DNA损伤修复蛋白在肺癌发生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是世界上最常见的恶性肿瘤,是癌症引起患者特别是男性患者死亡的主要原因。世界卫生组织(WHO)公布的资料显示,肺癌无论从发病数量还是死亡数量来看,均为全球最主要的癌症。同期预测,我国将成为21世纪的肺癌大国。肺癌几乎包括来源于气管、支气管或肺上皮的肿瘤,其基本病理类型包括鳞状细胞癌、腺癌,大细胞癌(统称非小细胞肺癌,NSCLC)及小细胞肺癌。除了吸烟,肺癌阳性家族史被认为是一个危险因素。基因改变包括p53基因的频繁突变,激活癌基因KRAS的点突变,FHIT基因杂合子频繁丢失和异常转录,CDK抑制子P16纯合子缺失和转录沉默。肺癌风险的增加与特定的细胞色素P450基因的多态性和DNA修复能力缺陷包括DNA碱基切除修复基因XRCC1,PARP-1和ERCC4相关。
     DNA是生命体中最重要的遗传物质,DNA损伤引起的细胞应激反应对于保证遗传物质的稳定性、抑制基因突变的产生及维持细胞寿命具有重要意义。如同其它恶性肿瘤的发生一样,NSCLC的发生也是一个多因素、多阶段、多步骤的复杂的过程。其主要机制是各种因素导致的原癌基因激活或抑癌基因失活,DNA损伤修复基因功能低下或缺失,以及一些信号通路共同参与的结果。
     DNA损伤修复基因在维护遗传基因的完整性和稳定性,防止细胞癌变方面具有非常重要的作用。本实验主要探讨参与DNA损伤修复蛋白Mre11、Ku80的表达与肺癌患者相关性,并构建DNA损伤修复蛋白PARP-1缺失的小鼠肺癌细胞系,为进一步临床抗肿瘤药物研究提供细胞评价平台。
     实验方法:
     (1)采用免疫组织化学的方法检测DNA损伤修复蛋白在人肺癌组织中的表达情况,进行统计学分析,运用非参数检验的方法,进而评价肺癌组织中Mre-11、Ki67蛋白的表达与患者性别、年龄、临床分期及病理分型的相关性。
     (2)应用PARP-1敲除小鼠肺肿瘤模型进行原代培养,通过形态学观察、免疫荧光及致瘤性分析,以此鉴定构建PARP-1缺失的小鼠肺腺癌细胞系。
     实验结果:
     (1)通过免疫组化学及统计学分析表明,虽然Mre-11蛋白表达量与患者年龄、性别、病理分型、肿瘤大小(TNM分期)无明显关系(P>0.05),但其在Ⅰ期肺腺癌组织中表达较低,随着肿瘤的进展表达上升,在Ⅱ期标本中表达达到峰值,在Ⅲ期标本中表达又回落至较低水平,统计学上具有显著差异(P<0.05),提示DNA损伤修复蛋白Mre11与肺癌的发生具有相关性。
     (2)建立了有效的小鼠原代肺癌细胞培养方法。
     (3)成功的获得了两例原代小鼠肺腺癌细胞株,光镜和电镜下具有典型的上皮特征。裸鼠移植瘤接种检测表明这些上皮来源的细胞具有致瘤性。
     结论:
     (1)通过免疫组织化学结果分析表明DNA损伤修复蛋白Mre-11的表达与人肺腺癌组织临床分期有显著关联性(P<0.05),根据在各期表达的规律,提示Mre-11在肺腺癌进展过程中可能起到抑制作用;而Ki67蛋白的表达则与肺腺癌患者性别、年龄、临床分期、TNM分期及病理分化程度均无明显关系(P>0.05)。
     (2)成功建立了PARP-1缺失的小鼠肺腺癌原代培养细胞株,并证明导致肿瘤的发生;此细胞系的确立,为临床抗肿瘤药物提供了一个研究平台。
Lung cancer, one of the most common malignant tumor in the world, is the main reason of deaths caused by cancers in patients, especially in males. Datas published by WHO show that lung cancer is a globally important cancer either in morbility or in mortality. Also our country is predicted to be a leading country of lung cancers in the 21st country. Lung cancers include tumors derived from tracheas, bronchias and pulmonary epithelium, and its pathological types include squamous carcinoma, adenocarcinoma, large cell carcinoma (generally called non-small cell lung carcinoma, NSCLC) and small cell lung carcinoma. Besides smoking, lung cancer positive family history is considered to be a risk factor. The transformations of genes include the frequent mutation of p53 gene, the activating point mutation of KRAS oncogene, the frequent deletion and abnormal transcription of FHIT gene heterozygote, also the deletion and transcriptional silence of P16 homozygote, which is a CDK repressor. The increasing risk of lung cancers is related to the polymorphism of specific cytochrome P450 genes, the defect of DNA repair ability including DNA bases excision repair genes XRCC1, PARP-1 and ERCC4.
     DNA is the most important hereditary substance in living creatures. The cellular stress response caused by DNA damage has a significance for protecting DNA stability, repressing gene mutations and maintaining cells' life span. Like other malignant tumors, the generating process of NSCLC is a complex process with mutiple factors, mutiple stages and mutiple steps. Its main machanisms result from the combined action of the activation of oncogenes and the inactivation of tumor suppressor genes, the hypofunction and deletion of DNA damage repair genes, and some signaling pathways caused by a variety of factors.
     DNA damage repair genes play an important role in maintaining the integrity and stability of hereditary genes, and also preventing cell cancerization. Our study mainly discusses the relativity between lung cancer patients and the expressions of DNA damage repair proteins such as Mre11 and Ku80. Moreover, we construct a mouse lung cancer cell line deleting DNA damage repair protein PARP-1 and then develop a cell evaluating platform for further studies of clinically anticarcinoma drugs.
     Methods:
     1. We test the expressions of DNA damage repair proteins in human lung cancer tissues by immunohistochemistry, do the statistical analysis by the non-parametric test and then evaluate the relativity between the expressions of protein Mre11, Ki67 and the patients' sexes, ages, clinical stages and pathological classifications.
     2. We use the PARP-1 knocked-off mouse lung cancer model to do the primary culture, and then identify this PARP-1 knocked-off cell line by morphological observation, the analysis of immunofluorescence and tumorigenicity.
