N-limited alpine grasslands. Concentration and distribution of N and P in plants are affected by nutrient availability, growth form, physiological feature and life history. N:P ratio has been used to diagnose the N-P limitation for plants in terrestrial ecosystem. Plants from different guilds show diverse N:P stochiometry for their differences on nutrient acquisition, use efficiency and the response to disturbance, which may result in different adaption to the environment for plant guilds. For example, legumes generally obtain additional N via N-fixing bacteria; while other plants assimilate N primarily from soil, which were determined by mineralizatin or nitrification. As two important approaches N entering into the community, N-fixer and N mineralization would play an important role in the productivity on the alpine grassland. Therefore, our study focused on differences on N:P stoichiometry and adaption to soil N variety for plant guilds.
     Patterns of variability were explored for soil characteristics and N:P stoichiometry on a sub-alpine grassland located in northeast of Qinghai-Tibet Plateau. In addition, the N:P stoichoimetry was compared among functional groups (grasses, forbs and legumes). Because of the heterogeneity of nutrients at local scale, there existed a natural productivity gradient and soil fertility gradient. We investigated and explained the relative biomass share of different plant guilds along these gradients. Roles of legumes and soil N mineralization on aboveground N pools and biomass were also discussed. Main results were as followed:
     1. Mean N:P ratios of the whole community in 2007,2008 and 2009 were 9.15,9.83 and 11.3, respectively. Commmunity N:P ratios were below 13 and the mean response ratio to N addition was 1.98. Both of them suggested the N-limitation for the grassland, which was consistent with the results of global scale studies. Mean community N, P concentrations across 3yrs were 20.2 mg g-1、2.23 mg g-1, respectively, which were lower than global average. Correspondingly, N-P concentration curves were below the critical curve of P% = 0.15+0.065 N% from lowland and agricultural ecosystems. Therefore, N and P concentrations could not well predict the type of limitation on this grassland.
     2. Soil available N decreased during the growing season. Soil available N was continuously consumed during plant growth, so that the N-limitation became severe. Coherently, N:P stoichiometry of each functional group and the whole community varied significantly during the growing season. In addition, the time peak biomass occurred was earlier for grasses than forbs, referring to temporal niche differentiation.
     3. There was positive correlation between soil total N and soil N availability (such as mineralization and nitrification, both P< 0.05). Soil total N was regarded as the criterion judging the fertility on the grassland at local scale because it was relatively stable during the growing season (P> 0.05). On the N-limited sub-alpine grassland, relative biomass shares of grasses and legumes declined along the fertility and production gradients. Legumes and grasses were more competitive than forbs on infertile soils, which may due to the N2-fixing and the high nutrient use efficiency (low N, P concentrations), respectively.
     The bell-like curves were also found on relative biomass share versus production and soil N relationships. The relative share of grasses on the right part of the curve emerge a rising trend as the positive effect of N fertilization on the grasses. However, our results only explained the left part of the curve because of the N-limitation for the grassland.
     4. The N mineralization, especially the nitrification was positively related to N pool and aboveground biomass of non-legumes more than those of the whole community. Thence, soil N mineralization (nitrification) enhanced the community N pool and productivity primary via promoting those of non-legumes.
     5. Community N:P ratios raised with the legumes biomass percentage, showing legumes improved the N status for the community. There was also a significant relationship between legumes percentage and non-legume N:P ratio, which may indicate the N element fixing by legumes can also used by non-legumes. Therefore, legumes improved community N status including grasses and forbs on the N-limited grassland.
     According to these results, we draw the following conclusions:
     1. Low N:P ratios can predict the N-limitation on the sub-alpine grassland, while the absolute value of N and P concentration and the critical curve derived from lowland grassland can not.
     2. The N-limitation intensified as the plant growth in the growing season, and the N:P stoichiometry changed significantly.
     3. On the natural N-limited grassland, legumes and grasses were more competitive than forbs on infertile soils due to the N2-fixing and the high nutrient use efficiency, respectively.
     4. Soil N increase the community N pool and productivity mainly via promoting those of non-legumes, and the precence of legumes improve the community N:P ratio, including non-legumes N status.
引文
Aerts R & Chapin F S 2000 The mineral nutrition of wild plants revisited:a reevaluation of processes and patterns. Advances in Ecological Research 30,1-67.
    Agren G L 2004 The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters 7,185-191.
    Andersen T.1997 Pelagic Nutrient Cycles:Herbivores as Sources and Sinks. Springer-Verlag, Berlin.
    Anten N P R, Miyazawa K, Hikosaka K, Nagashima H & Hirose T 1998 Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb. Oecologia 113,314-323.
