用户名: 密码: 验证码:
靶向于血小板源性生长因子受体β的干扰素γ脂质体对大鼠肝纤维化治疗作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
靶向于血小板源性生长因子受体β的干扰素-γ脂质体对大鼠肝纤维化治疗作用的研究
     肝纤维化是慢性肝病重要病理特征,是发展到肝硬化的必经阶段。尽管迄今为止国内外的研究就肝纤维化和早期肝硬化可以逆转,已有共识,并在抑制肝星状细胞(hepatic stellate cell, HSC)活化并促进其凋亡、调节细胞外基质(extracellular matrix, ECM)的合成和降解等方面取得一些成果,对肝纤维化的临床治疗提供了一些药物和方法,但总体疗效仍不理想。目前多认为,限制临床上应用的抗肝纤维化药物效果的原因,可能与药物无法达到靶细胞、或到达靶细胞但无法在其周围形成有效的药物浓度及半衰期短和药物对其他组织细胞的副作用大过增加剂量带来的疗效等有关。
     通过靶向载药系统转运药物,可达到靶向、长循环进而增加疗效及减少抗肝纤维化药物的全身副作用的目的。这里主要涉及:①靶向头基的选择;②载体形式的选择;③抗肝纤维化药物的选择。鉴于HSC激活是肝纤维化发展过程中的中心事件,因此,HSC是抗肝纤维化治疗的首选靶细胞。在HSC上,尤其是激活的HSC上特殊表达或过量表达的受体,是最经常被靶向载药系统采用的靶点。血小板源性生长因子(platelet derived growth factor, PDGF)是肝纤维化形成过程中最强的促增殖因子,与转化生长因子β1(transform growth factorβ1, TGF-β1)在肝纤维化的形成中起着重要作用;而且PDGF受体β(PDGF receptorβ, PDGFR-β)己被广泛的证明在激活的HSC上优势过量表达。近年来已有研究证明,环肽C*SRNLIDC* (pPB)能特异性识别PDGFR-β。与其他非多肽、非脂质体的靶向载药系统相比,小分子多肽作为靶向头基具有化学结构明确,高纯度并可被大量制备的优点;脂质体作为载体具有安全、载药谱广的优点。此外,立体稳定脂质体(sterically stabilized liposome, SSL)的聚乙二醇化(polyethylene glycol conjugated, PEGlated)的设计和能够达到纳米粒级别(<100nm)的粒径,能够使它规避网状内皮系统的吞噬,更具有长循环的特点。干扰素-γ(IFN-γ)是目前已经被批准临床应用的抗肝纤维化作用药物,在许多体内外实验中表现出一定的抗肝纤维化作用,但在临床应用中IFN-γ表现出相对低的疗效、相对短的半衰期和一些严重的副作用,如发热、血细胞减少、肝功能损害加重等,严重制约着IFN-γ的临床应用。
     本研究中,我们在国内外率先设计了针对PDGFR-β的环肽(pPB)修饰的包封IFN-γ的立体稳定脂质体(pPB-SSL-IFN-γ),并通过体内外的实验研究,从分子、细胞和器官的水平探讨这个主动靶向载药系统能否解决IFN-γ的疗效低、半衰期短、副作用多的临床问题,并对其作用机制进行更深入的探讨,寻求更可能为临床所用的抗肝纤维化的靶向药物治疗途径,为进一步可能的临床研究提供理论依据,以期最终能使病人受益。
     本研究的主要内容包括:①环肽和靶向IFN-γ脂质体的制备和表征;②原代大鼠肝星状细胞的分离、培养和鉴定;③环肽和靶向脂质体对肝星状细胞的靶向性验证;④靶向IFN-γ脂质体对肝星状细胞的体外抗肝纤维化作用的研究;⑤靶向IFN-γ脂质体在正常大鼠体内的药代动力学和体内分布的研究,以及靶向IFN-γ脂质体在肝纤维化大鼠的体内分布和肝组织上细胞定位的研究;⑥靶向IFN-γ脂质体对大鼠肝纤维的体内抗肝纤维化作用和改善副作用的研究。
     第一部分
     环肽和IFN-γ靶向脂质体的制备和表征
     目的:人工合成C*SRNLIDC*环肽(pPB),并表征。构建pPB介导的IFN-γ主动靶向脂质体(pPB-SSL-IFN-γ),并表征其特性。
     方法:采用固相合成的方法合成pPB,并冻干低温保存,以高效液相分析pPB的纯度,以质谱法检测其分子量。为制备靶向脂质体pPB-SSL-IFN-γ,将胆固醇:蛋磷脂酰胆碱:甲氧基-聚乙二醇2000-二硬酯酰磷脂酰乙醇胺(mPEG2000-DSPE):马来酰亚胺-聚乙二醇3400-二硬酯酰磷脂酰乙醇胺(mal-PEG+3400-DSPE)以2:1:0.1:0.02的摩尔比溶于氯仿,根据水化液不同,采用旋转蒸发-薄膜水化-挤压法制备各种非靶向脂质体。为了制备pPB介导的靶向脂质体,先将pPB与SATP反应,给pPB引入巯基,得到pPB-SH,并质谱验证其分子量,后将pPB-SH与非靶向脂质体反应,得各种靶向脂质体,进一步利用氢谱(1H-NMR)验证pPB-SH与非靶向脂质体膜材料中含有的mal-PEG3400-DSPE的结合。从粒径、包封率、载药量、稳定性等方面表征其理化特性。
     结果:合成的pP、pPB-FITC和pPB-SH纯度>95%,质谱检测它们的分子量符合理论值,提示合成正确。进一步通过对比,在mal-PEG3400-DSPE的1H-NMR上清楚显示mal峰,在pPB-PEG3400-DSPE的1H-NMR上消失,提示了pPB与靶向脂质体膜材料mal-PEG3400-DSPE中mal基团通过加成反应相连。制备的pPB-SSL-IFN-γ的平均粒径为83.5nm,多分散指数(PI)为0.067;包封率为32.73±4.61%;载药量为8.99×104IU/μmol磷脂;4℃冷藏情况下,1月后无明显变化,稳定性良好;3月后粒径增大、分布增宽和包封率下降,提示脂质体颗粒有融合、粒径变大和IFN-γ的泄漏。
     结论:固相合成法可大量、高纯度合成pPB。成功制备了下一步实验需要的纳米级别的pPB介导的IFN-γ的靶向脂质体。
     第二部分
     原代大鼠肝星状细胞的分离、培养和鉴定
     目的:探讨原代大鼠肝星状细胞的分离、培养方法,并鉴定。为进一步的体外实验提供理想的细胞模型。
     方法:采用胶原酶离体灌流、Nycodenz为分离介质的密度梯度离心的方法分离大鼠的肝星状细胞,并培养传代及同步鉴定。
     结果:每只大鼠肝星状细胞的得率可达2-5x107/只,细胞存活率>90%。培养过程中出现特征性形态变化,进一步细胞免疫荧光化学鉴定;培养4d,Desmin染色阳性,提示得到的为肝星状细胞;培养10d和传1代后,α-SMA染色阳性,提示为活化表型。
     结论:成功获得进一步实验所需的理想细胞模型---原代大鼠活化的肝星状细胞。
     第三部分
     环肽和靶向脂质体对肝星状细胞的靶向性
     目的:探讨pPB环肽和pPB介导的靶向脂质体与原代活化的大鼠肝星状细胞和人肝星状细胞株LX-2体外结合的特性和细胞内定位的情况。
     方法:合成异硫氰荧光素(FITC)标记的环肽(pPB-FITC),制备包封FITC的靶向(pPB-SSL-FITC)和非靶向脂质体(SSL-FITC).通过流式细胞仪测定pPB-FITC与原代活化的大鼠肝星状细胞和人LX-2细胞株结合的荧光强度,实施结合-饱和实验和结合-竞争实验,并比较pPB-SSL-FITC和SSL-FITC与原代大鼠肝星状细胞的结合能力。通过荧光显微镜及激光共聚焦显微镜观察pPB-FITC和pPB-SSL-FITC在活化的大鼠肝星状细胞内的定位。
     结果:pPB-FITC与原代活化的大鼠肝星状细胞和人LX-2肝星状细胞株的结合具有饱和性和浓度依赖性;未标记的pPB对pPB-FITC与原代活化大鼠肝星状细胞和LX-2细胞株的结合有竞争抑制作用,且呈浓度依赖性。靶向脂质体pPB-SSL-FITC与原代大鼠活化的肝星状细胞结合的能力是非靶向脂质体SSL-FITC的3.01±1.50倍。原代大鼠活化的肝星状细胞能内吞pPB-FITC和pPB-SSL-FITC,绿色荧光信号主要分布于胞浆。
     结论:pPB与原代大鼠肝星状细胞和人LX-2肝星状细胞株以受体介导的方式特异结合。靶向脂质体与活化的大鼠肝星状细胞结合的能力明显高于非靶向脂质体,结合后靶向脂质体被肝星状细胞内摄,主要分布在细胞浆,提示pPB-SSL可以作为靶向于HSC的载体来载送相关的药物。
     第四部分
     IFN-γ靶向脂质体对大鼠肝星状细胞的作用
     目的:考察pPB介导的IFN-γ靶向脂质体对活化的大鼠肝星状细胞的体外药效及作用机制。
     方法:通过Alamar blue分析法检测IFN-γ脂质体对细胞增殖的影响;通过Hoechst33258和TUNEL的方法检测IFN-γ脂质体对细胞凋亡的影响;通过Western blot分析的方法检测IFN-γ脂质体对细胞α-平滑肌肌动蛋白(α—SMA)表达的影响。
     结果:含有相同IFN-γ剂量的靶向IFN-γ脂质体与IFN-γ非靶向脂质体和游离IFN-γ相比,明显抑制活化的肝星状细胞的增殖;Honchst33258和TUNEL染色发现,IFN-γ靶向脂质体明显抑制活化肝星状细胞的凋亡;Western blot分析法证实,IFN-γ靶向脂质体能明显抑制活化肝星状细胞的α-SMA的蛋白表达。
     结论:与游离IFN-γ和非靶向IFN-γ脂质体相比,IFN-γ革巴向脂质体能更有效的抑制活化大鼠肝星状细胞的增殖、凋亡和α-SMA的表达。
     第五部分
     IFN-γ靶向脂质体在大鼠体内的药代动力学、组织分布和细胞定位
     目的:探讨IFN-γ靶向脂质体在正常大鼠体内的药代动力学和组织分布的规律,并探讨IFN-γ非靶向脂质体(SSL-IFN-γ)和IFN-γ靶向脂质体(pPB-SSL-IFN-γ)在肝纤维化大鼠体内的动态分布和肝组织上的细胞定位情况。
     方法:采用酶联免疫吸附法(ELISA)检测pPB-SSL-IFN-γ和游离IFN-γ静脉注入正常大鼠体内5mi n-24h不同时间点的血浆样本中IFN-γ的浓度,并比较两者的半衰期(t1/2);进一步通过24h时获得的大鼠的不同组织中IFN-γ的浓度,观察其组织分布情况。制备包含DIR(一种近红外染料)的靶向和非靶向脂质体,采用荧光活体成像仪比较IFN-γ靶向脂质体(DIR-pPB-SSL-IFN-γ)和IFN-γ非靶向脂质体(DIR-SSL-IFN-γ)在正常大鼠和纤维化大鼠体内分布的动态显像的情况。采用双重荧光标记免疫组化染色法,考察靶向和非靶向脂质体携带的IFN-γ在纤维化大鼠肝组织内的细胞定位情况。
     结果:药代动力学研究显示:pPB介导的靶向IFN-γ脂质体的半衰期(t1/2)和曲线下面积(AUC)明显长于游离IFN-γ。组织分布研究显示:pPB介导的靶向脂质体运载的IFN-γ在体内主要聚集在肝组织内;而游离IFN-γ在体内主要分布在肝组织和肠;进一步比较在同一种脏器(心、肝、脾、肺、肾、脑和肠)内的分布,pPB介导的靶向脂质体载送的IFN-γ较游离IFN-γ明显增多。活体荧光动态成像显示:①正常大鼠体内:DIR-SSL-IFN-γ和DIR-pPB-SSL-IF-γ在注射后1h,肝脏区域的荧光强度明显增加至最高,后强度逐渐下降直至48h,其它脏器才可看见荧光分布;在成像48h的时间点,结束活体成像,取心、肝、脾、肺、肾和血液组织,立即于体外成像显示:肝组织的荧光强度明显高于其他组织,血液标本的荧光强度甚至接近0,进一步证明了活体成像中肝脏区域的荧光图象确为肝组织中荧光显像,并显示了直至48h,肝组织仍明显的荧光聚集。②纤维化大鼠体内:DIR-pPB-SSL-IFN-γ注入纤维化大鼠体内2h时,肝脏区域的荧光强度已经明显高于DIR-SSL-IFN-γ注入组;至20h时,这种趋势更加明显,甚至在DIR-SSL-IFN-γ处理组的肝脏区域的荧光强度显示出较2h时下降,而DIR-pPB-SSL-IFN-γ处理组大鼠肝脏区域的荧光强度较2h时明显增加。双重荧光标记免疫组织化学染色探测细胞定位的研究显示:DPB-SSL携带的IFN-γ在肝组织中与α-SMA的共同表达率(60.13±9.15%)明显高于SSL携带的IFN-γ(12.11±3.26%)(n=3,p<0.01),且图像显示后者主要定位于肝细胞。
     结论:与游离IFN-γ相比,pPB介导的靶向脂质体携带的IFN-γ在体内的药代动力学和组织分布的研究显示了长循环的特性;IFN-γ靶向和IFN-γ非靶向脂质体均显示了明显的肝组织的器官靶向特性,但IFN-γ靶向脂质体在肝纤维化大鼠体内显示出更加明显的肝脏器官靶向。在纤维化肝组织中靶向脂质体携带的IFN-γ主要定位于肝星状细胞;而非靶向脂质体携带的IFN-γ主要定位在肝细胞,验证了靶向脂质体载送的IFN-γ在纤维化大鼠肝组织内的HSC细胞靶向性。
     第六部分
     IFN-γ靶向脂质体对大鼠肝纤维化的体内抗肝纤维化作用和改善副作用的研究
     目的:研究IFN-γ靶向脂质体对大鼠肝纤维化的体内抗肝纤维化作用,并观察其对改善某些副作用的效果。
     方法:将40只肝纤维化大鼠,随机分成6组,分别给与(均尾静脉注射,2次/周,持续4周):①PBS(n=4);②空白脂质体pPB-SSL(n=4);③IFN-γ(n=8);④IFN-γ非靶向脂质体(n=8);⑤IFN-γ靶向脂质体(n=8);⑥5倍剂量IFN-γ组(n=7),其中①作为模型对照组(model control group);②作为空白pPB-SSL对照组;③④⑤此3种制剂中游离IFN-γ含量均为2x105IU/m1;⑥中游离的IFN-γ含量为1x10.IU/m1。6只正常大鼠在同等的条件下被饲养,作为正常对照组(normal control group)。最后一次静脉注射后48h,收集大鼠的血液标本,分别检测肝功能(ALT、AST和ALB)、血液分析(WBC、HGB和PLT)和血清肝纤维化指标(HA和IV-C);收集肝组织标本,分别进行HE、MassOn胶原三色染色、羟脯氨酸含量测定、Ⅰ型胶原的免疫组织化学染色和肝组织的α-SMA蛋白表达的western blOt分析。
     结果:与模型对照组、游离IFN-γ组甚至IFN-γ非靶向脂质体组和5倍剂量游离IFN-γ组相比,IFN-γ靶向脂质体明显减轻大鼠的肝纤维化分期,并明显减少肝组织Ⅰ型胶原染色面积、血清IV-C水平和肝组织α-SMA蛋白的表达;与模型对照组和游离IFN-γ低剂量组相比,IFN-γ靶向脂质体明显改善由于肝纤维化造成的HGB和PLT的减少,还可明显降低肝组织羟脯氨酸含量;与模型对照组相比,IFN-γ靶向脂质体亦明显降低肝纤维化大鼠血清ALT和HA水平;与模型对照组和游离IFN-γ高剂量组相比,IFN-γ靶向脂质体亦明显减轻肝纤维化大鼠的肝脏病理炎症HAI分级。同时,IFN-γ靶向脂质体治疗组的血清AST水平较IFN-γ非靶向治疗组明显降低(P<0.05);而且IFN-γ靶向脂质体治疗组的WBC计数高于游离IFN-γ的低剂量组和高剂量组(P=0.072和P=0.070)。
     结论:IFN-γ靶向脂质体显示出更加明显的体内抗肝纤维化作用,而且,IFN-γ靶向脂质体能够明显改善IFN-γ非靶向脂质体非选择性肝细胞摄取造成的AST的升高和避免高剂量IFN-γ造成的肝脏炎症坏死程度加重。另外,IFN-γ靶向脂质体可在一定程度上改善游离IFN-γ造成的血WBC计数的降低。
Effect of Interferon-gamma liposomes targeted to platelet derived growth factor receptorβon hepatic fibrosis in rat
     Hepatic fibrosis is a very important pathological feature during the development of chronic hepatic injury. Hepatic fibrosis is also a necessary pathway to liver cirrhosis, which is a very common disease resulting in morbidity and mortality in many countries. Many therapeutic approaches have been examined in experimental and clinical studies of hepatic fibrosis. These approaches include adjusting the balance of extracellular matrix synthesis and degradation, reducing intrahepatic inflammation, and inhibiting activation or promoting apoptosis of hepatic stellate cells (HSC). Through these techniques, the reversibility of fibrosis can be observed. However, no approved anti-fibrotic drug has been clinically applied. The main reason for the lack of clinical use is the inability to specifically target the responsible cells or molecules to increase drug effectiveness and to decrease the side-effects on non-target tissues or cells in vivo.
