用户名: 密码: 验证码:
地球液核动力学效应的研究和检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合分析、处理了包括武汉台超导重力仪在内的全球地球动力学计划(GGP)观测网中多台超导重力仪长期连续观测资料及相应的台站气压观测资料,围绕地球液核动力学效应的研究与检测,着重介绍了全球超导重力仪观测资料在该领域研究的重要作用,开展了观测资料预处理、固体地球形变特征、地球近周日自由摆动、液核长周期自由振荡和固体内核平动振荡等方面的研究工作,主要结果如下:
     1.研究了地球在日月引潮力和表面负荷作用下的形变特征,数值计算结果表明,在固体内核中的形变很小,由于在长周期核模本征频率附近的共振,液核中低阶(n<10)位移随半径的变化非常复杂,当负荷阶数超过10时,地核中的形变和扰动位都很小,地球的响应主要表现为弹性地幔中的径向位移,且随深度增加急剧减弱,地表负荷Love数与信号频率的依赖关系很弱,给出了体潮Love数计算的一种有效的近似处理方案。
     2.以内部负荷Love数描述了地球固体部分对液核动力学效应的形变响应,严密推导了内部负荷Love数的一般表达式,研究了内部负荷Love数的空间和频率依赖特征。数值计算结果表明,内部负荷Love数随阶数的增加迅速减小,且与扰动频率,特别是相对较高的接近于地球自由振荡本征频率的扰动频率之间存在很强的依赖性。
     3.采用不同区域分布的6台国际超导重力仪高精度重力潮汐观测资料的迭积,有效地消除了大气、海洋和台站周围环境因素的影响,精密确定了地球自由核章动(FCN)的共振参数,结果表明,FCN的本征周期为429.0恒星日,与以前的同类研究结果相吻合,和理论模拟结果相比则偏小约30恒星日,进一步证实了液核的真实动力学椭率比流体静力平衡假设下动力学椭率约大5%的结论;品质因子为9543,更接近于利用空间大地测量手段(如VLBI)观测资料得到的相应结果;复共振强度为(-6.10×10~(-4),-0.01×10~(-4))°/h,基本反映了非弹性地幔的形变特征。
     4.以武汉台超导重力仪观测资料为例,研究了海潮负荷对FCN共振参数拟合的影响和重力潮汐观测中近周日共振的区域性特征。结果表明,不同海潮模型对拟合的FCN周期和共振强度实部影响甚微,差异主要表现在品质因子和共振强度虚部的拟合,通过不同海潮模型改正后重力潮汐观测资料的迭积,可减小海潮模型不确定性的影响,获得FCN共振参数。考虑近周日共振的区域性特征,获得了基于武汉国际重力潮汐基准值的区域性重力潮汐模型,还可以为海潮负荷重力效应的反演提供很好的约束。
     5.采用位移场的变分方法研究了地球椭球分层、非粘性、可压缩自转流体外核的自由振荡(内部重力/惯性波或核模)问题,充分考虑了固体弹性地幔和内核(包括CMB和ICB)的形变以及幔固系和内核自转变化(摆动或相对摆动)的影响,通过内部负荷Love数将地表自由边界条件和地心正则条件引入液核运动方程之中,经严密推导获得了液核自由振荡运动的变分泛函和用于有限元数值计算的最终计算公式。
     6.采用国际GGP观测网中14台超导重力仪21个长期、稳定、连续的高质量重
    
    !1 中国科学院测量七地球物理研究所埋学博卜学位论义
    力潮汐观测序列研究了地球固体内核的平动振荡.采用相同的预处理和调和分祈川主,
    精密确定并剔除了重力潮汐信号、大气重力信号和仪器长期漂移,获得了相应的重力
    残差序列,引入并估计了重力残差序列的“积谱密度”.初步分析结果表明,在积谱密
    度估计中没有 Smylie(1992),Smylie等(1993)和 Courtier等(2000)发现的与内核小
    动振荡有关的共振信号,但存在与某些未知的全球地球物理或地球动力学效应介关的8
    个重要的明显公共谱峰,估计了在这些谱峰附近的重力共振参数,其中三个谱峰的中
    。L’周期与 Smith(1976)理论预测的固体内核 Slichter模的本征周期符合得非常好,-
    者之间的差异分别仅为0.4%,-1.4%和1刀%.实际观测与理论模拟的这种非常灯地--敖
    性意昧着这三个谱峰可能勺地球固体内核的平动振荡有关,与然,要得到史确切的引
    论还必而进一步的证据支持.