     Results:
     1. By the analysis of immunohistochemistry and statistics, there is no apparent relativity (P>0.05) between the expressions of protein Mrell, Ki67 and the patients' sexes, ages, pathological classifications and tumor sizes(TNM classification). However, the expressions of those proteins become lower in stage I lung adenocarcinoma organization, and then their expressions become higher with the progression of the tumor. The peak values of the expression of protein Mre11 and Ki67 are at stage II lung adenocarcinoma organization, and then their expressions become lower again in stage III lung adenocarcinoma organization. These datas show a significant difference in statistics (P<0.05), and suggest that DNA damage repair protein Mre11 is related to the generating process of lung cancers.
     2. We establish an effective method of primary culture in mouse lung cancer cells.
     3. We successfully aquire two primary lung adenocarcinoma cell lines in mice, with a typical character of epithelium in both light and electron microscope. Transplant tumor inoculation test in nude mice shows that those epithelial origin of cells have tumorigenicity.
     Conclusions:
     1. By the analysis of immunohistochemistry, it indicates that there is a notable relativity (P<0.05) between the expression of DNA damage repair protein Mrell and the clinical stages in human lung adenocarcinoma. According to the expression rule in every stage, it's suggested that Mre11 may repress the process of lung adenocarcinoma; however, there is no apparent relativity (P>0.05) between the expressions of protein Ki67 and the patients' sexes, ages, clinical stages, TNM classification and pathological differentiation degree.
     2. We successfully establish a primary lung adenocarcinoma cell line deleted PARP-1 in mice, and prove the cause of tumorigenicity. The establishment of this cell line provides a platform for studying clinically anticarcinoma drugs.
引文
[1]Gardiner L, Hickoon ID. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res.2005.33(15):4711-4724.
    [2]Allinson SL. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer. Future Oncol.2010.6(6):1031-42.
    [3]Kohn KW. Bohr VA. Genomic instability and DNA repair [A]. Malcolm Alison. The Cancer Handbook [M]. Hound-mills. Basingstoke. Hampshire:Nature Publ Group. 2002.1:87-106.
    [4]Saito H. Miki Y. PARP Inhibitors for Cancer Therapy. Gan To Kagaku Ryoho.2011. 38(1):12-18.
    [5]Richard D el al. Science.2001; 291:1284.
    [6]Sancar A. Lindsey-Boltz LA. Unsal-Kacmaz K. et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints.Annu Rev Biochem. 2004.73:39-85.
    [7]Friedberg EC. How nucleotide excision repair protects against cancer [J]. Nature Reviews Cancer,2001,1:22-33.
    [8]Ying S. Myers K,Bottomley S. Helleday T. Bryant HE. BRCA2-dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells. Nucleic Acids Res.2009.37(15):5105-13.
    [9]Wood RD. Nucleotide excision repair in mammalian cells. J Biol Chem,1997. 272(38):23465-23468.
    [10]Wood RD. DNA damager recognition during nucleotide excision repair in Mammalian cells. Biochimie.1999.81(1-2):39-44.
    [11]Wakasugi M and Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem.1999.274(26):18759-18768.
    [12]Riedl T. Hanaoka F. and Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. Embo J.2003.22(19):5293-5303.
    [13]Gomes XV and Burgers PM. ATP utilization by yeast replication factor C.I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem. 2001.276(37):34768-34775.
    [14]Li X. Stith CM. Burgers PM. Heyer WD. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol Cell.2009.25; 36(4):704-13.
    [15]Gary R, Ludwig DL, Cornelius HL. et al. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen(PCNA) and shares sequence elements with the. PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor P21. J Biol Chem,1997,272(39):24522-24529.
    [16]Friedberg EC. How nucleotide excision repair protects against cancer [J]. Nature Reviews Cancer.2001,1:22-33.
    [17]Gardiner L. Hickoon ID. DNA damage and mechanism of repair [J]. Cell Transmissions. 2000.18:3-10.
    [18]Lindahl T and Wood RD. Quality control by DNA repair. Science.1999,286 (5446): 1897-1905.
    [19]Tantin D. Kansal A. and Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell Biol.1997.17(12):6803-6814.
    [20]Iyer N, Reagan MS, Wu KJ. et al. Interactions involving the human RNA Polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG,and Cockayne syndrome group B (CSB) protein. Biochemistry,1996, 35(7):2157-2167.
    [21]Friedberg EC. How nucleotide excision repair protects against cancer [J]. Nature Reviews Cancer,2001.1:22-33.
    [22]Thompson SL, Compton DA. Chromosomes and cancer cells. Chromosome Res. 2010.29.
    [23]Hays JB. Hoffman PD, Wang H.Discrimination and versatility in mismatch repair [J]. DNA Repair.2005,4(12):1463-1474.
    [24]Jiricny J. Nystrom-Lahti M. Mismatch repair defects in cancer [J]. Current Opinions in Genetic Development,2000,10:157-161.
    [25]Schar P,Fritsch O. DNA repair and the control of DNA methylation. Prog Drug Res. 2011,67:51-68.
    [26]Carr AM. Checking that replication breakdown is not terminal. Science.2002.297 (5581):557-558.
    [27]Khanna KK. Jackson SP. DNA double strand breaks:signaling, repair and the cancer connection. Nat Genet,2001.27(3):247-254.
    [28]Kolodner RD. Putnam CD. Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science,2002.297 (5581):552-557.
    [29]Michel B, Flores MJ. Viguera E,et al. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA,2001,98 (15):8181-8188.
    [30]Carr AM. Checking that replication breakdown is not terminal. Science,2002.297 (5581):557-558.
    [31]Gardiner L. Hickoon ID. DNA damage and mechanism of repair [J]. Cell Transmissions. 2000,18:3-10.
    [32]Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000,10(2):144-150.
    [33]Sai-mei hou, Charlotta Ryk. Annamaria Kannio. et al. Influence of commo XPD and XRCC1 variant alleles on P53 mutations in lung tumors. Environmenta and molecular mutagenesis.2003:41:37-42.
    [34]Dulic A. Bates PA. Za-ang X. et al. BRCT domam interactions in the hete rodi meric DNA repair protein XRCC1-DNA ligaselll. Biochemistry.2001:40:5906-5913.
    [35]Monroy CM. Cortes AC,Lopez M. Rourke E. Etzel CJ. Younes A. Strom SS, El-Zein R. Hodgkin lymphoma risk:Role of genetic polymorphisms and gene-gene interactions in DNA repair pathways. Mol Carcinog.2011,3(10):1002.