     To improve drug effectiveness and reduce the side-effects on non-target tissues or cells, targeted drug-carrier systems have been employed in recent years that ensure drug delivery for long-term circulation and/or site-specific targeting of specific populations of liver cells, including hepatocytes, liver endothelial cells, Kupffer cells, and HSCs. HSC activation is a central event in hepatic fibrogenesis. Receptors specifically expressed or over-expressed on HSCs, especially on activated HSCs, are selected as the active targeting sites for targeting-drug therapies for hepatic fibrosis. Platelet-derived growth factor (PDGF) is the most prominent mitogen for HSCs during hepatic fibrogenesis, and the PDGF receptor-P (PDGFR-P) is strongly up-regulated on activated HSCs. The cyclic peptide C*SRNLIDC* (pPB) was previously shown to have a specific affinity for PDGFR-β.
     In the present study, we utilized pPB to modify sterically-stable liposomes (SSL) to prepare the pPB-SSL carrier. To establish the application, interferon gamma (IFN-y) was selected to be entrapped in pPB-SSL, because IFN-y has anti-fibrotic activities. However, some shortcomings of IFN-y, such as low anti-fibrotic effects, a short blood-circulation half-life, and side effects due to its effects on non-target cells or tissues, have limited its clinic application.
     The aim of the present study is to investigate whether the targeted drug-delivery system (pPB-SSL) can resolve these limitations, and to investigate the related action mechanism. The approach of targeting drug-delivered increasing the efficacy of anti-fibrotic drug therapy and reducing side-effects may have the potential clinical value. This study also provide a new option for drug-carriers which could selectively delivery drug to cells over-expressing PDGFR-β.
     These works include six parts as described below.
     Part One Synthesis and characterization of cyclic peptide and targeted interferon-gamma liposomes
     Objective:To synthesize and characterize the cyclic pepetide C*SRNLIDC* (pBP). And to prepare and characterize sterically stable liposomes modified with pPB (pPB-SSL) to deliver interferon-gamma (pPB-SSL-IFN-γ).
     Methods:pPB was synthesized using the standard strategy of Boc-protected solid phase peptide synthesis. pPB was analysed and purified by high performance liquid chromatographic (HPLC). The molecular weight of pPB was confirmed by electrospray ionization tandem mass spectrometry (ESI-MS).
     pPB-SSL-IFN-γwas prepared by the method of rotary evaporation-thin film hydrated-extruded. The synthesis of pPB-S-mal-PEG34oo-DSPE was confirmed by 'H-NMR spectrometry. To characterize pPB-SSL-IFN-γ, particle diameter and distribution of pPB-SSL-IFN-γwere measured by dynamic light scattering; and the encapsulation efficiency (ee%) of IFN-γwas determined. To investigate the stability of pPB-SSL-IFN-γ, the particle diameter and ee% were compared after pPB-SSL-IFN-γwas prepared and had been stored at 4℃for one month and three month.
     Results:HPLC analysis revealed that the purity of prepared pPB exceeded 95%. ESI-MS spectrum showed the molecular weight of pPB was 921.5Da, coinciding with their theoretical values. The conjugation of pPB-SH with mal-PEG34oo-DSPE were indicated by the disappearance of the characteristic resonance of mal (6.7ppm) of pPB-S-mal-PEG3400-DSPE shown in1H-NMR spectrum. The mean particle diameter of pPB-SSL-IFN-y was 83.5nm, and the polydispersity index (PI) was 0.067. The ee% of IFN-y in pPB-SSL (n=3) was 32.73±4.61%. The loading capacity was 8.99x104IU /μM phospholipid. Compared to freshly prepared pPB-SSL-IFN-y, the particle diameter and ee% of pPB-SSL-IFN-y stored at 4℃for one month had no significant difference.
     Conclusion:pPB has successfully synthesized. And pPB-SSL-IFN-y was successfully prepared, which showed satisfactory particle size distribution (mostly<100nm), ee% and loading capacity.
     Part Two Isolation, culture and identification of primary rat hepatic stellate cells
     Objective:To provide activated hepatic stellate cells (HSCs) for the followed in vitro study.
     Methods:Primary rat HSCs (pHSCs) was isolated from normal Sprague-Dawley (SD) rats using infusion and combined digestion with pronase E and collagenase followed by Nycodenz density gradient centrifugation. pHSCs were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. The cell viability was detected by Trypan blue dyeing. pHSCs were assessed by auto-fluorescence, immunocytochemical staining of desmin and a-SMA and morphological investigation with microscopy.
     Results:About 5X10/ml pHSCs cells were harvested from each rat. The viability of freshly isolated pHSCs was exceeding 90%. Due to the presence of lipid droplets the fresh rat pHSCs showed green-blue spontanenous fluorescence that can be observed at 328nm or 445 nm wavelength by fluorescence microscopy. They stretched out pseudopodia after incubated for 24h to 48h. Atuo-fluorescence and lipid droplets gradually disappeared with time passing. The cells cultured for 10 days to 14 days became stellate or irregular shape and bigger, which represented as activated phenotype. pHSCs were confirmed by positive staining via immunocytochemistry for Desmin, and activated pHSCs were confirmed by positive staining for a-SMA.
     Conclusion:Primary rat HSCs were successfully obtained the ideal activated rat HSCs model---cultured for the followed study in vitro.
     Part Three Binding and intracellular location of cyclic peptide and cyclic peptide-modified liposomes in hepatic stellate cells
     Objective:To investigate the binding and intracellular location of cyclic peptide (pPB) and pPB-modified sterically stable liposomes (pPB-SSL) in hepatic stellate cells (HSCs).
     Methods:Activated rat pHSCs were respectively incubate with various concentration of FITC labeling pPB (pPB-FITC,0-150μM) in the darkness. The percentages of the FITC-positive cells at selected cells (%gate) were determined by flow cytometry. For the competitivly experimential study, activated pHSCs were incubated with different concentration (0.035-1411.5μM) of the unlabeled free pPB for 30min before pPB-FITC (36μM) were added. And the total fluosrencence intensity (TFI) was selected as an index analysed. Binding of pPB to LX-2 cells also was measured as describe above. Furthermore the binding of SSL encapsulating FITC (SSL-FITC) or pPB-SSL encapsulating FITC (pPB-SSL-FITC) to HSC were also performed with the folw cytometry.
     For investigating the intracellular location, activated rat pHSCs were incubated with free FITC, pPB-FITC (1μM) or pPB-SSL-FITC at 37℃for 1h in darkness. Then the cells were stained with DAPI for 1min. The cells were observed using a fluorescent microscopy or a confocal microscopy.