    Barrett J E, McCulley R L, Lane D R, Burke I C & Lauenroth W K 2002 Influence of climate variability on plant production and N-mineralization in Central US grasslands. Journal of Vegetation Science 13,383-394.
    Billings W D 1974 Adaptations and origins of alpine plants. Arctic and Alpine Research 6,129-142.
    Bliss L C & Bliss L C 1971 Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics 2,405-434.
    Braakhekke W G & Hooftman D A P 1999 The Resource Balance Hypothesis of Plant Species Diversity in Grassland. Journal of Vegetation Science 10, 187-200.
    Brown J H 2004 Toward a metabolic theory of ecology. Ecology 85,1771-1789.
    Chapin F S 1983 Direct and indirect effects of temperature on arctic plants Polar Biology 2,47-52.
    Chapin F S & Korner C 1995 Arctic and alpine biodiversity:patterns, causes and ecosystem consequences. Springer-Verlag.
    Dong S K, Long R J, Hu Z Z, Kang M Y & Pu X P 2003 Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan Plateau. Grass and Forage Science 58,302-308.
    Duru M & Thelier H L 1997 N and P-K status of herbages:use for diagnosis of grasslands. In Diagnostic procedures for crop N management. M Duru and H L Thelier. pp 125-138. INRA Editions, Paris.
    Dybzinski R, Fargione J E, Zak D R, Fornara D & Tilman D 2008 Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158,85-93.
    Elser J, Sterner R, Gorokhova E, Fagan W, Markow T, Cotner J, Harrison J, Hobbie S, Odell G & Weider L 2000a Biological stoichiometry from genes to ecosystems. Ecology Letters 3,540-550.
    Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B & Smith J E 2007 Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10,1135-1142.
    Elser J J, Fagan W F, Denno R F, Dobberfuhl D R, Folarin A, Huberty A, Interlandi S, Kilham S S, McCauley E, Schulz K L, Siemann E H & Sterner R W 2000b Nutritional constraints in terrestrial and freshwater food webs. Nature 408,578-580.
    Enquist B J, Economo E P, Huxman T E, Allen A P, Ignace D D & Gillooly J F 2003 Scaling metabolism from organisms to ecosystems. Nature 423,639-642.
    Evans J R 1989 Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78,9-19.
    Fohse D, Claassen N & Jungk A 1988 Phosphorus effiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant and Soil 110,101-109.
    Fang X, Lu L, Joseph A M, Yang S, An Z, Li J & Zhilong G 2003 Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau. Quaternary International 106/107,79-88.
    Fenner M 1986 The allocation of minerals to seeds in Senecio vulgaris plants subjected to nutrient shortage. Journal of Ecology 74,385-392.
    Fornara D & Tilman D 2009 Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology 90, 408-418.
    Fortuna A, Harwood R R, Robertson G P, Fisk J W & Paul E A 2003 Seasonal changes in nitrification potential associated with application of N fertilizer and compost in maize systems of southwest Michigan. Agriculture, Ecosystems and Environment 97,285-293.
    Frank D A 2008 Ungulate and topographic control of nitrogen:phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos 117,591-601.
    Gusewell S 2004 N:P ratios in terrestrial plants:variation and functional significance. New Phytologist 164,243-266.
    Gusewell S 2005 Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology 19,344-354.
    Gusewell S & Koerselman W 2002 Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics 5,37-61.
    Gusewell S & Verhoeven J T A 2006 Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 287,131-143.
    Geider R & Roche J L 2002 Redfield revisited:variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37,1-17.
    Greenwood D J, Gastal F, Lemaire G, Draycott A, Millard P & Neeteson J J 1991 Growth rate an N% of field grown crops:theory and experiments. Annals of Botany 2,181-190.
    Grerup F 1998 Nitrogen response of herbs and graminoids in experiments with simulated acid soil solution. Environmental Pollution 102,93-99.
    Han W X, Fang J Y, Guo D L & Zhang Y 2005 Leaf nitrogen and phosphorus stochiometry across 753 terrestrial plant species in China. New Phytologist 168,377-385.
    He J-S, Fang J, Wang Z, Guo D, Flynn D F B & Geng Z 2006a Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149,115-122.
    He J-S, Wang L, Flynn D F B, Wang X, Ma W & Fang J 2008 Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155,301-310.
    He J-S, Wang Z, Wang X, Schmid B, Zuo W, Zhou M, Zheng C, Wang M & Fang J 2006b A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170,835-848.
    Heerwaarden L M V, Toet S & Aerts R 2003 Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology 91,1060-1070.
    Hessen D O 1997 Stoichiometry in food webs-Lotka revisited. Oikos 79, 195-200.