    [36]Romanowicz H. Smolarz B, Baszczynski J. Zadrozny M. Kulig A.Genetics polymorphism in DNA repair genes by base excision repair pathway (XRCC1) and homologous recombination (XRCC2 and RAD51) and the risk of breast carcinoma in the Polish population. Pol J Pathol.2010:61(4):206-16.
    [37]Rrem R. Hall J. XRCC1 is repuired for DNA single-strand break repair in human cells. Nueleic Acids Res.2005; 33:2512-2520.
    [38]Lunn RM. Langlois RG. Hsieh LL. et al. XRCC1 polymorphisms:effects on alfatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res,1999,59: 2557-2561.
    [39]Chen S. Tang D. Xue K. et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population [J]. Carcinogenesis,2002,23 (8):1321-1325.
    [40]Gloria L. Stephanie J. Genetic polymorphism of XRCC 1 and lung cancer risk among African-Americans and Caucasians. Lung Cancer,2001,34:333-339.
    [41]Ratnasinghe D. Yao SX. Tangrea JA. et al. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2001.10 (2):119-123.
    [42]Dorota B, Marek R, Lindsey E, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis,2001,22:593-597.
    [43]Misra RR, Ratnasinghe DL, Joseph AT, et al. Polymorphisms in the DNA repair genes XPD, XRCC1,XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in finland. Cancer Lett,2003,191:171-178.
    [44]Zhao H. Qin C, Yan F, Wu B. Cao Q. Wang M. Zhang Z,Yin C. hOGG1 Ser326Cys Polymorphism and Renal Cell Carcinoma Risk in a Chinese Population. DNA Cell Biol. 2010.17.
    [45]Janssen K, Schlink K, Walter G,et al.DNA repair activity of 8-oxogua-nine DNA glycosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutation Res,2001,486:207-216.
    [46]Chung JH, Sub MJ. Park YI. et al. Repair activities of 8-oxoguanine DNA glycosylase from archaeoglobus fulgidus:a hyperthermophilic archaeon [J]. Mutat Res.2001.486(2): 99-111.
    [47]Hyun Jw. Choi JY, zeng HH, et al. leukemic cell lines, KG-1 has a function loss of hOGGl enzyme due to a point mutation and 8-hydroxydeoxyguanine can kill KG-1[J]. Oncogene,2000,19(39):4476-4479.
    [48]Le Marchand L, Donlon T. Lum-Jones A. et al. Association of the hoGG1 Ser326Cys polymorphism with lung cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2002,11 (4):409412.
    [49]Arai T, Sawabe M, Hosoi T, Tanaka N. Role of DNA repair systems in malignant tumor development in the elderly. Geriatr Gerontol Int.2008.8(2):65-72.
    [50]Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymerphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev.1999,8:669-674.
    [51]Wikman H, Risch A. Klimek F. et al. hOGG1 polymorphism and loss of heterozygosity (LOH):significance for lung cancer susceptibility in a caucasian population. Int J Cancer,2000.88:932-937.
    [52]Sunaga N, Kohno T. Yanagitani N. et al. contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev,2002.11:730-738.
    [53]Latimer J. Johnson J. Kelly C. Grant S. Vogel V. Brufsky A. Kelley J. Human breast tumors manifest both hereditary deficieney and somatic loss of DNA(nucleotide excision)repair. Environmental and Molecular Mutagenesis 2004; 44.
    [54]Shinmura K, Yamaguchis, Saitoh T. Yokota J. Somatic mutations and single mcleotide polymorphisms of base excision repair genes involved in the repair of 8-hydroxyguanine in damaged DNA. Cancer Letters 2001:166:65-9.
    [55]PARSONS J L. DIANOVA 11. DIANOV G L. APE1 is the major 3'-2 phesphnglyco late activity in human cell extracts [J]. Nucleic Acids Res,2004.32(12):3531-3536.
    [56]MOORE D H. MICHAE H, TRITT R. et al. Alteratiorts in the expression of the DNA repair/redox enzyme APE/ref-1 in epithelial ovarian Cancers [J]. Clin Cancer Res,2000. 6(2):602-609.
    [57]XU Y. MOORE D H, BROSHEARS J. et al. The apurinie/apyrim idinic endonuelease (APE/Ref-1) DNA repair enzyme is elevated in premalignant and malignant cervical cancer [J]. Anticancer Res,1997.17 (5B):3713-3719.
    [58]PUGLISI F. BARBONE F. TELL G,et al. Prognostic role of APE/Ref-1 subcel-lular expression in stage Ⅰ-Ⅲ breast carcinomas [J]. Oncol Rep,2002,9(1):11-17.
    [59]De Ruyck K. Szaumkessel M. De Rudder I, Dehoorne A. Vral A, Claes K. Veighe A. Van Meerbeeck J. Thierens H. Polymorphisms in baseexcision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 2007:631:101-10.
    [60]Lindahl T, Satoh MS. Poirier GG,et al. Post-translational modification of poly(ADP-ribose)polymerase induced by DNA strand breaks [J]. Trends Biochem Sci, 1995.20(10):405-411.
    [61]Tong WM. Ohgaki H, Huang H. et al. Null mutation of DNA strand break-binding molecule poly (ADP-ribose) polymerase causes medulloblastomas in p53 (-/-) mice [J]. Am J Pathol.2003.162:343-352.
    [62]Lockett K L,Hall M C. xu J. Zheng S L. Berwick M. Chuang S C. Clark P E. et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res,2004,64,6344-6348.
    [63]Hao B. wang H. Zhou K, Li Y. Chen X. Zhou G Zhu. et al. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res.2004.64.4378-4384.
    [64]Zhang X. Miao X. Liang G Hao. et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res.2005.65.722-726.
    [65]Rocca CJ. Poindessous V. Soares DG.Ouadrani KE. Sarasin A. Guerin E. de Gramont A. Henriques JA, Escargueil AE, Larsen AK.The NER proteins XPC and CSB, but not ERCC1, regulate the sensitivity to the novel DNA binder S23906:implications for recognition and repair of antitumor alkylators. Biochem Pharmacol.2010,1,80(3): 335-43.
    [66]Qian B. Zhang H, Zhang L, Zhou X. Yu H, Chen K. Associations of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer,2010.30.
    [67]Guzder SN, Sommers CH. Prakash L, Prakash S. Complex formation with damage recognition prote in Rad14 is essential for Saccharomyces cerevisiae Radl-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol. 2006.26:1135-1141.