     Results:As pPB-FITC concentration increasing from OμM to 150μM, a increasing percentage of FITC-positive cells (%gate) was shown in the binding study of pPB and pPB-SSL to the activated rat pHSCs or LX-2 cells. And the plateau concentration was observed at the concentration of pPB-FITC>7.5μM in rat pHSCs and>38.5μM in LX-2 cells. The binding-competition experiment showed that the binding of pPB-FITC to pHSCs or LX-2 cells fitted a contro-S curve. The FITC-positive pHSCs rate treated with pPB-SSL-FITC is 3.01±1.50 fold higer than that with SSL-FITC.
     The intracellular localization of pPB-FITC and pPB-SSL-FITC were found in the cytoplasm of activated rat pHSCs. But when pHSCs were treated with free FITC under the same condition, no available fluorenscence signs were observed.
     Conclusion:The binding of pPB to HSCs was in a dose-dependent manner and mediated by receptor on HSCs. The intracellular uptake of pPB-SSL-FITC by HSCs was significant more than that of SSL-FITC.
     Part Four Effect of targeted interferon-gamma liposomes on rat hepatic stellate cells
     Objective:To investigate the effects of interferon-gamma (IFN-γ) encapsulated in the cyclic peptide (pPB)-modified sterically stable liposomes (pPB-SSL-IFN-y) on primary rat hepatic stellate cells (pHSC).
     Methods:The Inhibitory effects of pPB-SSL-IFN-γon cells proliferation were assessed via cell survival assay measured by Alamar blue assay kit and the IC50 values was compared. The effects of pPB-SSL-IFN-γon apoptosis were detected via Honchst33258 and TUNEL staining. The inhibitory effects of pPB-SSL-IFN-γon the expression of a-SMA protein were detected via Western bolt analysis.
     Results:The IC50 value was respectively 3.09×105,1.26×105, and 4.27×104 IU/ml in the IFN-γ, SSL-IFN-γ, and pPB-SSL-IFN-γtreatment groups, which indicated the inhibitory effect of pPB-SSL-IFN-γwas respectively 7.24-fold and 2.95-fold higher than that of IFN-γand SSL-IFN-γ. The percentage of apoptosis cells in pPB-SSL-IFN-y treatment group was more than that control group and free IFN-y (2×105IU/ml) treatment group (p<0.05). Compared to the control and free IFN-y (1×104IU/ml) treatment groups, the pPB-SSL-IFN-γtreatment group significantly suppressed a-SMA expression. The marked suppression also was identified in the 1×10°IU/ml IFN-γtreatment group.
     Conclusion:pPB-SSL-IFN-γcan inhibit the proliferation of pHSCs, induce apoptosis of pHSCs and suppress the expression of a-SMA protein. These effects of pPB-SSL-IFN-γon pHSCs are superior to free IFN-γ.
     Part Five The pharmacokinetics, tissue distribution and cellular location of targeted Interferon-gamma liposomes in normal and fibrotic rats
     Objective:To investigate and compare the pharmacokinetics and tissue biodistribution of free interferon-gamma (IFN-γ) and interferon-gamma encapsulated in cyclic peptide (pPB)-modified sterically stable liposomes (pPB-SSL-IFN-γ) in normal and fibrotic rats. And to investigate the intracellular location of IFN-γencapsulated in pPB-SSL and SSL in fibrotic livers.
     Methods:IFN-y or pPB-SSL-IFN-γwas injected to normal rats via the tail vein. During 24h period, the blood was collected via intraocular vein at different time point. At 24h point, some tissues were harvested and wet-weighed. The concentration of IFN-y in the blood and 100mg of various tissues were measured by enzyme linked immunosorbent assay (ELISA) kit. Furthermore living-body tracing image analysis of pPB-SSL-DIR and SSL-DIR in normal and fibrotic rats was also performed. After the investigation in normal rats was ended at 48h in vivo, the rats were killed and some major organs were harvested to measured each fluorescent image and intensity in vitro. To identify the intracellular location of IFN-γencapsulated in SSL and pPB-SSLin fibrotic livers, liver sections were performed with immunofluorescent double-staining for IFN-γand a-SMA. The percentage of IFN-γpositive cells in a-SMA positive cells per section was determined.
     Results:The pharmacokinetic study determined the half-lives of IFN-γand pPB-SSL-IFN-γto be 0.235±0.022h and 1.146±0.139h, respectively. The study of tissue distribution 24 h after injection showed that IFN-y encapsulated in pPB-SSL accumulated mainly in the liver, while free IFN-γaccumulated in the liver and intestine. Moreover, in the pPB-SSL-IFN-y group, the levels of IFN-y in each 100 mg tissue normalized to the initial injection dose were significantly higher than that of the corresponding tissues in the IFN-γ-injected group (p<0.05). IFN-y tissue distribution was further elucidated through living-body imaging studies with DIR-SSL-IFN-γand DIR-pPB-SSL-IFN-γ. In vivo, fluorescence signals were predominantly found in the liver region following injection, and spread to other tissues 48h after injection. After these rats were sacrificed at 48 h, the fluorescence of some tissue and blood samples was immediately examined in vitro. Fluorescence was observed in the liver and rarely in the blood. Living-body images indicated that DIR-pPB-SSL-IFN-γpredominantly accumulated in the liver of fibrotic rats after 20h. Furthermore, immunofluorescent double-staining for IFN-γand a-SMA showed that IFN-γencapsulated in pPB-SSL (60.13±9.15%) was located in HSCs at a higher level than IFN-γin SSLs (12.11±3.26%)(n=3,p<0.01).
     Conclusion:These findings suggest that SSL-IFN-γand pPB-SSL-IFN-γselectively localized to the liver, and IFN-γencapsulated in pPB-SSL had a longer circulation half-life than free IFN-y. Both SSL and pPB-SSL could obtain passive liver-targeted effects in normal and fibrotic rats. But pPB-SSL delivering IFN-y obtain the HSC-specific targeting effects in fibrotic livers.
     Part Six Effects of targeted interferon-gamma liposomes on hepatic fibrosis in rats
     Objective:To investigate the anti-fibrotic effects and the reducing side-effects of interferon-gamma (IFN-y) encapsulated in cyclic peptide (pPB)-modified modified sterically stable liposomes (pPB-SSL-IFN-y).
     Methods:A rat hepatic fibrosis model was induced by thioacetamide (TAA). When obvious hepatic fibrosis was confirmed at 11 w,40 fibrotic rats were randomly divided into six treatment groups and injected intravenously via tail vein with 0.5 ml of IFN-y, SSL-IFN-y and pPB-SSL-IFN-y with the same concentration of IFN-y (2×105 IU/ml), high-dose of IFN-y (1×106 IU/ml), PBS, and pPB-SSL twice a week for 4 w. Six normal rats were maintained under the same conditions. Forty-eight hours after the final injection, blood samples were collected for routine analysis of blood cells and serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), hyaluronic acid (HA) and collagen type IV-C. Some liver specimens were harvested for the histopathological assessment using hematoxylin and eosin staining, Masson staining and immunohistochemical staining for collagen I and the detection of hydroxyproline (Hyp) in livers. Eight microscopic fields were randomly selected per liver tissue section to quantify the positive stain-area of collagen I. Some liver specimens were snap-frozen for western blot analysis ofα-smooth muscle actin (a-SMA) expression.
     Results:Hepatic fibrosis was aggravated with prolonged TAA treatment. The Ishak stage score, the level of serum IV-C and the positive-staining area for collagen I were all markedly reduced in the pPB-SSL-IFN-y group compared to low-and high-doses of the free-IFN-y group and SSL-IFN-y group. Furthermore, a-SMA expression in the liver of rats injected with pPB-SSL-IFN-y was lower than that in rats of other groups. In addition, the amounts of blood hemoglobin (HGB), blood platelets (PLT) and Hyp in the fibrotic livers of the pPB-SSL-IFN-y group were significantly higher than those in the control group and could be elevated to the same range as in the normal control group.
     To investigate the effects of pPB-SSL-IFN-y on reducing side-effects, serum ALT, AST levels and the amount of total white blood cells (WBC) were detected. The level of serum AST in model control group was significant higher than that of the normal control groups. However, compared to the SSL-IFN-y groups, there was a significant reduction of serum AST levels in the pPB-SSL-IFN-y group, suggesting that the HSC-targeted drug carriers prevented damage caused by general endocytosis of SSLs by hepatocytes. Compared to the model control group, the amounts of WBCs in the low-and high-doses of IFN-y treatment groups were significantly lower, indicating inhibitory effects of IFN-y on leukopoiesis. pPB-SSL-IFN-y was found to increase the amount of WBC. And pPB-SSL-IFN-y could significantly decrease the histological HAI grade of inflammation caused by high-doses free IFN-y.
     Conclusion:These data suggest that the anti-fibrotic effects of IFN-y were significantly improved after by pPB-SSL-targeted delivery to the liver. Additionally, IFN-y encapsulation by pPB-SSL improved the damage in liver caused by SSL-IFN-y and the reduction of WBC caused by IFN-y.
引文
1. Friedman SL. Liver fibrosis-from bench to bedside. J. Hepatol 2003; 38 (suppl.1): S38-S53
    2. Gines P, Cardenas A, Arroyo V, et al. Management of cirrhosis and ascites. N, Engl. J. Med.2004;350(16):1646-1654
    3. Friedman, S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J, Biol. Chem.2000; 275:2247-2250
    4. Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat. Med.1999; 5:226-230
    5. Parsons, C.J. et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 2004; 40:1106-1115.
    6. Issa, R. et al. Spontaneous recovery from micronodular cirrhosis:evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126, 1795-1808(2004)
    7. Arthur, M. J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002; 122,:1525-1528.
    8. Mallat A, Preaux AM, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology 1995; 21:1003-1010
    9. Inagaki Y, Nemoto T, Kushida M, Sheng Y, Higashi K, Ikeda K, et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology 2003;38:890-899
    10. Novo E, Marra F, Zamara E, Valfre di Bonzo L, Monitillo L, Cannito S, et al. Overexpression of Bcl-2 by activated human hepatic stellate cells:resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut 2006;55:1174-1182
    11. Canbay A., Feldstein A., Baskin-Bey E., Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 2004;308:1191-1196
    12. Nakamura T., Sakata R., Ueno T., Sata M, Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine treated rats. Hepatology 2000; 32(2): 247-255.
    13. Saezroyuela F., Porres J.C., Moreno A., Castillo I, Martinez G, Galiana F, et al:High doses of recombinant alpha-interferon or gamma-interferon for chronic hepatitis C:a randomized, controlled trial. Hepatology 13. (2):327-331.1991;
    14. Weng H.L., Wang B.E., Jia J.D., Wu W.F., Xian JE, Mertens PR,et al:Effect of interferon gamma on hepatic fibrosis in chronic hepatitis B virus infection:a randomized controlled study. Clin Gastroenterol Hepatol 3. (8):819-828.2005;
    15. Shiratori Y, Imazeki F, Moriyama M, Yano M, Arakawa Y, Yokosuka O, et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med 2000; 132:517-524
    16. Poynard T, Mchutchison J, Davis GL, Esteban-Mur R, Goodman Z, Bedossa P, et al. Impact of interferon alfa-2b and ribavirin on progression of liver fibrosis in patients with chronic hepatitis C. Hepatology 2000;32:1131-1137.
    17. Luk J.M., Wang X., Liu P., Wong KF,Chan KL,Tong Y,et al. Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer:from laboratory discovery to clinical evaluation. Liver Int 2007; 27:879-890.