The long-term,continuous gravity data,recorded with superconducting gravimeters (SCO) at the Global Geodynamics Project (GGP) observatories including one at Wuhan,and the corresponding station atmospheric pressure records have been comprehensively processed and analyzed. Based on the study and detection on the geodynamical effects of the Earth's fluid outer core,the roles of the SCG distributed globally are especially emphasized on. We have investigated the data pre-processing,the deformation characteristics of the solid Earth,the Earth's nearly diurnal free wobble,the free oscillations of the fluid outer core and the translational oscillations of the solid inner core. The main results are listed as following:
    1. The Earth's deformation under the luni-solar tidal force and surface loads is investigated. The numerical results indicate that the deformation within the solid inner core is very small. However,in the fluid outer core,the changes of the displacement with relatively low spherical harmonic degree (n<10) is very complicated via the radius,due to the resonance near the eigenfrequenies of the core long-period oscillations. While the spherical harmonic degree of the loading is larger than 10,the deformation and the gravitational perturbation in the core are very small,and the Earth's deformation response is dominantly represented as the radial displacement in the elastic mantle. The displacement decreases sharply with the depth increasing. The surface load Love numbers weakly depend upon the signal frequencies. An acceptable approximate procedure for the body tide Love number calculation is developed in this dissertation.
    2. The internal load Love numbers,expressed as a general form in this dissertation,are employed to describe the deformation response of the Earth's solid parts to the dynamical behaviors of the fluid outer core. The spatial distribution and frequency-dependence characteristics of the internal load Love numbers are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the spherical harmonic degree enhancement,and depend strongly upon the perturbation frequencies,especially upon relatively high those closed to the eigenfrequencies of the Earth's free oscillations.
    3. By stacking the high-precision tidal gravity observations recorded with international SCG at six stations located on different area,the influences of the barometric pressure,ocean tides and the local environmental perturbations around the stations are eliminated effectively,and lead to an accurate determination of the resonance parameters of the Earth's free core nutation (FCN). The final results indicate that the FCN period is about 429.0 sidereal days,in closed agreement with the corresponding results in the previous studies,and about 30 sidereal days less than one expected theoretically. It confirms that the real dynamical ellipticity of the fluid core is about 5% larger than one expected on assumption of the hydrostatic equilibrium. The quality factor is about 9543,which,compared with those determined based on the tidal gravity observations in the previous studies,more closes to those obtained by using the VLBI data. The complex resonance strength is (-6.10X10-4,-0.01X10-4). It can principally descr
    ibe the deformation characteristics of an anelastic mantle.
    4. The tidal gravity observations,recorded with a SCG at Wuhan,are employed to investigate the influences of the ocean tide loading on the fitted FCN parameters and the
    
    
    local characteristics of the nearly diurnal resonance on the tidal gravity observations. It is found that the influence of different co-tides on the fitted eigenperiod and the real part of the resonance strength of the FCN is very small. The discrepancies are less than 1.5% for the eigenperiod and 7.7% for the real part of the resonance strength. Meanwhile,the fitted qualify factor Q and the imaginary part of the resonance strength of the FCN depends obviously on the chosen co-tides,and the influence of different co-tides on the fittin
引文
方俊.1984.固体潮.北京:科学出版社
    方明.1991.地球自由振荡—正演、反演理论中若干问题的研究.[博士论文].武汉:中国科学院测量与地球物理研究所
    傅承义.198?.地球物理学基础.北京:科学出版社
    海斯卡涅 W A,莫里 H.1984.物理大地测量学.卢福康,胡国理译.北京:测绘出版社,第二版
    监凯维奇 O C.1985.有限元法(上、下册).尹泽勇,江伯南译,北京:科学出版社
    梁昆淼.1978.数学物理方法.北京:人民教育出版社.第二版
    刘钦圣.1989.最小二乘问题计算方法.北京:北京工业人学出版社
    莫里 H 著.1990.地球的形状—理论大地测量学和地球内部物理学,陈俊勇,左传惠译,北京:测绘出版社
    彭龙辉.1991.地球横向不均匀性对潮汐重力的影响.[硕士论文].武汉:中国科学院测量与地球物理研究所
    吴望—.1983.流体力学(上、下册).北京:北京大学出版社
    徐长发.1990.实用偏微分方程数值解法.武汉:华中理工大学出版社
    周华.1988.液核近周日共振的检测.[硕士论文].武汉:中国科学院测量与地球物理研究所
    周蕙兰.1990.地球内部物理.北京:地震出版社
    Jacobs J A. 1987. The Earth's Core. Academic Press, 2nd ed.