    [68]Grosskopf C, Schwerdtle T, Mullenders LH, Hartwig A. Antimony impairs nucleotide excision repair:XPA and XPE as potential molecular targets. Chem Res Toxicol.2010. 19.23(7):1175-83.
    [69]Yin J, Li J. Ma Y, Guo L, Wang H, Vogel U. The DNA repair gene ERCC2/XPD polymorphism Arg 156 Arg (A22541C) and risk of lung cancer in a Chinese population. Cancer Lett.2005; 223:219-26.
    [70]Popanda O, Schattenberg T, Phong CT, Butkiewicz D, Risch A. Edler L, Kayser K, Dienemann H. Schulz V, Drings P, Bartsch H, Schmezer P. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis (Oxford) 2004; 25:2433-41.
    [71]Park JY, Park SH, Choi JE, Lee SY, Jeon HS, Cha SI, Kim CH, Park JH, Kam S, Park RW. Kim IS. Jung TH. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2002:11: 993-7.
    [72]Zienolddiny S, Campa D. Lind H. Ryberg D, Skaug V. Stangeland L. Phillips DH, Canzian F. Haugen A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis (Oxford) 2006:27:560-7.
    [73]Chen Zh W. Yang J. Wang C. et al. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis,2003,24(6):1111-1121.
    [74]Friedberg EC. Bond JP. Burns DK. et al. Defective nucleotide excision repair in XPC mutantmice and its association with cancer predisposition [J]. Mutation Research.2000. 459 (2):99-108.
    [75]Kietthubthew S, Srip lung H, Au WW, et al. Polymorphism in DNA repairs genes and oral squamous cell carcinoma in Thailand [J]. Int J Hyg Environ Health,2006,209 (1): 21-29.
    [76]Yang ZH. Liang WB, Jia J. et al. The xeroderma pigmentosum group C gene polymorphisms and genetic suscep tibility of nasopharyngeal carcinoma [J]. Acta Oncol. 2008.47 (3):379-384.
    [77]Shen J. Gammon MD. Terry MB. et al. Xeroderma pigmentosum comp lementation group C genotypes/dip lotypes play no independent or interaction role with polycyclic aromatic hydrocarbons-DNA adducts for breast cancer risk [J]. Eur J Cancer,2008.44 (5):710-717.
    [78]Huang WY.Berndt SI. Kang D. et al. Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma:XPC polymorphisms modify smoking-related risk [J]. Cancer Ep idemiol Biomarkers Prev,2006.15 (2):306-311.
    [79]Hansen RD. S(?)rensen M. Tjonneland A. et al. XPA A23G XPC Lys939Gln. XPD Lys751Gln and XPD Asp312Asn polymorphisms.Interactions with smoking.alcohol and dietary factors, and risk of colorectal cancer [J]. Mutat Res,2007.619 (1/2):68-80.
    [80]Li CY, Hu ZB, Liu ZH. et al. Polymorphisms in the DNA repair genes XPC. XPD. and XPG and risk of cutaneous melanoma:a case-control analysis [J]. Cancer Ep idemiol Biomarkers Prev,2006,15(12):2526-2532.
    [81]Mc Williams RR. Bamlet WR, Cunningham JM, et al. Polymorphisms in DNA repair genes, smoking,and pancreatic adenocarcinoma risk [J]. Cancer Res,2008,68 (12): 4928-4935.
    [82]An J. Liu Z, Hu Z. et al. Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck [J]. Cancer Epidemiol Biomarkers Prev,2007,16(8):1633-1638.
    [83]Bai Y. Xu L. Yang X. et al. Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population:a case-control study [J]. BMC Cancer. 2007.7 (5):81.
    [84]Lunn RM. Hellzlsourer KJ. Parshad R. et al. XPD polymorphisms, effecte on DNA repair proficieney. Carcinogenesis.2000:21:551-555.
    [85]Conaway RC. Conaway JW. An RNA polymerase Ⅱ transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. Proc Nail Acad Sei USA.1989:86:7356-7360.
    [86]Broughton B C, Berneburg M, Fawcett H, et al. Two individuals with features of both xeroderma pigmentosum and trichot hiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene [J]. Hum Molec Genet,2001,10 (22):2539-2547.
    [87]Seet haram S, Protic-Sabljic M, Seidman M M,et al. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum [J]. J Clin Invest,1987,80 (6):1613-1617.
    [88]L6pez-Cima M F. Gonzalez-Arriaga P, Garcia-Castro L, et al. Polymorphisms in XPC. .XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain [J]. BMC Cancer,2007,16 (7):162.
    [89]Giachino D F, Ghio P. Regazzoni S, et al. Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer [J]. Clin Cancer Res,2007,13 (10):2876-2881.
    [90]Huang WY, Chow WH. Rothman N, et al. Selected DNA repair polymorphisms and gastric cancer in Poland [J]. Carcinogenesis.2005,26 (8):1354-1359.
    [91]Ye W, Kumar R, Bacova G, et al. The XPD 751 Gln allele is associated with an increased risk for esophageal adenocarcinoma:a population-based case-control study in Sweden [J]. Carcinogenesis,2006,27 (9):1835-1841.
    [92]Ruzzo A, Canestrari E, Maltese P, et al. Polymorphisms in genes involved in DNA repair and metabolism of xenobiotics in individual susceptibility to sporadic diffuse gastric cancer [J]. Clin Chem Lab Med,2007,45 (7):822-828.
    [93]Wolfe KJ, Wickliffe JK, Hill CE, et al. Single nucleotide polymorphisms of the DNA repair gene XPD/ERCC2 alter mRNA expression. Pharmacogenet Genomics,2007, 17(11):897-905.
    [94]Hou SM, Falt S, Angelini S. et al. The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis.2002,23(4):599-603.
    [95]Xing D, Tan W. Wei Q. et al. Polymorphisms of the DNA repair gene XPD and risk of lung cancer in a Chinese population. Lung Cancer; 2002,38(2):123-129.
    [96]Liang G Xing D, Miao X. et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer,2003.105(5):669-673.
    [97]梅朝蓉.邓文军,周清华.DNA修复基因XPD G312A多态性与肺癌易感性关系的meta分析Chin J Lung Cancer,2010,13(5):526-532.
    [98]Misra RR, Ratnasinghe D, Tangrea JA, et al. Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland. Cancer Lett,2003,191(2):171-178.