    18. Pockros, PJ. Antifibrotics for Chronic Hepatitis C. Clinics in Liver Disease 2009;13(3):365-373
    19. Rockey, DC. Current and Future Anti-Fibrotic Therapies for Chronic Liver Disease. Clinics in Liver Disease 2008; 12(4):939-961
    20. Bataller R, Brenner D.A. Liver fibrosis. J.Clin.Invest 2005; 115(2):209-218.
    21. Friedman, SL. Hepatic stellate cells:Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews 2008;88(1):125-172
    22. Chen, SW; Chen, YX; Zhang, XR, Qian H, Chen WZ, Xie WE Targeted inhibition of platelet-derived growth factor receptor-beta subunit in hepatic stellate cells ameliorates hepatic fibrosis in rats. Gene Therapy 2008;15(21): 1424-1435
    23. Li F, Wang JY. Targeted delivery of drugs for liver fibrosis. Expert Opinion on Drug Delivery 2009;6 (5):531-541
    24. Adrian, JE; Kamps, JAAM; Scherphof, GL;Meijer DKF;Van Loenen-Weemaes AM,Reker-Smit C,et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats.Biochimica et Biophysica Acta-Biomembranes 2007; 1768(6):1430-1439
    25. Meijer, DKF; Beljaars, L; Molema, G, et al.Disease-induced drug targeting using novel peptide-ligand albumins. Journal of Controlled Release 2001;72(1-3):157-164
    26. Sato, Y; Murase, K; Kato, J, kobune M, Sato T, kawano y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone.Nature Biotechnology 2008; 26(4):431-442
    27. Valle MJ, Jordan GW, Haar S, Merigan TC. Characterization of immune interferon produced by human lymphocyte culture compared to other human interferons. J Immunol 1975;115:230-233
    28. Sakaida I, Uchida K, Matsumura Y, Okita K. Interferon gamma treatment prevents procollagen gene expression without affecting transforming growth factor-betal expression in pig serum-induced rat liver fibrosis in vivo. J Hepatol 1998;28:471-79
    29. Baroni GS, DAmbrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 1996; 23:1189-1199.
    30. Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL. Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 1992; 16:776-784.
    31. Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response:New insight into the role of tissue inhibitors of matrix metalloproteinases. Journal of Immunology 2001; 167(12):7017-7026
    32. Henri S, Chevillard C, Mergani A, Paris P, Gaudart J, Camilla C, et al. Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. Journal of Immunology 2002; 169(2):929-936
    33. Caldas IR, Campi-Azevedo AC, Oliveira LFA, Silveira AM, Oliveira RC, Gazzinelli G. Human schistosomiasis mansoni:Immune responses during acute and chronic phases of the infection. Acta Tropica 2008; 10(23):109-117
    34. Pockros PJ, Jeffers L, Afdhal N, et al. Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-gamma 1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology 2007;45:569-578
    35. Younes HM, Amsden BG. Interferon-y therapy:evaluation of routes of administration and delivery systems. Journal of Pharmaceutical Sciences 2002; 91:2-17.
    36. Jansen RW, Molema G, Pauwels R, Schols D, Meijer DKF. Potent in vitro anti-human immunodeficiency virus-1 activity of modified human serum albumins. Molecular Parmacology 1991;39(6):818-823
    37. Jansen RW, Schols D, Pauwels R, Declercq E, Meijer DKF. Novel, negatively charged, human serum albumins display potent and selective in-vitro anti-human immunodeficiency virus type 1 activity. Molecular Parmacology 1993;44(5):1003-1007
    38. Wright TL, Roll FJ, Jones AL, Weisiger RA. Uptake and metabolism of polymerized albumin by rat liver. Gastroenterology 1988;94:443-452
    39. Fiume L, Busi C, Di Stefano G, Mattioli A. Coupling of antiviral nucleoside analogs to lactosaminated human albumin by using the imidazolides of their phosphcric ester. Anal. Biochem.1993; 212:407-411
    40. Beljaars L, Weert B, Geerts A, Meijer DKF, Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochemical Pharmacology 2003;66(7):1307-1317
    41. Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. Journal of Biological Chemistry 2000;275(17):12743-12751
    42. Reddy KR. Controlled-release, pegylation, liposomal formulations:New mechanisms in the delivery of injectable drugs. Annals of Pharmacotherapy 2000; 34:915-923.
    43. Harris, JM; Martin, NE; Modi, M. Peglation-A novel process for modifying pharmacokinetics. Clinical Pharmacokinetics 2001;40(7):539-551
    44. Du SL, Pan H, Lu WY, wang J, Wu J, Wang JY. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats. Journal of Pharmacology and Experimental Therapeutics 2007;322(2):560-568
    45. Li F, Sun JY, Wang JY, Du SL, Lu WY, Xie C, et al. Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis Journal of Controlled Release 2008:131(1):77-82
    46. Breitkopf K, van Roeyen, C, Sawitza Ⅰ, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A,-B,-C and-D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine 2005;31(5):349-357
    47. Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. Journal of Hepatology 2006;45(3):419-428
    48. Pinzani M, Milani S, Herbst H, Defranco R, Grappone C, Gentilini A, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol 1996;148:785-800
    49. Borkham-Kamphorst E, Kovalenko E, van Roeyen CRC, Gassler N, Bomble M, Ostendorf T,et al. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Laboratory Investigation 2008; 88(10):1090-1100
    1. Meijer DKF, Molema G. Targeting of drugs to the liver. Seminars in Liver Disease 1995; 15(3):202-256
    2. Crommelin DJA, Scherphof G, Storm G. Active targeting with particulate carrier systems in the blood. Advanced drug delivery reviews 1995;17(1):49-60
    3. Meijer DKF, Jansen RW, Molema G. Drug targeting systems for antiviral agents-options and limitations. Antiviral Research 1992;18(3-4):215-258
    4. VanBerkel, TJC; vanDijk, MCM; Bijsterbosch, MK, Rensen PCN. Drug targeting by neo-lipoproteins. J. Cont. Rel.1996;41(1-2):85-89
    5. Fiume L, Busi C, Di Stefano G, Mattioli A. Targeting of antiviral drugs to the liver using glycoprotein carries. Advanced Drug Delivery Reviews 1994; 14(1):51-65
    6. Duncan R. Drug targeting:Where are we now and Wher are we going? Journal of Drug Targeting 1997;5(1):1-4
    7. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery:Pharmacokinetic considerations on biodistribution. Pharm. Res. 1996;13(6):820-831
    8. Kato Y, Sugiyama Y. Targeted delivery of peptides, proteins and genes by receptor-mediated endocytosis. Criti. Rev. Then Drug Carrier Syst. (critical reviews in therapeutic drug carrier systems).1997;14:287-331
    9. Feenter EP, King GL. The biochemical and physiological characteristics of receptors. Adv. Drug Deliv. Rev.1998;29:197-213
    10. Friedman, SL. Hepatic stellate cells:Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews 2008;88(1):125-172
    11. Chen, SW; Chen, YX; Zhang, XR, Qian H, Chen WZ, Xie WF. Targeted inhibition of platelet-derived growth factor receptor-beta subunit in hepatic stellate cells ameliorates hepatic fibrosis in rats. Gene Therapy 2008; 15(21): 1424-1435
    12. Li F, Wang JY. Targeted delivery of drugs for liver fibrosis. Expert Opinion on Drug Delivery 2009;6 (5):531-541
    13. Senoo H, Smeland S, Stang E, Roos N, Berg T, Norum KR, Blomhoff R. Stellate cells take up retion-binging protein. Cells of the Hepatic Sinusoid (Knook DL, Wisse E, eds). Kupffer Cell Foundation, Leiden,1993, pp.423-425
    14. Debleser PJ, Jannes P, Vanbuuloffers SC, Hoogerbrugge CM, Vanschravendijk CFH, Niki T, Rogiers V, Vandenbrande JL, Wisse E, Geerts A. Insulin-like growth factor-Ⅱ/mannose 6-phosphate receptor is expressed on CCL4-exposed fat-storing cells and facilitates activation of latent transforming growth-factor-beta in cocultures with sinusoidal endothelial cells. Hepatology 1995;21:1429-1437
    15. Debleser PJ, Scott CD, Niki T, Xu G, Wisse E, Geerts A. Insulin-like growth factor Il/mannose 6-phosphate-receptor expression in liver and serum during acute CCL4 intoxication in the rat. Hepatology 1996;23:1530-1537
    16. Weiner JK, Chen AP, Davis BH. E-box-binding repressor is downregulated in hepatic stellate cells during up-regulation of mannose 6-phosphate insulin-likof e growth factor-Ⅱ receptor expression in early hepatic fibrogenesis. J. Biol. Chem. 1998;273:15913-15919
    17. Ramm GA, Britton RS, O'Neill RO, Bacon BR. Indentification and characterization of a receptor for tissue ferritin on activated rat lipocytes. J, Clin. Invest.1994;94:9015
    18. Tiggelman AM, Linthorst C, Boers W, Brand HS, Chamuleau RA. Transforming growth growth-beta-induced collagen synthesis bu human liver myofibroblasts is inhibited by alpha 2-macroglobulin. J. hepotol.1997;26:1220-1228
    19. Kawser CA, Iredale JP, Winwood PJ, Arthur MJP. Rat hepatic stellate cell expression of alpha 2-macroglobulin is a feature of cellular activation: implications for matrix remodeling in hepatic fibrosis. Clin. Sci.1998;95:179-186
    20. Carloni V, Romanelli RG, Pinzani M, Laffi G, Gentilini P. Expression and function of integrin recepotors for collagen and laminin in cultured human hepatic stellate cells.Gastroenterology 1996; 110:1127-1136
    21. Rockey DC. Antifibrotic therapy in chronic liver disease. Clin Gastroenterol Hepatol 2005;3:95-107
    22. Safadi R, Friedman SL. Hepatic fibrosis-role of hepatic stellate cell activation. Med Gen Med 2002;4(3):27
    23. Breitkopf K, van Roeyen C, Sawitza, I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A,-B,-C and-D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine 2005; 31(5):349-357
    24. Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of β-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest.1994; 94:1563-1569.
    25. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells.Seminars in Liver Disease 2001;21(3) 397-416
    26. Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 1989; 84:1780-1785
    27. Heldin P, Pertoft H, Nordlinder H, Heldin CH, Laurent TC. Differential expression of platelet-derived growth factor a-and b-receptors on fat-storing cells and endothelial cells of rat liver. Exp Cell Res 1991; 193:364-369
    28. Ikeda K, Wakahara T, Wang YQ, Kadoya H, Kawada N, Kaneda K. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation. Hepatology 1999;29:1760-1707
    29. Beljaars, L; Weert, B; Geerts, A, Meijer DKF,Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochemical Pharmacology 2003;66(7):1307-1317
    30. Pinzani M, Milani S, Herbst H, Defranco R, Grappone C, Gentilini A, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol.1996;148:785-800
    31. Borkham-Kamphorst E, Kovalenko E, van Roeyen CRC, Gassler N, Bomble M, Ostendorf T, et al. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Laboratory Investigation 2008; 88(10):1090-1100
    32. Clements JM; Bawden LJ; Bloxidge RE, Catlin G,Cook AL,Craig S,et al. Two PDGF-B chain residues, arginine 27 and isoleucine 30, mediate receptor binding and activation. EMBO J 1991; 10:4113-120
    33. Scherphof GL, Kamps JAAM, Receptor versus non-receptor mediated clearance of liposomes.,Adv. Drug Delivery Rev.1998;32:81-97
    34. Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drug 1993;45:15-28
    35. Wu J, Zern MA. Modification of liposomes for liver targeting. J Hepatol. 1996;24:575-763
    36. Moghimi SM, Davis SS. Innovations in avoiding particle clearance from blood by Kupffer cells:cause for reflection. Crit. Rev. Ther. Drug Carrier. Syst. 1994;11:31-59
    37. Du SL, Pan H, Lu WY, wang J, Wu J, Wang JY. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats. Journal of Pharmacology and Experimental Therapeutics 2007;322(2):560-568
    38. Li F, Sun JY, Wang JY, Du SL, Lu WY, Xie C, et al. Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis Journal of Controlled Release 2008; 13 1(1):77-82
    39. Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. Journal of Biological Chemistry 2000;275(17):12743-12751
    40. Kumar A, Malhotra S. A simple method for introducing-SH-group at 5'-OH terminus of oligonucleotide. Nucleosides&Nucleotides 1992;11(5):1003-1007
    41. Duncan RJS, Weston PD, Wrigglesworth R. A new reagent which may be used to introduce sulfhydryl-group into proteins, and its use in the preparation of conjugates for immunoassay. Analytical Biochemistry 1983; 132(1):68-73
    42. Weston PD, Devries JA, Wriggesworth R. Conjugation of enzymes to immunoglobulins using dimaleimides. Biochem. Biophys. Acta 1980; 612:40-9.