    Jiang X. 1993. Wobble-Nutation Modes of the Earth. Ph.D. Thesis of York University, Canada
    Melchior P. 1980. The Tides of the Planet Earth. Oxford Pergamon Press, 2na ed.
    Melchior P. 1986. The Physics of the Earth's Core: An Introduction. Pergamon Press
    李国营.1993,侧向不均匀地球中环型场引起的重力变化.地球物理学进展,8(2):159~160
    李国营.1994.固体潮研究进展.地球物理学进展,9(3):38~44,
    李国营,彭龙辉,许厚泽.1996.自转微椭、非均匀地球的潮汐变形.地球物理学报,39(5):672~678
    李国营,汪汉胜,彭龙辉.1996.基于PREM模型的地球椭率及一二阶导数沿径向的分布.测绘学报,25(3):195~200。
    罗少聪,孙和平.2000.大气压力变化对武汉台站重力场观测的影响.测绘学报,29(Sup.):181~187;
    罗少聪,孙和平,徐建桥.2001.大气负荷引起的重力与位移计算的精度估计.测绘学报,30(4):309~315;
    
    
    罗少聪.2001,大气负荷响应计算误差估计模型.武汉大学学报(信息科学版),26(2):217~221
    宋兴黎,毛慧琴.1991.武昌重力潮汐基准研究.地球物理学报,34(3):381~384
    孙和平,许厚泽,Ducarme B等.1998.中比法三国超导重力仪潮汐观测资料综合对比分析与研究,科学通报,43(13):1443~1438
    孙和平,罗少聪.1998.大气重力信号的理论计算及其检测.地球物理学报,41(5):634~641
    孙和平,罗少聪.1998.中国及其邻区地表气象数据预处理和网格化数值结果分析.地壳形变与地震,18(3):51~56
    孙和平,许厚泽,罗少聪.1999.用超导重力仪的潮汐观测资料研究海潮模型.测绘学报,28(2):115~120
    孙和平,许厚泽,徐建桥,柳林涛.2000.重力场的潮汐变化观测及其研究,地球科学进展,15(1):53~57
    孙和平,竹本修三,许厚泽等.2000.武汉和京都台站超导重力仪高精度潮汐重力观测结果.测绘学报,29(2):181~187
    孙和平,周江存.2002.中国地壳运动观测网络基准站重力场变化的海潮负荷信号改正问题.地球科学进展,17(1):39~43
    汪汉胜,许厚泽,李国营.1996.SNREI弹性地球模型表面负荷勒天数数值计算的新进展,地球物理学报,39(增刊):182~189
    汪汉胜,李国营,许厚泽.1997.SNRVEI粘弹地球模型连续分布的简正模及其意义.地球物理学报,40(1):78~84
    徐建桥,许厚泽,孙和平等.1997.武汉基准台超导重力仪重力潮汐观测结果.测绘学报,26(4):307~314
    徐建桥,许厚泽,孙和平等.1998.武汉台重力长期变化分析.地壳形变与地震,18(3):67~72
    徐建桥,郝兴华,孙和平.1999.武汉基准台气压对重力潮汐观测的影响.测绘学报,28(1):75~79
    徐建桥,许厚泽,孙和平等.1999.利用超导重力仪观测资料检测地球近周日共振.地球物理学报,42(5):599~608
    徐建桥,孙和平,罗少聪.2001.海潮负荷对自由核章动参数拟合的影响.测绘学报,30(3):214~219
    徐建桥,孙和平,罗少聪.2001.利用国际超导重力仪研究地球自由核章动.中国科学(D辑),31(9):719~726
    徐建桥,郝兴华,孙和平等.2001,南极中山和长城站重力潮汐观测研究.地震学报,23(3):307~313
    
    
    许厚泽,陈振帮,杨怀冰.1982.海洋潮汐对重力潮汐观测的影响.地球物理学报,25(2):120~129
    许厚泽.1987.重力负荷改正的误差估计.测绘学报,16(2):95~102
    许厚泽,毛伟健.1988.中国大陆的海洋负荷潮汐改正模型.中国科学(B辑),25(9):984~994
    许厚泽,孙和平.1998.我国重力固体潮实验研究进展.地球科学进展,13(5):415~421
    许厚泽,孙和平,徐建桥等.2000.武汉国际重力潮汐基准研究.中国科学(D辑),30(5):549~553
    张永红,李国营,孙和平.1999.上地幔各向异性介质对固体潮和负荷潮的影响.地球物理学报,42(3):333—340
    Aldridge K D, Lumb L I. 1987. Inertial waves in the Earth's fluid outer core. Nature, 325:421~423
    Alterman Z, Jarosch H, Pekeris C L. 1959. Oscillation of the earth. Proc. Roy. Soc. London (Set A), 252:80
    Buffet B A, Mathews D M, Herring T A, Shapiro I I. 1993. Forced nutation of the earth: contribution from the ellipticity and rotation on the elastic deformation, J. Geophys. Res., 98(B12): 21659~21676
    Courtier N, Ducarme B, Goodkind J, et al. 20001 Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet. Inter. 117:3~20
    Crossley D J. 1975. Core undertones with rotation. Geophys. J. R. astr. Soc., 42:477~488
    Crossley D J, Rochester M G. 1980. Simple core undertones. Geophys. J. R. astr. Soc., 60: 126~161
    Crossley D J. 1984. Oscillatory flow in the liquid core. Phys. Earth Planet. Inter., 36:1~16
    Crossley D J, Hinderer J, Legros H. 1991. On the excitation, detection and damping of core modes. Phys. Earth Planet. Inter, 68:97~116
    Crossley D J, Jensen O G, Hinderer J. 1995. Effective barometric admittance and gravity residuals. Phys. Earth Planet. Inter., 90:221~241
    Cummins P R, Wahr J M, Agnew D C. 1991. Constraining core undertones using stacked IDA gravity records. Geophys. J. Int., 106:189~198
    Cummins P R, Wahr J M. 1993. A study of the Earth's free core nutation using international deployment of accelerometers gravity data. J. Geophys. Res., 98(B2): 2091~2103
    Dahlen F A. 1968. The normal modes of a rotating, elliptical Earth. Geophys. d. R. asar. Soc., 16:329~367