    [99]PoPanda O, Sehattenberg T,Phong CT. Butkiewicz D, Risch A, Edler L. Kayser K. Dienemann H, Schulz V, Drings P. Bartsch H, Schmezer P. Specific combinations of DNA repair Gene variants and increased risk for non-small cell lung cancer. Carcinogenesis (Oxford) 2004; 25:2433-41.
    [100]Zienolddiny S. Campa D. Lind H, Ryberg D, Skaug V,Stangeland L,Phillips DH. Canzian F, Haugen A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcincrgenesis.2006,27(3):560-7.
    [101]Riedl. Hanaoka. Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA [J]. EMBO J,2003,22:5293-5303.
    [102]Jiang Zheng. H u Jin. Li Xingang. et al. Expression an alyses of 27 DNA repair genes in astrocytom a by TaqMan low-density array [J]. Neurosci Lett,2006.409:112-117.
    [103]Park JY. Park SH. Choi JE. Lee SY. Jeon HS, Cha SI. Kim CH. Park JH, Kam S. Park RW. Kim IS. Jung TH. Polymorphisms of the DNA Repair Gene Xeroderma Pigmentosum Group A and Risk of Primary Lung Cancer. Cancer Epidemiol Biomarkers Prev 2002:11:993-7.
    [104]Shen M, Berndt SI. Rothman N. Demarini DM, Mumford JL. He X. Bonner MR. Tian L,Yeager M. Welch R. Chanock S. Zheng T, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wi, China. Int J Cancer 2005:116:768-73.
    [105]Friedberg EC. How nucleotide excision repair protects against cancer [J]. Nat Rev Cancer,2001.1 (1):22-33.
    [106]Scharer OD. XPG:its products and biological roles [J]. Adv Exp Med Biol.2008.637: 83-92.
    [107]Wen H. Ding Q. Fang ZJ. et al. Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai [J]. Int Urol Nephrol.2009.41 (4):855-864.
    [108]Li CY, Hu ZB. Liu ZH. et al. Polymorphisms in the DNA repair genes XPC. XPD. and XPG and risk of cutaneous melanoma:a case-control analysis [J]. Cancer Epidemiol Biomarkers Prev,2006.15(12):2526-2532.
    [109]An J. Liu Z. Hu Z. et al. Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck [J]. Cancer Epidemiol Biomarkers Prev,2007,16 (8):1633-1638.
    [110]Hooker S, Bonilla C, Akereyeni F, et al. NAT2 and NER genetic variants and sporadic prostate cancer suscep tibility in African Americans [J]. Prostate Cancer Prostatic Dis, 2008,11(4):349-356.
    [111]SHEN M, BERNDT SI, ROTHMAN N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China [J]. Int J Cancer,2005, 116:768-2773.
    [112]Zienolddiny S,Campa D, Lind H, Ryberg D. Skaug V,Stangeland L. Phillips DH. Canzian F, Haugen A.Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Careinogenesis (Oxford) 2006:27:560-7.
    [113]Cao L, Kim S, Xiao C. Wang RH, Coumoul X. Wang X. Li WM. Xu XL, De Soto JA. Takai H, Mai S, Elledge SJ, Motoyama N, Deng CX.et al. ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brcal deficiency. EMBO Journal 2006; 25:2167-77.
    [114]Seo GJ. Kim SE, Lee YM. Lee JW, Lee JR, Hahn MJ, KimST.Determination of substrate specificity and putative substrates of Chk2 kinase. Biochemical and Biophysical Research Communications 2003:304:339-43.
    [115]CUI Y, MOR GENSTERN H, GREENLAND S, et al. Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx.larynx and esophagus [J]. Int J Cancer,2006,118:714-720.
    [116]SHEN M, BERNDT SI, ROTHMAN N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei. China [J]. Int J Cancer,2005, 116:768-2773.
    [117]De laatw L. Jaspers NG.Hoeijmakers JH. Molecular mechanism of nucleotide excision repair [J]. GenesDev,1999.13 (7):768-785.
    [118]Doig J. Anderson C, Lawrence NJ, et al. Mice with skin-specific DNA repair gene (Ercc1) inactivation are hypersensitive to ultraviolet irradiation induced skin cancer and show more rapid actinic progression [J]. Oncogene,2006,25(47):6229-6238.
    [119]Saebo M, Skjelbred CF,Nexo BA. Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas [J]. BMC Cancer,2006.6:208.
    [120]Taillade L. Penault-Llorca F. Boulet T. et al. Immunohistochemichal expression of biomarkers:a comparative study between diagnostic bronchial biopsies and surgical specimens of non-small-cell lung cancer [J]. Ann Oncol.2007,18 (6):1043-1050.
    [121]Fautrel A. Andrieux L, Musso O, et al. Overexpression of the two nucleotide excision repair genes ERCC1 and XPC in human hepatocellular carcinoma [J]. J Hepatol,2005, 43 (2):288-293.
    [122]Thompson LH. Nucleotide excision repair. Totowa:Humana Press.1998:335-393.
    [123]Zienolddiny S, Campa D. land H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer [J]. Carcinogenesis.2006,27(3):560-567.
    [124]Yin J. Vogel U. Guo L, Ma Y, Wang H. Lack of association between DNA repair gene ERCC1 polymorphism and risk of lung cancer in a Chinese population. Cancer Genet Cytogenet 2006; 164:66-70.
    [125]Zhou W. Liu G,Park S, Wang Z. Wain JC. Lynch TJ. Su L. Christiani DC. Gene-smoking interaction associations for the ERCC1 polymorphisms in the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 2005:14:491-6.
    [126]Manuguerra M Saletta F. Karagas MR. Berwick M. Veglia F. Vineis P. Matullo G. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer:A HuGE review.American Journal of Epidemiology 2006:164:297-302.
    [127]Lao JP, Oh SD. Shinohara M, et al. Rad52 promotes postinvasion steps of meiotic double-strand-break repair [J]. Mol Cell,2008.29(4):517-524.
    [128]Han H, Bearss DJ, Browne LW, et al. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray [J]. Cancer Res,2002.62 (10): 2890-2896.
    [129]Maacke H, Opitz S. Jost K. et al. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer [J]. Int J Cancer,2000. 88(6):907-913.
    [130]Klopfleisch R. Schutze M. Gruber AD. RAD51 protein expression is increased in canine mammary carcinomas. Vet Pathol.2010,47(1):98-101.