    43. Goldbach P, Dumont S, Kessler R, Poindron P, Stamm A. Preparation and characterization of interferon-γ-containing liposomes. International Journal of Pharmaceutics 1995;123:3-39
    44.施赖伯,H.(Schreiber, Hans)药物靶向技术:物理.化学.生物方法/(美)HansSchreiber编著;应翔宇主译.北京:中国医药科技出版社,2004,pp138-176
    45. Grinko I, Geerts A, Wisse E. Experimental biliary fibrosis correlates with increased numbers of fat-storing and kupffer cells, and portal endotoxemia. J. Hepatol.1995;23:449-458
    46. Fukuta M, Okada H, Linuma H, Yanai S, Toguchi H. Insulin fragments as a carrier for peptide delivery across the blood-brain barrier. Pharm. Res. 1994;11:1681-1688
    47. Fiume L, Busi C, Preti P, Sponosa G. Conjugates of ara-AMP with lactosaminated albumin:A study on their immunogenicity in mouse and rat. Cancer Drug Deilivery 1987;4:145-150
    48. Davis SS. Biomedical application of nanotechnology-Implications for drug targeting and gene therapy. Trends Biotechnol.1997; 15:217-224
    49. Bijsterbosch MK, Van Berkel TJC. Jactosylated high density lipoprotein:a potential carrier for the site-specific delivery of drugs to parenchymal liver cells. Mol. Pharmacol.1992;41:404-411
    50. Nouriaria KT, Koskinas J, Tibbs CJ, Portmann BC, Williams R. Serum intercellular-adhesion molecule-1 levels in chronic hepatitis-c-association with disease-activity and response to interferon-alpha. Gut 1995;36(4):599-603
    51. Kamps JAAM, Morselt HWM, Swart PJ, Meijer DKF, Scherphof GL. Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc. Natl. Acad. Sci. USA 1997;94:11681-11685
    52. Eto, T, Takahashi, H. Enhanced inhibition of hepatitis B virus production by asialoglycoprotein receptor-directed interferon. Nature Medicine1999;5(5):577-581
    53. Fiume L, Di Stefano, G. Lactosaminated human albumin, a hepatotropic carrier of drugs. European Journal of Pharmaceutical Sciences 2010;40(4):253-262
    54. Adrian JE, Kamps JAAM, Scherphof GL, Meijer DKF, Van Loenen-Weemaes AM, Reker-Smit C, et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats. Biochimica et Biophysica Acta-Biomembranes 2007;1768(6):1430-1439
    55. Li LJ, Wang HY, Ong ZY, Xu KJ, Ee PLR, Zheng SS, et al. Polymer-and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today 2010;5(4):296-312
    56. Adrian, JE; Kamps, JAAM; Scherphof, GL;Meijer DKF;Van Loenen-Weemaes AM,Reker-Smit C,et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats.Biochimica et Biophysica Acta-Biomembranes 2007; 1768(6):1430-1439
    57. Meijer, DKF; Beljaars, L; Molema, G, et al. Disease-induced drug targeting using novel peptide-ligand albumins. Journal of Controlled Release 2001;72(1-3):157-164
    58. Sato, Y; Murase, K; Kato, J, kobune M, Sato T, kawano y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone.Nature Biotechnology 2008; 26(4):431-442
    59. Fredriksson, L; Li, H; Eriksson, U. The PDGF family:four gene products form five dimeric isoforms. Cytokine&Growth Factor Reviews 2004;15(4):197-204
    60. Prakash J, de Jong E, Post E, Gouw ASH, Beljaars L, Poelstra K. A novel approach to deliver anticancer drugs to key cell types in tumors using a PDGF receptor-binding cyclic peptide containing carrier. Journal of Controlled Release 2010; 145(2):91-101
    61. Schoemaker MH; Rots MG; Beljaars L, et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Molecular Pharmaceutics 2008; 5(3):399-406
    62. Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes:ligand specificities of the RGD-directed integrins. Biotechnology (N.Y.) 1995; 13:265-270.
    63. Marcelino J, McDevitt CA. Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen. Biochim Biophys Acta 1995;1249:180-188
    64. Wright TL, Roll FJ, Jones AL, Weisiger RA. Uptake and metabolism of polymerized albumin by rat liver. Gastroenterology 1988;94:443-452
    65. Fiume L, Busi C, Di Stefano G, Mattioli A. Coupling of antiviral nucleoside analogs to lactosaminated human albumin by using the imidazolides of their phosphcric ester. Anal. Biochem.1993; 212:407-411
    1. Friedman SL, The cellular basis of hepatic fibrosis:mechanisms and treatment strageies. N. Engl. J. Med.1993;323:1828-1835
    2. Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells:new insights and prospects for therapy. J. G astro enter ol. Hepatol.1999;14(7):6182633
    3. Hendriks HF, Verhoofstad WA, Brouwer A, et al. Perisnusiodal fat-storing cells are the main vitamin A storge sites in rat liver. Exp. Cell Res.1985; 160:138-149
    4. Geerts A. History, hreogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Sem. Liv. Dis 2001;21:311-335
    5. Friedman SL. Molecular regulation of hepatic fibrosis, an intergrated cellular response to issue injury. J. Biol. Chem 2000;275:2247-2250
    6. Bachem MG, Meyer D. Melchior R, Sell KM. Gressner AM. Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self perpetuation in liver fibrogenesis. J Clin Invest 1992;89:19-27
    7. Friedman SL, Roll FJ. Boyles J, Arenson DM. Bissell DM. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 1989:264:10756-10762.
    8. Geerts A, Vrijsen R, Rauterberg J, Burt A, Schellinck P. Wisse E. In vitro differentiation of fat-storing cells parallels marked increase of collagen synthesis and secretion. J Hepatol 1989;9:59-68
    9. Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 1989:84:1780-1785
    10. Matsuoka M. Tsukamoto H. Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta:implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepalology 1990;11:599-605
    11. Matsuoka M, Zhang MY, Tsukamoto H. Sensitization of hepatic lipocytes by high-fat diet to stimulatory effects of Kupffer cell-derived factors:implication in alcoholic liver fibrogenesis. Hepalology 1990;11:173-182.
    12. Knook DL. Seffelaar AM. de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Exp Cell Res 1982; 139:468-471
    13. Friedman SL. Roll FJ. Isolation and culture of hepatic lipocytes. Kupffer cells, sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 1987:161:207-218,
    14. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes:the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci USA 1985:82:8681-8685
    15. Ramm GA. Isolation and culture of rat hepatic stellate cells. J Gastroenterol Hepatol 1998; 13 (8):846-851
    16.高春芳,孔宪涛,范列英。大鼠肝星状细胞、Kupffer细胞的分离、培养和鉴定。中华消化杂志1995;15(3):142-145
    17.陈原稼,王宝恩,马雪梅,等。大鼠贮脂细胞的分离及培养。肝脏病杂志1993;1(1):17-20
    18. Schafer S, Zerbe O, Gressner AM. The synthesis of Proteglycans in fat-Storing cells of rat liver. Hepatology 1987;7(4):680-687
    19.江谦,夏穗生,姜汉英,等。大鼠肝细胞、kupffer和Ito细胞的分离与培养和鉴定。中华实验外科杂志1994;11(2):722-731
    20.高春芳,孔宪涛,范列英。大鼠肝星状细胞、kupffer细胞的分离、培养和鉴定。中华消化杂志1995,15(3):142-145
    21.张斌,王灵台,陈建杰。大鼠肝贮脂细胞、肝细胞的同时分离和培养。中西医结合肝病杂志1998;8(4)212-214
    22.罗云,戴立里,沈鼎明,等。原位循环灌流法分离大鼠肝星状细胞。重庆医科大学学报2002;27(1:48-49,52
    23.翁山耕,冷希圣,魏玉华,彭吉润,郑恩涛,程继华,张佑彬,吕建锋,杜如昱。改良法大鼠肝星状细胞的分离培养及鉴定。北京大学学报(医学版)2001; 3 (1) : 83-86
    24. Blomhoff R, BergT. Isolation and cultivation of rat liver stellate cells. Meth Enxymol 1990;190:58-71
    25. Cassiman D, van Pelt J, De Vos R, et al. Synaptophysin:A novel marker for human and rat hepatic stellate cells. Am J Pathol 1999;155:1831-1839
    26. Fibbi G, Pucci M, Grappone C, et al. Functions of the fibrinolytic system in human Ito cells and its control by basic fibroblast and plateletderived growth factor. Hepatology 1999;29:868-878
    27. Victoria Carter, Hazel C Cable, B Ann Underhill, et al. Isolation of Plasmodium berghei ookinetes in culture using Nycodenz density gradient columns and magnetic isolation. Malaria Journal 2003;2:35
    28. Ballardini G, Groff P, de Badiali GL. Ito cell heterogeneity:desmin-negative Ito cells in normal rat liver. Hepatology 1994;19(2):440-446
    29. Neubauer K, Knittel T, Aurisch S. Glial fibrillary acidic protein-a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol 1996;24:719-730
    30. Niki T, de Bleser PJ, Xu G. Comparison of glial fibrillary acidic protein and desmin staining in normal and CC14 induced fibrotic rat liver. Hepatology 1996;23:1538-1545
    31. Borkham-Kamphorst E, van Roeyen CR, Ostendorf T. Floege J. Gressner AM. Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol 2007:46(6):1064-1074
    32. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci 2002;7:d1720-1726
    33. Ramadori G, Veit T, Schwogler S, Dienes HP, Knittel T, Rieder H. Meyer zum Buschenfelde KH. Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pal hol Incl Mol Pathol 1990;59:349-357
    34. Rockey DC, Boyles JK. Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture.J Submicrosc Cytol Pathol 1992:24:193-203
    35. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M. Laffi G. Montalto P, Gentilini P. Monocyte chcmotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999;29:140-148
    36. Schaefer B. Rivas-Estilla AM, Meraz-Cruz N, Reyes-Romero MA. Hernandez-Nazara ZH, Dominguez-Rosales JA, Schuppan D,Greenwel P. Rojkind M. Reciprocal modulation of matrix metalloproteinase-13 and type I collagen genes in rat hepatic stellate cells.Am J Pathol 2003;162:1771-1780
    37. Arthur MJ, Stanley A. Iredale JP Rafferty JA. Hembry RM. Friedman SL. Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of gene expression, protein synthesis and proteinase activity. Biochem J 1992:287:701-707
    38. Inagaki Y,Truter S, Greenwel P, Rojkind M, Unoura M, Kobayashi K, Ramirez F. Regulation of the alpha 2(1) collagen gene transcription in fat-storing cells derived from a cirrhotic liver. Hepatology 1995;22:573-579
    39. Ito Y. Aten J, Bende RJ, Oemar BS, Rabelink TJ. Weening JJ. Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998;53:853-861
    40. Arthur MJ. Fibrogenesis.Ⅱ. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointesl Liver Physiol 2000; 279:G245-G249
    41. Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H. Arthur MJ, Benyon C. Iredale JP. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition:implications for reversibility of liver fibrosis. J Biol Chem 2002;277:11069-11076
    42. Breitkopf K. Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 2006;44:57-66
    43. Gressner AM, Weiskirchen R,Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002:7:D793-807
    44. Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta smad signal in hepatic fibrogenesis. Gut 2007:56:284-292
    45. Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chew 2004;279:8848-8855
    46. Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P. Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest 2002;82:767-774
    47. Paradis V, Dargere D. Vidaud M, De Gouville AC. Huet S, Martinez V, Gauthier JM, BaN, Sobesky R, Ratziu V, Bedossa P. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology 1999;30:968-976
    48. Rachfal AW, Brigstock DR. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res 2003;26:1-9
    49. Anania FA, Womack L, Jiang M. Saxena NK. Aldehydes potentiate alpha(2)(I) collagen gene activity by JNK in hepatic stellate cells. Free Radical Biol Med 2001;30:846-857
    50. Garcia-Ruiz I, de la Torre P, Diaz T, Esteban E, Fernandez I, Munoz-Yague T, Solis-Herruzo JA. Spl and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(1) gene expression in cultured hepatic stellate cells. J Biol Chem 2002;277:30551-30558
    51. Inagaki Y. Mamura M, Kanamaru Y, Greenwel P, Nemoto T, Takehara K, Ten Dijke P. Nakao A. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physioy 2001;187:117-123
    52. Inagaki Y, Nemoto T, Kushida M, Sheng Y, Higashi K, Ikeda K. Kawada N, Shirasaki F, Takehara K, Sugiyama K, Fujii M, Yamauchi H, Nakao A, Dc Crombrugghe B. Watanabe T, Okazaki I. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology 2003;38:890-899
    53. Inagaki Y, Truter S, Greenwel P, Rojkind M, Unoura M, Kobayashi K, Ramirez F. Regulation of the alpha 2(I) collagen gene transcription in fat-storing cells derived from acirrhotic liver. Hepatology 1995;22:573-579
    54. Lindquist J. Stefanovic B, Brenner D. Regulation of collagen alphal(I) expression in hepatic stellate cells. J Gaslroenlerol 2000;35 Suppl 12:80-83
    55. Stefanovic B. Hellerbrand C, Brenner DA. Regulatory role of the conserved stem-loop structure at the 5'end of collagen alphal (I) mRNA. Mol Cell Biol 1999:19:4334-4342
    56. Stefanovic B, Hellerbrand C, Holcik M, Briendl M, Aliebhaber S, Brenner DA. Posttranscriptional regulation of collagen alpha 1 (I) mRNA in hepatic stellate cells. Mol Cell Biol 1997;17:5201-5209
    57. Stefanovic B, Stefanovic L, Schnabl B, Bataller R. Brenner DA. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type Ⅰ synthesis. Mol Cell Biol 2004;24:1758-1768
    58. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2006;364:33-60
    59. Hellerbrand C, Wang SC, Tsukamoto H, Brenner DA, Rippe RA. Expression of intracellular adhesion molecule 1 by activated hepatic stellatr cells. Hepatology 1996;24:670-676
    60.陆伦根,曾民德,李继强,等。肝星状细胞激活与ICAM-1的表达。华人消化杂志1998;6(7):567-569
    1. Fredriksson, L; Li, H; Eriksson, U. The PDGF family:four gene products form five dimeric isoforms. Cytokine&Growth Factor Reviews 2004; 15(4):197-204
    2. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, et al. PDGF-C is a new protease-activated ligand for the PDGF-receptor. Nat Cell Biol 2000; 2:302-9
    3. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, et al. PDGF-D is a specific, protease-activated ligand for the PDGF-receptor. Nat Cell Biol 2001; 3:512-6
    4. LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001; 3:517-21
    5. Clements JM; Bawden LJ; Bloxidge RE, Catlin G, Cook AL, Craig S, et al. Two PDGF-B chain residues, arginine 27 and isoleucine 30, mediate receptor binding and activation. EMBO J 1991; 10:4113-4120
    6. Beljaars, L; Weert, B; Geerts, A, Meijer DKF,Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochemical Pharmacology 2003;66(7):1307-1317
    7. Schoemaker MH, Rots MG, Beljaars L, Ypma AY, Janson PLM, Poelstra K, Moshage H, Haisma HG. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Molecular Pharmaceutics 2008; 5(3):399-406
    8. Matsuno H, Stassen JM, Vermylen J, et al. Inhibition of intergrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation 1994;90:2203-2206
    9. Chen X, Plasencia C, Hou Y, et al. Synthesis and biological evaluation of dimric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J MedChem 2005;48:1098-1106
    10. Meijer DKF, Molema G. Targetin of drugs to the liver. Semin Liver Dis 1995;15:202-256
    11. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol. Rew. 1997;77:759-803
    12. Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes. Adv. Drug Deliv. Rev.1989;4:49-65
    13. Safadi R, Friedman SL. Hepatic fibrosis-role of hepatic stellate cell activation. Med Gen Med 2002;4(3):27
    14. Breitkopf K, van Roeyen, C, Sawitza I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A,-B,-C and-D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC).Cytokine 2005; 31(5):349-357
    15. Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of β-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest.1994; 94:1563-1569.