    Dahlen F A. 1969. The normal modes of a rotating, elliptical Earth--Ⅱ Near-resonance multiplet coupling. Geophys. J. R. asar. Soc., 18:397~436
    De Meyer F, Ducarme B. 1991. Input-output analysis of the observations of superconducting gravity meter. In: Kakkuri J ed. Proc. 11th Int. Sympos. on Earth Tides, Helsinki, 531~554
    
    
    De Meyer F, Ducarme B. 1991. Non-tidal gravity changes observed with a superconducting gravimeter. In: Kakkuri J ed. Proc. 11th Int. Sympos. on Earth Tides, Helsinki, 167~184
    Defraigne P, Dehant V, Hinderer J. 1994. Staking gravity tide measurements and nutation observations in order to determine the complex eigenfrequency of nearly diurnal free wobble, J. Geophys. Res., 99(B5): 9203~9213
    Dehant V. 1987. Integration of the gravitational motion equations for an elliptical uniformly rotating Earth with an inelastic mantle. Phys. Earth Planet. Inter., 49:242~258
    Dehant V. 1987. Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter., 49: 97~116
    Dehant V, Ducarme B. 1987. Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Inter, 49: 192~212
    Dehant V, Defraigne P. Wahr J. 1999. Tides for a convective Earth. J. Geophys. Res., 104: 1035~1058
    Ducarme B, Melchior P. 1978. A transworld tidal gravity profile. Phys. Earth Planet. Inter., 16:257~276
    Ducarme B, Van Ruymbeke M, Poitevin C. 1985. Three years of registration with a superconducting gravimeter at the Royal Observatory of Belgium. In: Vieira R ed. Proc. 10th Int. Sympos. on Earth Tides, Madrid, 113~129
    Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter, 25:297~356
    Edge J R, Baker T F, Jeffries G. 1985. Improving the accuracy of tidal gravity measurements. In: Richard V ed. Proc. 10th Int. Sympos. on Earth Tides, Madrid, 213~222
    Farrell W E, 1972. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10 (3): 761~797
    Florsch N, Chambat F, Hinderer J, Legros H. 1991. A simple method to retrieve the complex eigenfrequency of the Earth's nearly diurnal-free wobble; application to the Strasbourg superconducting gravimeter data. Geophys. J. Int., 116:53~43
    Francis O, Mazzega P. 1990. Global charts of ocean tide loading effects, J. Geophys. Res., 95(C7): 11411~11424
    Francis O. 1997. Some results on loading tides using CSR3.0 TOPEX/POSEIDON ocean tide data. In: Private Communication
    Friedlander S, Siegmann W L. 1982. Internal waves in a contained rotating stratified fluid, J. Fluid Mech., 114:123~156
    Friedlander S, Siegmann W L. 1982. Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn., 19:267~291
    
    
    Friedlander S. 1985. Internal oscillations in the Earth's fluid core. Geophys. J. R. astr. Soc., 80:345~361
    Gwinn C R, Herring T A, Shapiro Ⅱ. 1986. Geodesy by radio intefferometry: studies of the forced nutation of the earth, 2. Interpretation. J. Geophys. Res., 91(B5): 4755~4765
    Herring T A, Gwinn C R, Shapiro Ⅱ. 1986. Geodesy by radio interferometry: studies of the forced nutation of the earth, 1. Data analysis: J. Geophys. Res., 91(B5): 4745~4754
    Hinderer J, Legros H, Amalvict M. 1982. A search for Chandler and nearly diurnal free wobble using Liouville equations. Geophys. J. R. astr Soc., 71:303~332
    Hinderer J, Legros H. 1989. Elasto-gravitational deformation, relative changes in gravity and Earth dynamics. Geophys. J., 97:481~495
    Hinderer J, Legros H, Crossley D J. 1991. Global Earth dynamics and induced gravity changes. J. Geophys. Res., 96(B12): 20257~20265