    Hooper D U & Vitousek P M 1997 The effects of plant composition and diversity on ecosystem processes. Science 277,1302-1305.
    Jaeger C H & Monson R K 1992 Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb. Oecologia 92,578-585.
    Jouany C, Cruz P, Petibon P & Duru M 2004 Diagnosing phosphorus status of natural grassland in the presence of white clover. European Journal of Agronomy 21,273-285.
    Korner C.2003 Alpine Plant Life:Functional Plant Ecology Of High Mountain Ecosystems. Springer Berlin Heidelberg.
    Karlsson P S & Nordell K O 1996 Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3,183-189.
    Kay A D, Ashton I W, Gorokhova E, Kerkhoff A J, Liess A & Litchman E 2005 Toward a stoichiometric framework for evolutionary biology. Oikos 109, 6-17.
    Koblerg R L, Rouppet B & Westfall D G 1997 Evaluation of an in situ net soil nitrogen mineralization method in dry land agroecosystem. Soil Science Society of American Journal 61,504-508.
    Kull O & Aan A 1997 The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity. Ecography 20,146-154.
    Lanta V, Dolezal J, Lantova P, Keliek J & Mudrak O 2009 Effects of pasture management and fertilizer regimes on botanical changes in species-rich mountain calcareous grassland in Central Europe. Grass and Forage Science 64,443-453.
    LeBauer D S & Treseder K K 2008 Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89,371-379.
    Ledgard S F & Giller K E.1995 Nitrogen fertilization in the environment. Marcel Dekker.
    Lemaire G, Gastal F & Salette J 1989 Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In XVIth International Grassland Congress, pp 179-180, Nice, France.
    Long R J, Zhang D G, Wang X, Hu Z Z & Dong S K 1999 Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Preventive Veterinary Medicine 38,195-206.
    Lotka A J.1925 Elements of physical biology. Williams & Wilkins Co, Baltimore.
    Lovelock C E, Feller I C, Ball M C, Ellis J & Sorrell B 2007 Testing the Growth Rate vs. Geochemical Hypothesis for latitudinal variation in plant nutrients. Ecology Letters 10,1154-1163.
    Mcgroddy M E, Daufresne T & Hedin L O 2004 Scale of C:N:P stoichiometry in forests worldwide:implications of terrestrial redfield-type ratios. Ecology 85,2390-2401.
    Michaels A 2003 The ratios of life. Science 300,906-907.
    Mopper A & Agrawal A 2004 Phytohormone ecology. Ecology 85,3-4.
    Niklas K J, Owens T, Reich P B & Cobb E D 2005 Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters 8, 636-642.
    Nippert J B, Knapp A K & Briggs J M 2006 Intra-annual rainfall variability and grassland productivity:can the past predict the future? Plant Ecology 184,65-74.
    Niu K, Luo Y, Philippe C & Du G 2008 The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology 9,485-493.
    Oelmanna Y, Wilckeb W, Tempertonc V M, Buchmannd N, Roschere C, Schumachere J, Schulzee E-D & Weisserf W 2007 Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Science Society of America Journal 71,720-729.
    Olsen S R, Cole C V, Watanabe F S & Dean L A 1954 Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Gov. Printing Office, Washington D.C. pp.1-19.
    Onoda, Hikosaka & Hirose 2004 Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology 18,419-425.
    Perakis S S & Hedin L O 2002 Nitrogen loss from unpolluted South American forests by dissolved organic compounds. Nature 415,416-419.
    Ram J, Singh S & Singh J 1988 Community level phenology of grassland above treeline in central Himalaya, India. Arctic and Alpine Research 20, 325-332.
    Ratnam J, Sankaran M, Hanan N P, Grant R C & Zambatis N 2008 Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia 157,141-151.
    Redfield A C 1958 The biological control of chemical factors in the environment. American Scientist 46,205-221.
    Reich P B, Buschena C, Tjoelker M, Wrage K, Knops J & Tilman D 2003 Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply:a test of functional group differences. New Phytologist 157,617-631.
    Reich P B, Ellsworth D S & Walters M B 1998 Leaf Structure (Specific Leaf Area) Modulates Photosynthesis-Nitrogen Relations:Evidence from within and Across Species and Functional Groups Functional Ecology 12,948-958.
    Reich P B & Oleksyn J 2004 Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA 101,11001-11006.
    Reich P B, Tilman D, Craine J, Ellsworth D, Tjoelker M G, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengtson W & Lee T D 2001 Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist 150,435-448.
    Roscher C, Thein S, Schmid B & Scherer-Lorenzen M 2008 Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. Journal of Ecology 96,477-488.
    Sakomoto M 1966 Primary production by the phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie 62,1-8.