    16. Pinzani, M; Marra, F. Cytokine receptors and signaling in hepatic stellate cells.Seminars in Liver Disease 2001;21(3) 397-416
    17. Czochra, P; Klopcic, B; Meyer, E, Herkel J, Garcia-Lazaro JF, Thieringer F,et al.Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. Journal of Hepatology 2006;45(3):419-428
    18. Pinzani M, Milani S, Herbst H, Defranco R, Grappone C, Gentilini A, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol 1996;148:785-800
    19. Borkham-Kamphorst E, Kovalenko E, van Roeyen CRC, Gassler N, Bomble M, Ostendorf T, et al. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Laboratory Investigation 2008; 88(10):1090-1100
    20. Xu LM, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, et al. Human hepatic stellate cell lines, LX-1 and LX-2:new tools for analysis of hepatic fibrosis. Gut 2005; 54:142-151
    21. Tomoda H, Kishimoto Y, Lee YC. Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages. J Biol Chem 1989;264:15445-15450
    1. Wills RJ. Clinical pharmacokinetics of interferons. Clin Pharmacokinet 1990; 19: 390-399.
    2. Bocci V. Evaluation of routes of administration of interferon in cancer:A review and a proposal. Cancer Drug Deliv 1984;1:337-351
    3. Bocci V. Physichochemical and biological properties of interferon and their potential uses in drug delivery systems. Crit Rev Ther Drug Carrier Syst 1992; 9: 91-133
    4. Hamidi, M; Zarrin, A; Foroozesh, M. Novel delivery systems for interferons. Critical Reviews in Biotechnology 2007;27(3):111-127
    5. Younes, HM; Amsden, BG. Interferon-gamma therapy:Evalution of routes of administration and delivery systems. J Pharm Sic 2002;91(1):2-17
    6. Strander H. Interferon therapy for tumor disease in man:Prospects for the near future. In:MunkK, KirchnerH, editors. Interferon, contributions to oncology, 1982; 11th ed., Basel:Karger S, pp.227-233.
    7. Cesario TC. The clinical implications of human interferon. Med Clin North Am 1983; 67:1147-1162
    8. Ellerhorst JA, Kilbourn RG, Amato RJ, Zukiwski AA, Jones E, Logothetis C. PhaseⅡtrial of low dose γ-interferon in metastatic renal cell carcinoma. J Urol 1994.;152:841-845
    9. Friedman RM.1977. Antiviral activity of interferons. Bacteriol Rev 41:543-567
    10. Gresser I, Tovey MG, Maury C, Chouroulinkov I.1975. Lethality of interferon preparations for newborn mice. Nature 258:76-78.
    11. Johnson HM, Smith BG, Baron S. Inhibition of the primary in vitro antibody response by interferon preparations. J Immunol 1975; 44:403-410.
    12. Pestka S, Langer JA, Zoon KC, Samuel CE.1987. Interferons and their actions. Ann Rev Biochem 56:727-777.
    13. Mallat A, Preaux AM, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology 1995; 21:1003-1010
    14. Sakaida I,Uchida K, Matsumura Y, Okita K. Interferon gamma treatment prevents procollagen gene expression without affecting transforming growth factor-beta1 expression in pig serum-induced rat liver fibrosis in vivo. J Hepatol 1998;28:471-479
    15. Baroni GS, DAmbrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 1996; 23:1189-1199.
    16. Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL. Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 1992; 16:776-784.
    17. Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA.Regulation of hepatic fibrosis and extracellular matrix genes by the Th response:New insight into the role of tissue inhibitors of matrix metalloproteinases. Journal of Immunology 2001; 167(12):7017-7026
    18. Stone RM, Spriggs DR, Arthur KA, Mayer RJ, Griffin J, Kulfe DW. Recombinant human gamma interferon administered by continuous intravenous infusion in acute myelogenous leukemia and myelodysplastic syndromes. Am J Clin Oncol 1993; 16:159-163.
    19. Mani S, Poo WJ. Single institution experience with recombinant gamma-interferon in the treatment of patients with metastatic renal cell carcinoma. Am J Clin Oncol 1996; 19:149-153.
    20. Hillman GG, Younes E, Visscher D, Hamzavi F, Kim S, Lam JS, Montecillo EJ, Ali E, Pontes JE, Puri RK, Haas GP. Inhibition of murine renal cell carcinoma pulmonary metastases by systemic administration of interferon y:Mechanism of action and potential for combination with interlukin 4. Clin Cancer Res 1997; 3:1799-1806.
    21. Thom AK, Fraker DL, Taubenberger JK, Norton JA. Effective regional therapy of experimental cancer with paralesional administration of tumor necrosis factor-a+ interferon-y. Surg Oncol 1992;1:291-298.
    22. Zoon KC, Arnheiter H.1984. Studies of the interferon receptors. Pharmacol Ther 24:259-278.
    23. Aguet M, Mogensen KE. Interferon receptors. In:Gresserl, editor. Interferon. 1983, London:Academic Press, pp.1-21
    24. Goldstein D, Gockerman J, Krishnan R, Ritchie J Jr. Tso CY, X L, Hood LE, Ellinwood E, Laszlo J. Effect of y-interferon on the endocrine system:Results from a phase I study. Cancer Res 1987; 47:6397-6401
    25. Bussiere JL, Hardy LM, Hoberman AM, Foss JA, Christian MS. Reproductive effects of the chronic administration of murine interferon-gamma. Reprod Toxicol 1996;10:379-39
    26. Wagstaff J, Smith D, Nelmes P, Loynds P, Crowther D. Cancer Immunol Immunother 1987; 25:54-58
    27. Pockros PJ, Jeffers L, Afdhal N, et al. Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-gamma 1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology 2007;45:569-578
    28. Novo E, Marra F, Zamara E, Valfre di Bonzo L. Caligiuri A. Cannito S, Antonaci C, Colombatto S. Pinzani M. Parola M. Dose dependent and divergent effects of superoxide anion on cell death, proliferation, migration of activated human hepatic stellate cells. Gut 2006; 55:90-97
    29. Andersen KB, Nilsson A. Blomhoff HK, Oyen TB, Gabrielsen OS, Norum KR. Blomhoff R. Direct mobilization of retinol from hepatic perisinusoidal stellate cells to plasma. J Biol Chem 1992;267:1340-1344
    30. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse:a link between apoptosis and fibrosis. Gastroenterology 2002; 123:1323-1330
    31. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006;26:1175-1186
    32. Canbay A, Feldstein AE, Higuchi H. Werneburg N, Grambihler A, Bronk SF, Gores GJ. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003;38:1188-1198
    33. Jarnagin WR. Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing:cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 1994:127:2037-2048
    34. Bachem MG, Melchior R, Gressner AM. The role of thrombocytes in liver fibrogenesis:effects of platelet lysate and thrombocyte-derived growth factors on the mitogenic activity and glycosaminoglycan synthesis of cultured rat liver fat storing cells. J Clin Chem Clin Biochem 1989; 27:555-565
    35. Canbay A, Taimr P. Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003:83: 655-663
    36. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clinic Chimica Acta 2006; 364(1-2):33-60
    37. Gaca MD, et al. Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells:evidence for matrix-dependent deactivation of stellate cells. Matrix Biol 2003;22(3):229-239
    38. Friedman SL. Roll FJ, Boyles J, et al. Maintenance of differentiated phenotype of culture rat hepatic lipocyted by basement membrane matrx. J Biol Chem 1989;264(18):10756-10762
    39. Issa R, Zhou X, Trim N, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCL4-induced liver fibrosis, persistence of activated hepatic stellate cells, anddiminished hepatocyte regeneration. FASEB J 2003;17(1):47-49
    40. Pockros, PJ. Antifibrotics for Chronic Hepatitis C. Clinics in Liver Disease 2009;13(3):365-373
    41. Rockey, DC. Current and Future Anti-Fibrotic Therapies for Chronic Liver Disease. Clinics in Liver Disease 2008;12 (4):939-961
    42. De BK, Bandyopadhyay K, Das TK, et al. Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am J Gastroenterol 2003; 98:1371-6.
    43. Debernardi-Venon W, Martini S, Biasi F, et al. AT1 receptor antagonist Candesartan in selected cirrhotic patients:effect on portal pressure and liver fibrosis markers. J Hepatol 2007:46:1026-33.
    44. Gonzalez-Abraldes J, Albillos A, Banares R, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in crrhosis.Gastroenterology 2001;121:382-8.
    45. Schepke M, Werner E, Biecker E, et al. Hemodynamic effects of the angiotensin Ⅱ receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology 2001;121:389-95.
    46. Tripathi D, Therapondos G, Lui HF, et al. Chronic administration of losartan, an angiotensinⅡreceptor antagonist, is not effective in reducing portal pressure in patients with preascitic cirrhosis. Am J Gastroenterol 2004; 99:390-4.