    Hinderer J, Zrn W, Legros H. 1991, Interpretation of the strength of the "nearly diurnal free wobble"-resonance from stacked gravity tide observations. In: Kakkuri J ed. Proc. 11th Int. Sympos. on Earth Tides, Helsinki, 549~555
    Hinderer J, Crossley D J, Xu H. 1993. The accuracy of tidal gravimetric factor and nearly diurnal free wobble resonance parameters in superconducting gravimetry, In: Hsu H. T. ed. Proc. 12th Int. Sympos. on Earth Tides, Beijing, 289~309
    Hinderer J, Crossley D, Jensen O. 1995. A search for the Slichter triplet in superconducting gravimeter data. Phys. Earth Planet. Inter., 90:183~195
    Hsu H-T, Becker M, Groten E, Tao G-X. 1989. Comparison of Gravity Tide Observations by ET16 and ET21 at Wuchang Station of China. Bull. Inf Marees Terrestres, 104: 7379~7394
    Hsu H-T, Tao G-Q, Song X-L, Baker T F, et al. 1989. Gravity Tidal Datum at Wuchang of China. In: Kakkuri J ed. Proc. 11th Int. Sympos. on Earth Tides, Helsinki, 549-555
    Hsu H T, Tang J, Xu J. 1997. The results of tidal Observation with Superconducting Gravimeter GWR-TT70 at Wuhan Station. In: Hsu H T, et al, (ed) Proc, of the International Symposium on Current Crustal Movement and Hazard Reduction in East-Asia and South-east, Asia. Chinese Seismological Press, Beijing, 309~315
    Jeffrey H, Vicente R O. 1957, The theory of nutation and the variation of latitude: The Roche model core. Mon. Not. R. astron. Soc., 117:162~173
    Jensen O, Hinderer J, Croddley D J. 1995. Noise limitations in the core-mode band of superconducting gravimeter data. Phys. Earth Planet. Inter., 90:169~181
    Jentzsch G. 1995. High precision data processing, In: Hsu H. T. (ed) Proc. 12th Int. Sympos. Earth Tides, Science press, Beijing, New York, 19~24
    Johnson I M, Smylie D E. 1977. A variational approach to wholeEarth dynamics. Geophys. J R. astr. Soc., 50:35~54
    
    
    Kanao M, Sato T. 1993. Observations of tidal gravity and free oscillation of the Earth with a LaCostte & Romberg gravity meter at Syowa station, East Antarctica. In: Hsu H. T. ed. Proc. 12th Int. Sympos. on Earth Tides, Beijing [C], Beijing: Science Press, 571~580
    Kroner C, Hsu H T, Jahr T, Jentzsch G, et al. 1995. Long-term stability and tidal parameters of the SGG-record at Wuhan, China. In: Hsu H T(ed) Proc. 12th Int. Sympos. on Earth Tides, Science press, Beijing, New York, 265~276
    Kroner C, Jentzsch G; 1999. Comparison of different barometric pressure reductions for gravity data and resulting consequences. Phys. Earth Planet. Inter., 115:205-2187
    Legros H, Amalvict M, Hinderer J. 1985. Love numbers and planetary dynamics, In: Vieira R ed. Proc. 10th Int. Sympos. on Earth Tides, Madrid, 313~319
    Legros H, Amalvict M. 1985. Rotation of a deformable Earth with dynamical superficial fluid layer and liquid core-Part Ⅰ, Fundemental equations. Ann. Geophysicae, 3(5): 655~670
    Li G,Hsu H. 1989. The tidal modeling theory with a laterally inhomogeneous, inelastic mantle, Proc. 11th Int. Sympos. on Earth Tides, 601~612
    Li G-Y, Peng L-H, Hsu H-T. 1993. The Effect of Mantle Lateral Heterogeneity on Tidal Gravimetric Factos. In: Hsu H-T ed. Proc. 12th Int. Sympos. on Earth Tides, Beijing,333-340
    Liu L T. Hsu H T. 1998. Harmonic analysis of Wuhan tidal gravity with wavelets. In: Ducarme B. ed. Proc. 13th Int. Sympos. on Earth Tides, Brussels, 495~502
    Liu L T, et al. 2000. Wavelet method for the harmonic analysis of the Earth tides. Science in China (D), 43 (2)
    Longman I M. 1962. A Green's function for determining the deformation of the Earth under surface mass loads, 1. Theory. J Geophys. Res., 67:845~850