    [131]McEllin B. Camacho CV. Mukherjee B. Hahm B. Tomimatsu N, Bachoo RM. Burma S. PTEN loss compromises homologous recombination repair in astrocytes:implications for glioblastoma therapy with temozolomide or poly (ADP-ribose) polymerase inhibitors. Cancer Res.2010,1.70(13):5457-64.
    [132]Vispe S, Cazaux C. Lesca C. et al. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation [J]. Nucleic Acids Res,1998.26(12):2859-2864.
    [133]Connell PP, Jayathilaka K, Haraf DJ, et al. Pilot study examining tumor expression of RAD51 and clinical out comes in human head cancer [J]. Int J Oncol,2006,28 (5): 1113-1119.
    [134]Danoy P, Michiels S, Dessen P, et al. Variants in DNA doub lest rand break repair and DNA damage response genes and susceptibility to lung and head and neck cancers [J]. Int J Cancer,2008,123 (2):457-463.
    [135]Taron M, Rosell R, Felip E, et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer [J]. Hum Mol Genet,2004,13(20):2443.
    [136]Boukovinas I, Papadaki C. Mendez P. Taron M, et al. Tumor BRCA1. RRM1 and RRM2 mRNA Expression Levels and Clinical Response to First-Line Gemcitabine plus Docetaxel in Non-Small-Cell Lung Cancer Patients [J]. PLOS ONE,2008,3 (11):36951.
    [137]Gorgoulis VG.Kotsinas A. Zacharatos P. et al. Association of allelic imbalance at locus D13S171 (BRCA2) and p53 alterations with tumor kinetics and chromosomal instability (aneuploidy) in non-small cell lung carcinoma. [J]. Cancer,2000,89 (9):1933-45.
    [138]Auranen A, Song H, Waterfall C, et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer,2005.117(4):611.
    [139]Webb PM. Hopper JL, Newman B, et al. Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev, 2005,14(2):319.
    [140]Han J, Colditz GA, Samson LD. et al. Polymorphisms in DNA double-strand break repair genes and skin cancer risk. Cancer Res,2004,64(9):3009.
    [141]KUSCHEL B, AURANEN A, MCBRIDS S, et al. Variants in DNA double-strand break repair genes and breast cancer susceptibility [J]. Hum MoL Genet,2002. 11(12):1399-1407.
    [142]AURANEN A. SONG H, WATERFALL C, et al. Polymorphisms in DNA repair genes and pithelial ovarian cancer risk [J]. Int J Cancer,2005,117(4):611-618.
    [143]Stern MC, Umb ach DM. Lunn RM. et al. DNA repair gene XRCC3 cedon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms. And bladder cancer risk. Cancer Epidemiol Biomarkers Prey,2002.11:939-943.
    [144]Misra RR, Ratnasinghe D. Tangrea JA, et al. Polymorphisms in the DNA repair genes XPD, XRCC1. XRCC3. and APE/ref-1. and the risk of lung cancer among male smokers in Finland. Cancer Lett,2003.191:171-178.
    [145]Popanda O. Schatt enberg T. Phong CT. et al. Specific combinations of DNA repair gene variants and increased risk for Non-small cell lung cancer [J]. Carcinogenesis, 2004,25(12):2433-2441.
    [146]Ryk C, Kumar R. Thirumaran RK. et al. Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBSl,and the risk for lung cancer in never and ever smokers [J]. Lung Cancer,2006,54 (3):285-292.
    [147]David-Beabes GL, Lunn RM, London SJ. et al. No association between the XPD (Ly s751Gln) polymophism or the XRCC3 (Thr24 Met) polymophism and lung cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2001.10(8):911-912.
    [148]CHIU CF. WANG CH, WANG CL. et al. A novel s ingle nucleotide polymorphism in XRCC 4 gene is associated with gastric cancer susceptibility in Taiwan [J]. Ann Surg Oncol.2008.15(2):514-518.
    [149]ALLEN-BRADY K, CANNON-ALBRIGHT L A. NEUHAUSEN S L. et al. A role for XRCC4 in age at diagnosis and breast cancer risk [J]. Cancer Epidemiol Biomarkers P rev,2006,15(7):1306-1310.
    [150]HAYDEN P J. TEWARI P. MORRIS D W. et al. Variation in DNA repair genes XRC3. XRCC4, XRCC5 and susceptibility to myeloma [J]. Hum MolGenet,2007.16 (24): 3117-3127.
    [151]HSU N Y, WANG H C. WANG CH. et al. Lung cancer susceptibility and genetic polymorphism of DNA repair gene X RCC4 in Taiwan [J]. Cancer Biomark,2009.5 (4): 159-165.
    [152]Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386:761-763.
    [153]Sak A, Stuschke M, Wurm R. Schroeder G,Sinn B, Wolf G,Budach V. Selective inactivation of DNA dependent protein kinase with antisense oligodeoxvnucleotides: consequences for the rejoining of radiation-induced DNA double-strand breaks and radiosensitivity of human cancer cell lines. Cancer Res 2002:62:6621-6624.
    [154]Zhu J. Petersen S, Tessarollo L. et al. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice [J]. Curr Biol.2001. 11:105.
    [155]Ryk C. Kumar R. Thirumaran RK. et al. Polymorphisms in the DNA repair genes XRCC1. APEX1. XRCC3 and NBS1, and the risk for lung cancer in never-and ever-smokers [J]. Lung Cancer,2006,54 (3):285-292.
    [156]Medina PP. Ahrendt SA. Pollan M. et al. Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS12185Gln variant and p53 gene mutations [J]. Cancer Epidemiol Biomarkers Prev,2003,12 (8): 699-704.
    [157]Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer [J]. Carcinogenesis,2006,27 (3):560-567.
    [158]Kolodner R D, Hall N R, Lipford J, et al. Structure of the human MLH1 locus and analysis of large hereditary nonpolyposis colorectal carcinoma kindred for mlhl mutations. Cancer Res.1995,55 (2):242-248.
    [159]Seifert M, Reichrath J. The role of the human DNA mismatch repair gene hMSH2 in DNA repair, cell cycle control and apoptosis:implications for pathogenesis, progression and therapy of cancer [J]. J Mol Histol,2006,37(5-7):301-307.
    [160]Hsu H S, Lee I H. su W H, et al. Polym or phism in the hMSH2 gene (gISV12-6T> C) is a prognostic factor in non small cell lung cancer [J]. Lung Cancer,2007,58(1): 123-130.