    47. Muir AJ, Sylvestre PB, Rockey DC. Interferon gamma-1b for the treatment of fibrosis in chronic hepatitis C infection. J Viral Hepat 2006; 13:322-8.
    48. Pockros PJ, Jeffers L, Afdhal N, et al. Final results of a double-blind, placebocontrolled trial of the antifibrotic efficacy of interferon-gammalb in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology 2007; 45:569-78.
    49. Weng HL, Wang BE, Jia JD, et al. Effect of interferon-gamma on hepatic fibrosis in chronic hepatitis B virus infection:a randomized controlled study. Clin Gastroenterol Hepatol 2005;3:819-28.
    50. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. JBiol Chem 2000; 275:35715-22
    51. Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004;279:11392-401
    52. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006; 355:2297-307.
    53. Di Sario A, Bendia E, Macarri G, et al. The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagen alpha 1(1), TIMP-1 and MMP-2. Dig Liver Dis 2004;36:744-51.
    54. Di Sario A, Bendia E, Svegliati Baroni G, et al. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J Hepatol 2002; 37:584-91.
    55. Garcia L, Hernandez Ⅰ, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37:797-805
    56. Sakaida I, Tsuchiya M, Kawaguchi K, et al. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J Hepatol 2003; 38:762-9.
    57. Shimizu I, Ma YR, Mizobuchi Y, et al. Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats, [see comments]. Hepatology 1999; 29:149-60.
    58. Zhang XL, Liu L, Jiang HQ. Salvia miltiorrhiza monomer IH764-3 induces hepatic stellate cell apoptosis via caspase-3 activation. World J Gastroenterol 2002; 8:515-9.
    59. Luk JM, Wang X, Liu P, et al. Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer:from laboratory discovery to clinical evaluation. Liver Int 2007; 27:879-90.
    60. Wang BE. Treatment of chronic liver diseases with traditional Chinese medicine.J Gastroenterol Hepatol 2000; 15(15):E67-70
    61. Stedman C. Herbal hepatotoxicity. Semin Liver Dis 2002; 22:195-206
    62. Poupon RE, Lindor KD, Pares A, et al. Combined analysis of the effect of treatment with ursodeoxycholic acid on histologic progression in primary biliary cirrhosis. J Hepatol 2003; 39:12-6.
    63. Stiehl A. Ursodeoxycholic acid in the treatment of primary sclerosing cholangitis. Ann Med 1994; 26:345-9
    64. Thompson K, Maltby J, Fallowfield J, et al. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis [see comments]. Hepatology 1998; 28:1597-606.
    65. Nelson DR, Tu Z, Soldevila-Pico C, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 2003; 38:859-68
    66. Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 2008; 29:9-16
    67. Brown KE, Poulos JE, Li L, et al. Effect of vitamin E supplementation on hepatic fibrogenesis in chronic dietary iron overload. Am J Physiol 1997; 272:G 116-23
    68. Czaja MJ, Weiner FR, Eghbali M, et al. Differential effects of gamma-interferon on collagen and fibronectin gene expression. J Biol Chem 1987; 262:13348-51
    69. Rockey DC, Chung JJ. Interferon gamma inhibits lipocyte activation and extracellular matrix mRNA expression during experimental liver injury: implications for treatment of hepatic fibrosis. J Investig Med 1994; 42:660-70.
    70. Rockey DC, Maher JJ, Jarnagin WR, et al. Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 1992; 16:776-84.
    71. Henri S, Chevillard C, Mergani A, Paris P, Gaudart J, Camilla C, et al. Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. Journal of Immunology 2002; 169(2):929-936
    72. Caldas IR, Campi-Azevedo AC, Oliveira LFA, Silveira AM, Oliveira RC, Gazzinelli G. Human schistosomiasis mansoni:Immune responses during acute and chronic phases of the infection. Acta Tropica 2008; 10(23):109-117
    73. Clements JM, Bawden LJ, Bloxidge RE, Catlin G, Cook AL,Craig S, et al. Two PDGF-B chain residues, arginine 27 and isoleucine 30, mediate receptor binding and activation. EMBOJ 1991; 10:4113-1120
    74. Beljaars L, Weert B, Geerts A, Meijer DKF, Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochemical Pharmacology 2003;66(7):1307-1317
    75. Lee JI, Lee KS, Paik YH, Nyun Park Y, Han KH, Chon CY, et al. Apoptosis of hepatic stellate cells in carbon tetrachloride induced acute liver injury of the rat: analysis of isolated hepatic stellate cells. J Hepatol 2003; 39:960-966
    76. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 2003; 37:653-664
    77. Novo E, Marra F, Zamara E, Valfre di Bonzo L, Monitillo L, Cannito S, et al. Overexpression of Bcl-2 by activatedhumanhepatic stellate cells:resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut 2006; 55:1174-1182
    78. Kawada N. Human hepatic stellate cells are resistant to apoptosis:implications for human fibrogenic liver disease. Gut 2006; 55:1073-1074
    79. Wang XZ, Zhang SJ, Chen YX, Chen ZX, Huang YH, Zhang LJ. Effects of platelet-derived growth factor and interleukin-10 on Fas/Fas-ligand and Bcl-2/Bax mRNA expression in rat hepatic stellate cells in vitro. World J Gastroenterol 2004; 10:2706-2710
    80. Chor SY, Hui AY, To KF et al. Anti-proliferative and pro-apoptotic effects of herbal medicine on hepatic stellate cell. J Ethnopharmacol.2005; 100:180-186
    81. Zhao YZ, Kim JY, Park EJ et al. Tetrandrine induces apoptosis in hepatic stellate cells. Phytother Res 2004; 18:306-309
    1. Bocci V. Physichochemical and biological properties of interferon and their potential uses in drug delivery systems. Crit Rev Ther Drug Carrier Syst 1992; 9: 91-133
    2. Fountoulakis M, Gentz R. Effect of glycosylation on properties of soluble interferon gamma receptors produced in prokaryotic and eukaryotic expression system. Biotech 1992; 10:1143-1147
    3. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery:Pharmacokinetic considerations on biodistribution. Pharm Res 1996;13:820-831
    4. Rowland M, Mclachlan A. Pharmacokinetic consideration of regional administration and drug targeting:Influence of site of input in target tissue and flux of binding protein. J Parmacokinet Biopharm 1996;24:369-387
    5. Melgert BN, Olinga P, Poelstra K, Slooff MJH, Meijer DKF, Groothuis GMM. Human liver lobe perfusion (HLLP) as a tool for studing cellular distribution and handling of liver targeting preparation. Hepatology 1998;28:188A
    6. Wills RJ. Clinical pharmacokinetics of interferons. Clin Pharmacokinet 1990; 19: 390-399
    7. Kurzrock R, Rosenblum MG, Sherwin SA, Rios A, Talpaz M, Quesada JR, Gutterman JU. Pharmacokinetics, single-dose tolerance, and biological activity of recombinant gamma-interferon in cancer patients. Cancer Res 1985; 45:2866-2872
    8. Chen SA, Izu AE, Baughman RA, Ferraiolo BL, Mordenti J, Reed BR, Jaffe HS, Green JD. Pharmacokinetic disposition of recombinant human interferon-gamma following intravenous, subcutaneous and intramuscular administration in normal, male volunteers. J Interferon Res 1990; 10:S125
    9. Sherwin SA, Foon KA, Abrams PG, Heyman MR, Ochs JJ, Watson T, Maluish A, Oldham RK. A preliminary Phase I trial of partially purified interferon-gamma in patients with cancer. J Biol Resp Mod 1984; 3:599-607
    10. Gutterman JU, Rosenblum MG, Rios A, Fritsche HA, Quesada JR. Pharmacokinetics study of partially pure interferon-y in cancer patients. Cancer Res 1984; 44:4164-4171
    11. Bocci V. Distribution, catabolism, and pharmacokinetics of interferons. In: FinterNB, OldhamR, editors. Interferon 1985, Amsterdam:Elsevier, pp.47-72
    12. Perez R, Lipton A, Harvey HA, Simmonds MA, Romano PJ, Imboden SL, Giudice G, Downing MR, Alton NK. A phase I trial of recombinant human gamma interferon (IFN-gamma 4A) in patients with advanced malignancy. J Biol Resp Mod 1988; 7:309-317.
    13. Foon KA, Sherwin SA, Abrams PG, Stevenson HC, Holmes P, Maluish AE, Oldham RK, Herberman RB. A phase I trial of recombinant gamma interferon in patients with cancer. Cancer Immunol Immunother 1985; 20:193-197.
    14. Hayakawa M, Hatano T, Miyazato T, Sato K, Saito S, Osawa A. Studies on antitumor effect of human interferon:Effect of massive pulsatile administration of rIFN-gamma on advanced renal cell carcinoma. Jap J Urol 1987;78:1784-1791
    15. Dow SW, Schwarze J, Heath TD, Potter TA, Glefand EW. Sytemic and local interferon y gene delivery to the lungs for treatment of allergen-induced airway hypersensitivity in mice. Hum Gene Ther 1999;10:1905-1924.