    Longman I M. 1963. A Green's function for determining the deformation of the Earth under surface mass loads, 2. Computation and numerical results. J Geophys. Res., 68: 485~498
    Mathews P M, Buffer B A, Herring T A, et al. 1991. Forced nutations of the Earth: influence of inner core dynamics 1. Theory. J. Geophys. Res., 96(B5): 8219~8242
    Mathews P M, Buffett B A, Herring T A, et al. 1991. Forced nutations of the Earth: influence of inner core dynamics 2. Numerical results and comparison. J. Geophys. Res., 96(B5): 8243~8257
    Mathews P M, Buffett B A, Shapiro I I. 1995. Love numbers for a rotating spheroidal Earth: New definitions and numerical values. Geophys. Res. Let., 22(5): 579~582
    Mathews P M, Buffett B A, Shapiro I I. 1995. Love numbers for diurnal tides: relation to wobble admittances and resonance expansions. J. Geophys. Res., 100(B7): 9935~9948
    
    
    Melchior P, 方俊, Ducarme B, 许厚泽等. 1985. 中国固体潮观测研究. 地球物理学报, 28(2): 142~154
    Melchior P, Ducarme B. 1986. Detection of inertial gravity oscillations in the Earth's core with a superconducting gravimeter at Brussels. Phys. Earth Planet. Inter, 42:129~134
    Merriam J B. 1992. An ephemeris for gravity tide predictions at the nanoGal level. Geophys. J Int., 108:415~422
    Merriam J B. 1992. The atmospheric pressure and gravity. Geophys. J. Int., 109:488~500
    Merriam J B. 1993. The atmospheric pressure correction in gravity at Cantly, Quebec. In: Hsu H. T. ed. Proc. 12th Int. Sympos. on Earth Tides. Beijing, 161~168
    Merriam J B. 1994. The nearly diurnal free wobble resonance in gravity measured at Cantley, Quebec. Geophys. J. Int., 119:369~380
    Moon W. 1982. Variational solution of long-period oscillations of the Earth. Geophy. J. R. astr Soc., 69:431~458
    Neuberg J, Hinderer J, Zrn W. 1987. Stacking gravity tide observations in central Europ for the retrieval of thecomplex eigenfrequency of the nearly diurnal free wobble. Geophy. J. R. astr Soc., 91:853~868
    Niebauer T M. 1988. Correcting gravity measurements for the effects of local air pressure. J. Geophys. Res., 93(B7): 7989~7991
    Okubo S. 1982. Theoretical and observed Q of the Chandler wobble-Love number approach. Geophys. J. R. astr Soc., 71:647~657
    Pekeris C L, Accad Y. 1972. Dynamics of the liquid core of the Earth. Phil. Trans. Roy. Soc. Lond., A 273:237~260
    Phinney R A, Burridge R, 1973. Representation of the elastic-gravitational excitation of a spherical earth model by generalized spherical harmonics. Geophys. J. R. astr Soc., 34: 451~480
    Poirier J P. 1988. Transport properties of liquid metals and viscosity of the Earth's core. Geophys. J. R. astr Soc., 92:99~105
    Rabbel W, Zschau J. 1985. Static deformations and gravity changes at the Earth's surface due to atmospheric loading, J. Geophys., 56:81~99
    Richer B. 1985. The spectrum of a registration with a superconducting gravimeter. In: Vieira R ed. Proc. 10th Int. Sympos. on Earth Tides, Madrid, 131~139
    Sasao T, Okubo S, Saito M. 1980. A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth. In: Proc. IAU Symp. 78:165~183
    Sasao T, Wahr J M. 1981. An excitation mechanism for the free core nutation'. Geophys. J. R. astr Soc., 64:729~746
    Sato T. 1991. Fluid core resonances measured by quartz tube extensometers at the Esashi Earth tide station. In: Kakkuri J. ed. Pro. 11th Int. Sympos. On Earth Tides, Stuttgart, 573~582
    
    
    Shen P Y. 1976. A theory of toroidal core oscillations of the Earth. Geophys. J. R. astr. Soc., 46:307~318