    Salette J 1990 The effect of level of nitrogen nutrition upon mineral content and removal in grasses and wheat. Fertilizer Research 26,229-235.
    Scherer-Lorenzen M, Palmborg C, Prinz A & Schulze E-D 2003 The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84, 1539-1552.
    Sebastia M T 2007 Plant guilds drive biomass response to global warming and water availability in subalpine grassland. Journal of Applied Ecology 44, 158-167.
    Seidel K, Kayser M, Muller J & Isselstein J 2009 The effect of grassland renovation on soil mineral nitrogen and on nitrate leaching during winter. Journal of Plant Nutrition and Soil Science 172,512-519.
    Semmartin M, Oyarzabal M, Loreti J & Oesterheld M 2007 Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology 32,416-428.
    Sherman F 1999 Stoichiometry and chemical metrology:Karl Fisher reaction. Accreditation and Quality Assurance 4,230-234.
    Smith, Michael T, Shugart H H & Woodward F I.1997 Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, New York.
    Smith C K, Coyea M R & Munson A D 2000 Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests. Ecological Applications 10,775-788.
    Spehn E M, Joshi J, Schmid B, Diemer M & Korner C 2000 Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology 14,326-337.
    Spehn E M, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira M C, Dimitrakopoulos P G, Finn J A, Jumpponen A, Donnovan G O, Pereira J S, Schulze E D, Troumbis A Y & Korner C 2002 The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. OIKOS 98,205-218.
    Sterner R W & Elser J J.2002 Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
    Tessier J T & Raynal D J 2003 Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology 40,523-534.
    Thamdrup B & Fleischer S 1998 Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquatic Microbial Ecology 15,191-199.
    Theodose T A & Bowman W D 1997 Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78, 1861-1872.
    Tilman D 1997 Mechanisms of plant competition. Blackwell Science, Oxford. pp.239-261.
    Vandermeer J.1989 The ecology of intercropping. Cambridge University Press.
    Vanni M J, Flecker A S, Hood J M & Headworth J L 2002 Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking biodiversity and ecosystem function. Ecology Letters 5,285-293.
    Vitousek P M 1982 Nutrient cycling and nutrient use effciency. American Naturalist 119,553-572.
    Vitousek P M & Howarth R W 1991 Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13,87-115.
    Wassen M J 1995 Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science 6, 5-16.
    Wells C, Craig J, Kane M & Allen H 1986 Foliar and soil tests for the prediction of phosphorus response in Loblolly Pine. Soil Science Society of America Journal 50,1330-1335.
    Wilson S D & Tilman D 2002 Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology 83,492-504.
    Wright I J, Reich P, Westoby M & Ackerly D 2004 The worldwide leaf economics spectrum. Nature 428,821-827.
    Wright I J, Reich P B & Cornelissen J H C 2005 Assessing the generality of global leaf trait relationships. New Phytologist 166,485-496.
    Xu Y C, Shen Q R & Ran W 2003 Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization Chemosphere 50,739-745.
    Zha Y, Gao J & Zhang Y 2005 Grassland productivity in an alpine environment in response to climate change. Area 37,332-340.
    白琰2009高寒草甸植物群落α多样性和β多样性形成的机制:是生态位还是中性理论(?).In理论生态兰州大学.
    朱丽霞,章家恩&刘文高2003根系分泌物与根际微生物相互作用研究综述.生态环境12,102-105.
    李菊梅,王朝辉&李生秀2003有机质、全氮和可矿化氮在反映土壤供氮能力方面的 意义.土壤学报40,232-238.
    杜国祯&王刚1995甘南亚高山草甸人工草地的演替和质量变化.植物学报37,306-313.
    周鹏,耿燕,马文红&贺金生2010温带草地主要优势植物不同器官间功能性状的关联.植物生态学报34,7-16.
    邱莉萍,黄勤妮&吴平.2006植物营养分子生物学及信号转导.科学出版社,北京.
    徐冰,程雨曦,甘慧洁,周文嘉&贺金生2010内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报34,29-38
    曾德慧&陈广生2005生态化学计量学:复杂生命系统奥秘的探索.植物生态学报29,1007-1019.
    吴统贵,吴明,刘丽&萧江华2010杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化.植物生态学报34,23-28.
    杨晓慧,鲍雅静,韩国栋,李政海&王建安2009植物功能群及其在生态学研究中的应用.大连民族学院学报11,397-409.
    杨阔,黄建辉,董丹,马文红&贺金生2010青藏高原草地植物群落冠层叶片氮磷化学计量学分析.植物生态学报34,17-22.
    贺金生&韩兴国2010生态化学计量学:探索从个体到生态系统的统一化理论.植物生态学报34,2-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700