    16. Mani S, Poo WJ. Single institution experience with recombinant gamma-interferon in the treatment of patients with metastatic renal cell carcinoma. Am J Clin Oncol 1996;19:149-153
    17. Hillman GG, Younes E, Visscher D, Hamzavi F, Kim S, Lam JS, Montecillo EJ, Ali E, Pontes JE, Puri RK, Haas GP. Inhibition of murine renal cell carcinoma pulmonary metastases by systemic administration of interferon y:Mechanism of action and potential for combination with interlukin 4. Clin Cancer Res 1997;3:1799-1806
    18. Wills RJ.1990. Clinical pharmacokinetics of interferons. Clin Pharmacokinet 19: 390-399
    19. Bocci V. Evaluation of routes of administration of interferon in cancer:A review and a proposal. Cancer Drug Deliv 1984;1:337-351
    20. Ishak K, Baptista A, Bianchi L, Callea F, Groote JD, Gudat F. Histological grading and staging of chronic hepatitis. J Hepatol 1995; 22:696-699
    21.马超,匡安仁。受体介导的长循环脂质体的制备及其研究进展。生物医学工程学杂志,2007;24(5):1200-1204
    22.施赖伯,H.(Schreiber, Hans)药物靶向技术:物理.化学.生物方法/(美)Hans Schreiber编著;应翔宇主译.北京:中国医药科技出版社,2004,pp138-176
    23. Olinga P, Meijer DKF, Slooff MJH, Groothuis GMM. Liver slices in vitro pharmacotoxicology with special reference to the use of human liver tissue. Toxicol. In Vitro 1998;12:77-100
    24. Meijer DKF, Keulemans K, Mulder GJ. Isolated perfused rat liver technique. Methods Enzymol 1981;77:81-94
    25. Beljaars L, Poelstra K, Moiema G, Meijer DKF. Targeting of sugar-and charge-modifield albumins to fibrotic rat livers:The accessibility of hepatic cells after chronic bile duct ligation. J hepatol 1998; 29:579-588
    26. Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic, and ophthalmic potential. Drugs 1993;45:15-28
    27. Boles Ponto LL, Ponto JA. Use and limitations of position emission tomography in clinical pharmacokinetics/dynamics (Part Ⅰ). Clin Pharmacokinet 1992;22:211-222
    28. Boles Ponto LL, Ponto JA. Use and limitation of position emission tomography in clinical pharmacokinetics/Dynamics (Part Ⅱ). Clin Pharmacokinet 1992;22:211-222
    29. Pimm MV, Perkins AC, Strohalm J, Ulbrich K, Duncan R. Gamma scintigraphy of a 123I-labelledN-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugate containing galactosamine following intravenous administration to nude mice bearing hepatic human colon carcinoma. J Drug Target 3,1996;3:385-390
    30. Haas M, Kluppel ACA, Wartna ES, Moolenaar F, Meijer DKF, De Jong PE, De Zanger R. Drug targeting to the kidney:Renal delivery and degradation of a naproxen-lysozyme conjugate in vivo. Kidney Int 1997;52:1693-1699
    31. Beljaars L, Weert B, Geerts A, Meijer DKF, Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochemical Pharmacology 003;66(7):1307-1317
    32. Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. Journal of Biological Chemistry 2000;275(17):12743-12751
    33. Beljaars L, Molema G, Weert B, Bonnema H, Olinga P, Groothuis. DKF, Poelstra K. Albumin modified with mannose 6-phos Phate:a potential carrier for selective delivery of anti-fibrotic drug to rat and human hepatic stellate cells. Hepatology 1999;29:1486-1493
    34. Braet F, De Zanger R, Sassoki T, Baekeland M, Janssens P, Smedsrod B, Wisse E. Lab Invest 1994;70:944-952
    35. Geerts A, Niki T, Hellemans K, De Graemer D, Van den Berg K, Lazou JM, Stange G, Van de Winkel M, De Bleser PJ. Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology 1998;27:590-598
    36. Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem,1987; 161:207-218
    37. Dong QG, Bernasconi S, Lostaglio S, De Calmanovici RW, Martin Padura I, Breviario F, Garlanda C, Ramponi S, Mantovani A, Vecchi A. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cells lines from the murine lung and subcutaneous sponge implants. Arterioscler Thromb Vasc Biol 1997;17:1599-1604
    38. Sato, Y; Murase, K; Kato, J, kobune M, Sato T, kawano y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperonc.Nature Biotechnology 2008; 26(4):431-442
    1. Ishak K, Baptista A, Bianchi L, Callea F, Groote JD, Gudat F. Histological grading and staging of chronic hepatitis. J. Hepatol 1995; 22:696-699
    2.邝满元,刘映霞,李映菊。肝纤维化动物模型造模方法的研究进展。现代生物医学进展2008;8(9):1768-1770,1762
    3. Nabeshima Y, Tazuma S, Kanno K, et al. Anti-fibrogenic function of angiotensin II type 2 receptor in CCL4-induced liver fibrosis. Biochem Biophys Res Commun, 2006;346 (3):658-664
    4. Krahenbuhl S, Weber FL Jr, Brass EP. Decreased hepatic glycogen contentand accelerated response to starvation in rats with carbon tetrachloride-induced cirrhosis. Hepatology 1991; 14 (6):1189-1195
    5. Proctor E, Chatamra K.Standardized micronodularcirrhosis in the rat. Eur Surg Res 1984;16(3):182-186
    6. Guo Y, Wang H, Zhang C.Establishm entof ratprecision-cutfibrotic liver slice technique and its application in verapamil metabolism. Clin Exp Pharm acol Physiol,2007;34 (5-6):406-413
    7. George J, Rao KR, Stern R, Dim ethylnitrosam ine-induced liverinjury in rats:the early deposition ofcollagen. Toxicology 2001; 156 (2-3):129-138
    8. K im MR, Kim HS, Lee MS, et al. Cell cycle protein profile of the hepatic stellate cells (HSCs) in dim ethylnitrosamine-induced rat hepatic fibrosis. Exp Mol Med 2005;37 (4):335-342
    9. Kitamura K, Nakamoto Y, Akiyama M, etal. Pathogenic roles of tumor necrosis factor receptor p55 3/m ediated signals in dim ethylnitrosamine-induced m urine Liver fibrosis. Laboratory Investigation 2002,82 (5):571-583
    10. Vendemiale G, Grattagliano Ⅰ, Caruso M L, etal. Increased oxidative stress in dim ethylnitrosam ine-induced liver fibrosis in the rat:effect of N-acetylcysteine and interferon-alpha. Toxicol Appl Pharmaco 2001; 175 (2):130-139
    11. Yan CG, Xie Q, Zhou XQ, et al. The expression of toll-like receptor 4 in the endotoxin-induced acute hepatic injury. Chinese Journal of Infectious Diseases 2004;3 (22):189 (In C hinese)
    12. Bozova S, Elpek GO. Hypoxia-inducible factor-1 alpha expression in experim ental cirrhosis:correlation with vascular endothelial grow thfactorexpression and angiogenesis.A PMIS 2007;115 (7):795-801
    13. Fang ZQ, Guan DY, Liang SH, etal. Comparative Study of Different Raditional Chinese Medicine Treated DEN Induced Liver Cancer. Journal of Traditional Chinese Medicine 2002,43 (7):542 (In Chinese)
    14. SchnurJ, O lah J, Szepesi A, etal. Thioacetamide-induced hepatic fibrosis in transforming growth factorbeta-1 transgenic mice. Eur J Gastroenterol Hepatol 2004;16 (2):127-133
    15. M irA Ⅰ, K um arB, Tasduq SA, etal. Reversal of hepatotoxin-induced pre-fibrogenic events by Emblica officinalis-a histological study. Indian J Exp Biol 2007,45 (7):626-629
    16. Fan S, Chen HN, Wang C J. Toonasinensis Roem (Meliaceae) leaf extractalle viates liver fibrosis via reducing TGF-betal and collagen. Food Chem Toxicol 2007; 45 (11):2228-2236
    17. Tsukamoto H, Reidelberger RD, French SW, etal. Long-term cannulation modelforblood sampling and intragastric infusion in the rat. Am J Physiol 1984;247 (3Pt2):R595-599
    18. Lieber CS, Jones DP, Decarli LM. Effects of prolonged ethanol intake:production of fatty liver despite adequate diets. J Clin Invest 1965;44:1009-1021
    19. Hoffbauer FW. Fatty cirrhosis in the rat-A method of grading specimens. AMA Arch Pathol 1959;68 (2):160-170
    20. A rias M, Sauer-Lehnen S, Treptau J, etal. A denoviral expression of a transforming growth factor-betal antisense mRNA is effective in preventing liver fibrosis in bile-ductligated rats. BMC Gastroenterol 2003;3:29
    21. Dooley S, HamzaviJ, BreitkopfK, etal. Smad7 prevents activation of hepatic stellate cells and liverfibrosis in rats. Gastroenterology 2003;125 (1):178-191
    22. Yin SS, Wang BE; WangTL, et al. The establishment and modification of rat bile duct occlusive fibrosis model. Chinese Journal of Hepatology 2002; 10 (5):385-386 (In Chinese)
    23. Yu SY, Ben CE, Yang MJ, etal. Comparison between Immunological and Chemical Injury Hepatic Fibrosis Animal Models. Labortory animal science and administration 1995; 12 (4):5-8 (In Chinese)
    24. Wang XL, Zhang LM, Tang FX, et al. Ultrastructural Dynamic Observation on Murine Schistosomal Hepatic Fibrosis. Chinese Journal of Parasitology and Parasitic Diseases 2002;20 (4):216-219 (In Chinese)
    25. Chen F, Cai W, Chen Z, et al. Dynamic changes in the collagen metabolism of liver fibrosis at the transcription level in rabbits with Schistosomiasis japonica. Chin Med J (Engl) 2002;115 (11):1637-1640
    26. Cote PJ, Korba B E, MillerR H, etal. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology 2000;31 (1):190-200
    27. Geraci JP, M ariano MS, Jackson K L.Hepatic radiation injury in the rat. Radiat Res,1991,125 (1):65-72
    28. Santra A, MaitiA, Das S, etal. Hepatic damage caused by chronic arsenic toxicity in experimental animals. JToxicol Clin Toxicol 2000; 38 (4):395-405
    29. Rall GF, Lawrence DM, Patterson CE. The application of transgenic and knockoutm ouse technology for the study of viral pathogenesis. Virology 2000; 271 (2):220-226
    30. Saezroyuela F, Porres JC, Moreno A, Castillo I, Martinez G, Galiana F, et al:High doses of recombinant alpha-interferon or gamma-interferon for chronic hepatitis C:a randomized, controlled trial. Hepatology 1991; 13 (2):327-331
    31. Weng HL, Wang BE, Jia JD, Wu WF, Xian JE, Mertens PR, et al:Effect of interferon gamma on hepatic fibrosis in chronic hepatitis B virus infection:a randomized controlled study. Clin Gastroenterol Hepatol 2005;3 (8):819-828
    32. Muir AJ, Sylvestre PB, Rockey DC. Interferon gamma-1b for the treatment of fibrosis in chronic hepatitis C infection. J Vir Hepat 2006; 13:322-328
    33. Mallat A, Preaux AM, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology 1995;21:1003-1010
    34. Sakaida I, Uchida K, Matsumura Y, Okita K. Interferon gamma treatment prevents procollagen gene expression without affecting transforming growth factor-beta 1 expression in pig serum-induced rat liver fibrosis in vivo. J Hepatol 1998;28:471-79
    35. Baroni GS, DAmbrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 1996; 23:1189-1199.
    36. Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL, Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 1992; 16:776-784.
    37. Vaillant, B; Chiaramonte, MG; Cheever, AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response:New insight into the role of tissue inhibitors of matrix metalloproteinases Journal of Immunology 2001;167(12):7017-7026
    38. Henri, S; Chevillard, C; Mergani A, Paris P, Gaudart J,Camilla C,et al. Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. Journal of Immunology 2002; 169(2):929-936
    39. Caldas, IR; Campi-Azcvcdo, AC; Oliveira, LFA, Silveira AM, Oliveira RC, Gazzinelli G. Human schistosomiasis mansoni:Immune responses during acute and chronic phases of the infection. Acta Tropica 2008; 10(2-3):109-117
    40. Kratha S. Toback FG. Adenine nucleotides stimulate migration in wounded cultures of kindney epithelial cells. Journal of Clinical Investigation 1992;90(1):288-292
    41. CHevillard C, Moukoko CE, Elwali NE, et al. IFN-gamma polymorphisms (IFN-gamma+2109 and IFN-gamma+3810) are associated with severe hepatic fibrosis in human hepatic schistosomiasis (Schistosoma mansoni). J Immunol 2003;171:5596-5601
    42. Both M, Mwatha JK, Joseph S,et al. Periportal fibrosis in human Schist osoma mansoni infection is associated with low IL-10, low IFN-gamma, high TNF-alpha, or low RANTES, depending on age and gender. J Immunol 2004;172:1295-1303
    43. Dessein AJ, Kouriba B, Eboumbou C, et al. Interleukin-13 in the skin and interferon-gamma in the liver are key plays in immune protection in human schistosomis. Immunol ReV 2004;201:180-190
    44. Dessein AJ, Hillaire D, Elwali NE, et al. Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am J Hum Genet 1999;65:709-721
    45. Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 2008; 134:248-258
    46. Border WA, Noble NA. Mechanism of disease:transforming growth factor--beta in tissue fibrosis. N Engl J Med 1994; 331:1286--92
    47. Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta? SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999;397:710-713
    48. Ghosh AK, Yuan W, Mori Y, et al. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integrationi at the level of p300/CBP transcriptional coactivators. J Bio Chem 2001;276:11041-11048
    49. Weng HL, Ciuclan L, Liu Y, et al. Profibrogenic transforming growth factor-beta/activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes. Hepatology 2007;46:1257-1270
    50. Dooley S, Said HM, Gressner AM, et al. Y-box protein-1 is the crucial mediator of antifibrotic interferon-gamma effects. J Biol Chem 2006;281:1784-1795
    51. Koda M, Murawaki Y, Hirayama C. Free and small peptide-bound [14C]hydroxyproline synthesis in rat liver in vitro in CC14-induced hepatic fibrosis. Biochem Biophs Res Commun 1988;151:1128-1135
    52. Okuno H, Hazama H, Murase T, et al. Drug metabolizing activity in rats with chronic liver injury induced by carbon tetrachloride:Relationship with the content of hydroxyproline in the liver. Jpn J Pharmacol 1986;41:363-371
    53. Weng H, Mertens PR, Gressner AM, et al. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 2007;46:295-303
    54. Hayasaka A, Saisho H. Serum markers as tools to monitor liver fibrosis. Digestion 1998; 59:381-384
    55.贾继东,尹珊珊。肝纤维化的诊断和治疗进展。临床内科杂志2002;19:244—246
    56.蔡卫民,张彬彬,翁红雷等。八项肝纤维化血清标志物比较研究.中华肝脏病杂志2004;12(4)219-222
    57.罗瑞红,杨绍基,谢俊强等。肝纤维化血清五项标志物的诊断意义。中华肝脏病杂志2001;9(3):148—150
    58. Oberti F, Valsesia E, Pilette C, ct al. Noninvasive diagnosis ofhepatic fibrosis or cirrhosis. Gastroenterology 1997; 113:1609-1616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700