    Shen P Y. 1983. On oscillations of the Earth's fluid core. Geophys. J. R. astr. Soc., 75: 737~757
    Smith M L. 1974. The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical earth. Geophys. J. R. astr Soc., 37: 491~526,
    Smith M L. 1976. Translational inner core oscillations of a rotating, slightly elliptical Earth. J. Geophys. Res., 81(17): 3055~3064
    Smith M L. 1977. Wobble and nutation of the Earth. Geophys. J. R. astr. Soc., 50:103~140
    Smylie D E, Mansinha L. 1971. The elasticity theory of dislocations in real earth models and changes in the rotation of the Earth, Geophys. J. R. astr. Soc., 23: 329~354.
    Smylie D E, Rochester M G 1981, Compressibility, core dynamics and the subseismic wave equation. Phys. Earth Planet. Inter, 24:308~319
    Smylie D E, Szeto A M K, Rochester M G 1984, The dynamics of the Earth's inner and outer cores. Rep. Prog Phys., 47:855~906
    Smylie D E, Rochester M G 1986. A variational principle for the subseismic equation. Geophys. J. R. astr. Soc., 86:553~561
    Smylie D E, Szeto A M K, Sato K. 1990. Elastic boundary conditions in long-period core oscillations, Geophys. J. Int., 100:183~192
    Smylie D E. 1992. The inner core translational triplet and the density near Earth's center. Science, 255:1678~1682
    Smylie D E, Jiang X, Brennan B J, et al. 1992. Numerical calculation of modes of oscillation of the Earth's core. Geophys. J. Int., 108:465~490
    Smylie D E, Hinderer J, Richter B, et al. 1993. The product spectra of gravity and barometric pressure in Europe. Phys. Earth Planet. Inter., 80:135~157
    Smylie D E, Jiang X. 1993. Core oscillations and their detection in superconducting gravimeter records. J. Geomag. Geoeletr., 45:1347~1369
    Smylie D E. 1999. Viscosity near Earth's solid inner core. Science; 284:461~463
    Smylie D E, Mcmillan D G 2000. The inner core as a dynamic viscometer. Phys. Earth Planet. Inter., 117:71~79
    Sun H-P. 1992. Comprehensive researches for the effect of the ocean loading on gravity observations in the Western Pacific area. Bull. d'Information de Marees Terrestres, 113: 8271~8292
    Sun H-P, Ducarme B, Dehant V. 1993. Correction of the atmospheric pressure on gravity measurements recorded by a superconducting gravimeter at Brussels. In: Hsu H-T ed. Proc. 12th Int. Sympos. on Earth Tides, Beijing, 317~330
    
    
    Sun H-P. 1995. Static deformation and gravity change at Earth's surface due to the atmospheric pressure. In: Geophys. Series of Royal Observatory of Belgium
    Sun H P. 1997. Atmospheric gravity Green function. Chinese Science Bulletin, 42(15): 1640~1646
    Sun H-P, Ducarme B, Hinderer J, Hsu H-T. 1997. Intercomparison of the tidal gravity measurement with superconducting gravimeters at stations Wuhan, Brussels and Strasbourg. In: Ducanne B. ed. Proc. 13th Int. Sympos. on Earth Tides, Brussels
    Sun Heping, Xu Houze, Ducarme B et al. 1999. Comprehensive comparison and analysis of tidal gravity observations obtained with superconducting gravimeters at stations in China. Belgium and France. Chinese Science Bulletin, 44(8): 750~755
    Sun H-P, Takemoto S. Hsu H-T, Higashi T, Mukai A, 2001. Precise Tidal Gravity Recorded with Superconducting Gravimeters at Stations Wuhan/China and Kyoto/Japan. J Geodesy, 74:720~729
    Sun H.-P., Hsu H-T, Jentzsch CT, Xu J-Q, Tidal gravity observations obtained with superconducting gravimeter and its application to geodynamics at Wuhan, China, Journal of Geodynamics, 2002, 33(1-2): 187-198.