    [161]Fouret P.Planchard D. Mendiboure J, et al. MSH2 and adjuvant Cisplatin-based chemotherapy in non-small cell lung cancer [J].2009 ASCO Annual Meeting.
    [162]Palmisano WA et al. Cancer Res,2000,60(21):5954-5958.
    [163]Imai Y, Oda H, Nakatsuru Y, et al. A polymorphism at codon 160 of human O6-methylguanine-DNA methyltansferae gene in young patients with adult type cancers and functional assay. Carcinogenesis,1995,16(10):2441.
    [164]Deng C, Xie D, Capasso H. et al. Genetic polymorphism of human O6-alkylguanine-DNA alkyhransferease:identification of a missense variation in the active site region. Pharmacogenetics,1999,9(1):81.
    [165]Wu M H, Lohrbach K E. Olopade O I. et al. Lack of evidence for a polymorphism at codon 160 of hunmn O6-alkylguanine-DNA alkyhransferase gene in normal. Clin Cancer Res,1999.5(1):209.
    [166]Myong NH.Role of Loss of O-Methylguanine DNA Methyltransferase (MGMT) Expression in Non-Small Cell Lung Carcinomas (NSCLCs):with Reference to the Relationship with p53 Overexpression. Cancer Res Treat.2010 Jun; 42(2):95-100. Epub 2010.30.
    [167]Rusin M. Samoiedny A, Harris C. et al. Novel genetic polymorphisms in DNA repair genes:O6-methylguanine-DNA methyhransferase (MGMT) and N-methylpurine-DNA glycosylase (MPG) in lung cancer patients from Poland. Hum Mutat.1999,14(3):269.
    [168]Han J et al. Pharmacogenet Genomics,2006,16(7):469-474.
    [169]Kaur TB, Travaline JM, Gaughan JP, et al. Role of polymerphisms in codons 143 and 160 of the 06-alkylguanine DNA alkyltransferase gene in lung cancer risk. Cancer Epidemiology. Biomarkers & prevention,2000,9(3):339-342.
    [1]Boyle P, Ferlay J. Cancer ineident and mortality in EuroPe,2004 [J]. Ann Oneol, 2005,16(3):481-488.
    [2]He J, Gu D, Wu X, et al. Major Causes of Death among Men and Women in China[J]. N Engl J Med,2005.353:1124-1134.
    [3]Jemal A. Tiwari RC. Murray T.et al. Cancer statisties.CA Cancer J Clin,2006,56(1):8-24.
    [4]Zheng JN, Ma TX, Cao J Y, et al. Knockdown of Ki-67 by small interfering RNA leads to inhibition of proliferation and induction of apoptosis in human renal carcinoma cells [J]. Life Science,2006,78 (7):724-729.
    [5]Taylor EM. Cecillon SM. Bonis A, Chapman JR. Povirk LF. Lindsay HD. The Mrel1/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis. Nucleic Acids Res.2010:38(2):441-54.
    [6]Rahmanzadeh R. Rai P. Celli JP. Rizvi I. Baron-Luhr B. Gerdes J. Hasan T. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res.2010:70(22):9234-42.
    [7]Schluter C. Duchrow M. et al. The cell Proliferation-associated antigen of antibody Ki67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins [J]. J Cell Biol,1993 123(3):513-522.
    [8]Sardari Nia P. Van Marck E,Weyler J,Van Schil P. Prognostic value of a biologic classification of non-small-cell lung cancer into the growth patterns along with other clinical, pathological and immunohistochemical factors. Eur J Cardiothorac Surg,2010: 38(5):628-36.
    [9]Sasano H. Histopathological prognostic factors in early breast carcinoma:an evaluation of cell proliferation in carcinoma cells. Expert Opin Investig Drugs.2010:19(1):5-11.
    [10]Stroescu C. Dragnea A, Ivanov B. Pechianu C, Herlea V. Sgarbura O. Popescu A. Popescu I. Expression of p53. Bcl-2, VEGF. Ki67 and PCNA and prognostic significance in hepatocellular carcinoma. J Gastrointestin Liver Dis.2008:17(4):411-7.
    [1]Miwa M, Masutani M. PolyADP-ribosylation and cancer. Cancer Sci.2007; 98(10):1528-35.
    [2]Piskunova TS, Yurova MN. Ovsyannikov AI. Semenchenko AV. Zabezhinski MA. Popovich IG,Wang ZQ, Anisimov VN. Deficiency in Poly (ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice. Curr Gerontol Geriatr Res.2008:754190.
    [3]Lockett K L. Hall M-C. xu J. Zheng S L. Berwick M, Chuang S C. Clark P E. et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function.Cancer Res.2004.64.6344-6348.
    [4]Hao B. wang H. Zhou K. Li Y. Chen X. Zhou G Zhu. et al. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res.2004,64,4378-4384.
    [5]Zhang X. Miao X, Liang G Hao. et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res.2005,65.722-726.
    [6]Shiraishi K. Kohno T. Tanai C, Goto Y, Kuchiba A, Yamamoto S. Tsuta K. Nokihara H, Yamamoto N. Sekine I, Ohe Y, Tamura T, Yokota J. Kunitoh H. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol.2010:28(33):4945-52.
    [7]Saito H. Miki Y.PARP Inhibitors for Cancer Therapy. Gan To Kagaku Ryoho.2011: 38(1):12-18.
    [8]D'Onofrio G.Tramontano F. Dorio AS. Muzi A. Maselli V. Fulgione D. Graziani G. Malanga M. Quesada P. Poly (ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage in carcinoma cells. Biochem Pharmacol.2011:15: 81(2):194-202.
    [9]Annunziata CM. O'Shaughnessy J. Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clin Cancer Res.2010; 15; 16(18):4517-26.
    [10]Kim M Y.et al. Poly (ADP-ribosyl) ation by PARP-1:'PAR-laying'NAD+into a nuclear signal. Genes Dev.2005.19(17):1951-67.
    [11]Cavallo F.et al.2011:the immune hallmarks of cancer. Cancer Immunol Immunother. 2011,(3):319-26.
    [12]Fujihara, H; Ogino, H; Maeda, D.et al. Poly (ADP-ribose) Glycohydrolase deficiency sensitizes mouse ES cells to DNA damaging agents. Curr Cancer Drug Targets.2009, 9(8):953-62.