    Sun H.-P., Xu J.-Q. and Ducarme B, Preliminary Results of the Free Core Nutation Eigenperiod Obtained by Stacking SG Observations at GGP Stations. Third Workshop of the Global Geodynamics Project (GGP) on Superconducting Gravimetry and Meeting of the ETC-Working Group 7 on Analysis of Environmental Data for the Interpretation of Gravity Measurements Jena, Germany, March 11-15, 2002
    Sun H.-P., Xu J.-Q. and Ducarme B, Experimental Earth Tidal Models of the Core Resonance Obtained by Stacking Tidal Gravity Observations from GGP Stations, Third Workshop of the Global Geodynamics Project (GGP) on Superconducting Gravimetry and Meeting of the ETC-Working Group 7 on Analysis of Environmental Data for the Interpretation of Gravity Measurements Jena, Germany, March 11-15, 2002
    Szeto A M K, Smylie D E. 1984. Coupled motions on the inner core and possible geomagnetic implications. Phys. Earth Planet. Inter., 36:27~42
    Tamura Y. 1981. A harmonic development of the tidal generating potential. Marees Terrestres Bulletin d'Information, 99:6813~6855
    VanDam T M, herring T A. 1994. Detection of atmospheric pressure loading using very long interferometry measurements. J. Geophys. Res., 99(B3): 4505~4517
    Venedikov A P. 1966. Use method pour l'analyse des marees terrestres a partir d'enr gistrements de longuer arbitraire. Observatiire Royal de Belgiqe Serie Geophysique, 71: 463~485
    
    
    Virtanen H, Kaariainen J. 1997. The GWR TO20 superconducting gravimeter 1994-1996 at the Metsahovi station, Finland. In: Reports of the Finnish Deodetic Institute. In: Private Communication
    Wahr J M. 1981. A normal mode expansion for the forced response of a rotating earth. Geophys. J. R. astr. Soc., 64:651~675
    Wahr J M. 1981. Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. R. astr. Soc., 64:677~703
    Wahr J M, Sasao T. 1981. A diurnal resonance in the ocean tide and in the Earth's load response duo to the resonant free 'core nutation'. Geophys. J. R astr. Soc., 64:747~765
    Wahr J M. 1981. The forced nutations of an elliptical, rotating, elastic and oceanless earth. Geophys. J. R. astr. Soc., 64:707~727
    Wahr J M. 1981. Discussion to: A nearly diurnal resonance in the ocean load tide. In: Kuo J T ed. Proc. 9th Int. Sympos. on Earlh Tides, New York City, 539
    Wahr J M, Sasao T, Smith M L. 1981. Effec of the fluid on changes in the length of day duo to long period tides. Geophys. J. R. astr. Soc., 64:635~650
    Wahr J M, Bergen Z. 1986. The effects of mantle anelasticity on nutation, Earth's tides, and tidal variations in rotation rate. Geophys. J. R. astr. Soc., 64:633~668
    Wang R. 1994. Effect of rotation and ellipticity on earth tides. Geophy J. Int., 117:562~565
    Wenzel H G. 1993. Tidal data processing on a PC. In: Hsu H-T ed. Proc. 12th Int. Sympos. on Earth Tides, Beijing, 235~244
    Wenzel H G. 1997. Analysis of Earth tidal observations. In: Wilhelm H, et al (ed) Notes in Earth Tides, 65, Springer press, Berlin, 59~76
    Wu W-J, Rochester M G. 1990. Core dynamics: the two-potential description and a new variational priciple. Geophys. J. Int., 103:697~706
    Xu H, Sun H, Xu J et al. 2000. International tidal gravity reference values at Wuha station. Science in China (Series D), 43(1): 77~83
    Xu S, Szeto A M K. 1994. Gravitational coupling in the Earth's interior revisited. Geophy. J. Int., 118:94~100
    Xu J, Hao X, Sun H, L C. 2001. Study on Tidal Gravity Observations Obtained at Stations Zhongshan and ChangCheng, Antarctic. Acta Seismologica Sinca, 14(3): 325~332
    Zahel W. 1996. Modeling ocean tides with and without assimilating data, J. Geophys. Res., 96:20379~20391
    Zrn W. 1997. T he nearly diurnal free-wobble resonance. In: Wilhelm H. et al (ed) Notes in Earth Tides, 65, Springer press, Berlin, 95-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700