    [13]Tong, W M; Hande, M P; Lansdorp, P M; Wang, Z Q. DNA strand break-sensing molecule poly (ADP-Ribose) polymerase cooperates with p53 in telomere function. chromosome stability, and tumor suppression. Mol Cell Biol.2001,21 (12):4046-54.
    [14]Tong, W M; Yang, Y G; Cao, W H; Galendo, D; Frappart, L;Shen, Y; Wang, Z Q. Poly (ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene.2007,26(26):3857-67.
    [15]Dominguez I, Mateos S,Cortes F. Yield of SCEs and translocations produced by 3 aminobenzamide in cultured Chinese hamster cells. Mutat Res.2000,14; 448(1):29-34.
    [16]Murcia JM, Niedergang C. Trucco C, Ricoul M, Dutrillaux B. Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA.1997,8; 94(14):7303-7.
    [17]Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly (ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 2003,31(17):4959-64.
    [18]Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis.2002. 23(5):687-96.
    [19]Wang ZQ. Auer B, Stingl L. Berghammer H. Haidacher D, Schweiger M, Wagner EF. Mice lacking ADPRT and poly (ADP-ribosyl) ation develop normally but are susceptible to skin disease. Genes Dev.1995; 9(5):509-20.
    [20]Wang ZQ. Stingl L, Morrison C. Jantsch M. Los M, Schulze-Osthoff K. Wagner EF. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev.1997 Sep 15:11(18):2347-58.
    [21]Dantzer F,Ame JC. Schreiber V,Nakamura J. Menissier-de Murcia J. de Murcia G. Poly (ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol.2006; 409:493-510.
    [22]Tsutsumi M, Masutani M, Nozaki T. Kusuoka O, Tsujiuchi T, Nakagama H. Suzuki H, Konishi Y, Sugimura T. Increased susceptibility of poly (ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis.2001; 22(1):1-3.
    [23]Nozaki T, Fujihara H, Watanabe M,Tsutsumi M. Nakamoto K, Kusuoka O. Kamada N. Suzuki H. Nakagama H, Sugimura T. Masutani M. Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci.2003; 94(6):497-500.
    [24]Spina-Purrello V. Giliberto S. Barresi V. Nicoletti VG. Giuffrida Stella AM. Rizzarelli E. Modulation of PARP-1 and PARP-2 Expression by L-carnosine and trehalose after LPS and INFy-induced oxidative stress. Neurochem Res.2010:35(12):2144-53.
    [25]Boehler C. Dantzer F.PARP-3. a DNA-dependent PARP with emerging roles in double-strand break repair and mitotic progression. Cell Cycle.2011.1; 10(7).
    [26]Loseva O. Jemth AS, Bryant HE. Schuler H. Lehtio L,Karlberg T,Helleday T. PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA.J Biol Chem. 2010,12;285(11):8054-60.
    [27]Delaney CA,Wang LZ, Kyle S, White AW. Calvert AH. Curtin NJ. Durkacz BW. Hostomsky Z,Newell DR. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly (adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res.2000; 6(7):2860-7.
    [28]Tentori L, Muzi A. Dorio AS.Scarsella M. Leonetti C. Shah GM. Xu W. Camaioni E. Gold B. Pellicciari R. Dantzer F,Zhang J. Graziani G. Pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) activity in PARP-1 silenced tumour cells increases chemosensitivity to temozolomide and to a N3-adenine selective methylating agent. Curr Cancer Drug Targets.2010; 10(4):368-83.
    [29]Thomas HD. Calabrese CR. Batey MA. Canan S. Hostomsky Z,Kyle S. Maegley KA. Newell DR. Skalitzky D. Wang LZ. Webber SE. Curtin NJ. Preclinical selection of a novel poly (ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther.2007: 6(3):945-56.
    [30]Miknyoczki SJ,Jones-Bolin S. Pritchard S. Hunter K. Zhao H. Wan W. Ator M. Bihovsky R, Hudkins R, Chatterjee S, Klein-Szanto A, Dionne C, Ruggeri B. Chemopotentiation of temozolomide, irinotecan,and cisplatin activity by CEP-6800, a poly (ADP-ribose) polymerase inhibitor. Mol Cancer Ther,2003; 2(4):371-82.
    [31]Salvati E, Scarsella M, Porru M, Rizzo A, Iachettini S. Tentori L, Graziani G,D'Incalci M, Stevens MF, Orlandi A, Passeri D, Gilson E, Zupi G, Leonetti C, Biroccio A.PARP1 is activated at telomeres upon G4 stabilization:possible target for telomere-based therapy. Oncogene.2010; 29(47):6280-93.
    [32]Chan N. et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res.2010.70(20):8045-54.
    [33]Yang. S., et al.. [Establishment of a Novel Chinese Human Lung Adenocarcinoma Cell Line CPA-Yangl which Produces Highly Bone Metastases in Immunodeficient Mice. Zhongguo Fei Ai Za Zhi.2009.12(7):753-9.
    [34]Yaghi. A. A. Zaman, and M. Dolovich, Primary human bronchial epithelial cells grown from explants. J Vis Exp,2010(37).
    [35]Kalinina. T., et al., Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung. BMC Cancer,2010. 10:295.
    [36]Camerlingo. R.. et al., Establishment and phenotypic characterization of the first human pulmonary blastoma cell line. Lung Cancer,2010.
    [37]Wang. C.G., et al.,In vivo antitumor effect of siRNA against STAT3 on transplanted Lewis Lung Cancer in mice. Chemical Research in Chinese Universities,2008.24(3): 322-329.
    [38]Wang, C.G.. et al., Effect of STATS siRNA-Induced Inhibition of STAT3 Gene Expression on the Growth and Apoptosis of Lewis Lung Cancer Cells. Chinese Journal of Clinical Oncology,2006.3(6):392-399.
    [39]Higashiyama, M., et al.,Prediction of chemotherapeutic effect on postoperative recurrence by in vitro anticancer drug sensitivity testing in non-small cell lung cancer patients. Lung Cancer,2010.68(3):472-7.
    [40]Bartek. J., J. Lukas. and J. Bartkova. DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle,2007. 6(19):2344-7.
    [41]Camps, C.,et al., Gene expression and polymorphisms of DNA repair enzymes:cancer susceptibility and response to chemotherapy. Clin Lung Cancer,2007.8(6):369-75.
    [42]Hardwicke. M.A., et al., GSK1070916. a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models. Mol Cancer Ther.2009.8(7):1808-17.
    [43]Powell. C., et al., Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev.2010.36(7):566-75.