中心体定位的具有原癌基因属性的人源新基因cepo的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cepo(centrosomal protein oncogene)是我们实验室从人胎肝cDNA文库中克隆到的一个未知功能的新基因。cepo在进化过程中高度保守,但各物种中的同源基因目前均无任何功能信息。
     人cepo基因的染色体定位为10q24.2,其基因组序列大约为14kb,cepo通过选择性剪接产生cepo-A和cepo-B两种转录本,两种转录本大小相同,为1.5kb。cepo—A由4个外显子组成、cepo—B由5个外显子组成;cepo-A和cepo—B的所有内含子/外显子剪接边界均符合典型的GT/AG剪接模式。
     cepo基因的组织表达谱结果表明,它具有类似看家基因的广泛表达的特征;cepo-A和cepo-B分别编码99和142个氨基酸。在这两种蛋白质异构体的C末端均存在一个亮氨酸拉链结构域。
     CEPO大部分定位于细胞质中,一部分定位于中心体上;其中心体定位表现出不依赖于细胞周期变化的方式,即在细胞周期的各个时期(G1-S-G2-M),CEPO都定位于中心体上。
     CEPO在NIH3T3细胞中异源过表达可引起此细胞的中心体扩增。通过软琼脂集落形成实验、裸鼠皮下细胞接种实验,我们证明CEPO的这种异源过表达还可以引起被稳定转染的NIH3T3细胞发生恶性转化。运用免疫组化组织芯片实验,我们证明:CEPO在某些肿瘤组织中的表达水平明显高于各自相应的正常对照组织表明CEPO具有原癌基因的属性,该基因的名称——cepo即由此而来。运用免疫组化组织芯片实验,我们证明:CEPO在某些肿瘤组织中的表达水平明显高于各自相应的正常对照组织。
     利用CEPO做诱饵蛋白筛选人睾丸cDNA文库得到大量阳性克隆。通过进一步的体内、外相互作用验证,我们发现CEPO与KIF3A(Kinesin family member 3A)和JAB1(c-Jun activating domain-binding protein 1)之间的相互作用是真实存在的。CEPO通过与JAB1的相互作用参与了JAB1介导的信号转导,并通过JAB1增强AP-1的转录活性。
Cepo (centrosomal protein oncogene) is a novel human gene isolated from the cDNA library of fetal liver, highly conserved in evolution, and there is no idea about the function of its homologeous genes among species.
    The human cepo gene was mapped on 10q24.2 and spanned about 14 kb. The two cDNA isoforms-cepo-A and cepo-B were produced by alternative splicing on the 5'-terminus of cepo gene, the size of two cDNA isoforms of cepo was same and was about 1.5kb. The human cepo-A and cepo-B are composed of 4 and 5 exons respectively, the sequences of the intron/exon junctions were all exactly consistent with the typical GT/AG consensus motif of the splice donor and acceptor sites.
    Cepo is widely expressed and with a feature of housekeeping gene. The two cDNA isoforms-cepo-A and cepo-B code 99 and 142 animo acid polypeptides respectively, a leucine zipper sequence pattern existed in the C-terminus of these two protein isoforms.
    CEPO was located mainly at cytoplasm and centrosome of cultured cells in the manner of independence of cell cycle.
    The ectopic overexpression of this gene in NIH3T3 cells could induce centrosome amplification. Subsequently, the ectopic overexpression of CEPO could induce cell transformation malignantly was confirmed by soft agar growth assay and tumofigenesis in nude mice assays. The protein level of CEPO in some malignant tumors is significantly higher than corresponding normal tissues. Taken together, we reveiled that cepo is an oncogene and named it as cepo.
    We used the full length CEPO-A and CEPO-B as "bait" in a yeast two-hybrid system to screen a human testis cDNA library, and identified several types of clones. The protein-protein interaction between CEPO and KIF3A (kinesin family member 3A), CEPO and JAB1 (c-Jun activating domain-binding protein 1) were confirmed by in vitro and in vivo interaction binding assays. It was further demonstrated that CEPO enhanced AP-1 activity through signal transduction mediated by JAB1.
引文
1. Lander E.S., Linton L.M., Birren B., et al., Initial sequencing and analysis of the human genome, Nature, 2001,409: 860-921.
    2. Francis S.C., Ari P., Elke J.,et al., New Goals for the U.S. Human Genome Project: 1998-2003, Science, 1998,282: 682-689.
    3. Simon C.M., Evolution: Bringing Molecules into the Fold, Cell, 2000, 100: 1-11.
    4. Janet M.T.,From Genome to Function, Science, 2001, 292: 2095-2097.
    5. Hanash S., Disease proteomics, Nature, 2003, 422(6928) : 226-32.
    6. Qing-Hua Zhang, Min Ye, Xin-Yan Wu, et al., Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells, Genome Res., 2000, 10: 1546-1560.
    7. Yu, Y.T., C.G. Zhang, G.Q. Zhou,et al., Gene expression profiling in human fetal liver and identification of tissue-and developmental-stage-specific genes through compiled expression profiles and efficient cloning of full-length cDNAs, Genome Res., 2001, 11:1392-1403.
    8. James N.I., The Challenges of Translating Knockout Phenotypes into Gene Function, Cell, 2000, 102:131-134.
    9. Lubo H, Palmer C., Transgenic animal bioreactors-where we are, Transgenic Res., 2000, 9(4-5) :301-4.
    10. Hamilton B.A., Zinn K.,From clone to mutant gene, Methods Cell Biol., 1994, 44:81-94.
    11. Wasinger V.C., Cordwell S. J., Cerpa-Poljak A et al., Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium, Electrophoresis, 1995, 16:1090-1094.
    12. Mike T., Matthias M., From genomics to proteomics, Nature, 2003, 422: 193-197.
    13. Jensen R.B., Shapiro L., Proteins on the move: dynamic protein localization in prokaryotes, Trends Cell BioL, 2000, 11:483-8.
    
    
    14. Gobter B., Richard W. W., Structural Biology: Proteomics for the pore, Nature, 2000, 403: 835-836.
    15. 黄培堂 等译,细胞实验指南,科学出版社,2001,第一版:前言
    16. Vorobjev I.A., Nadezhdina E.S., The centrosome and its role in the organization of microtubules., Int Rev Cytol., 1987, 106:227-93.
    17. Dutcher S.K., Motile organelles: the importance of specific tubulin isoforms., Curr Biol., 2001, 11:R419-22.
    18. Dutcher S.K., The tubulin fraternity: alpha to eta., Curr Opin Cell Biol., 2001, 13(1) :49-54.
    19. Bobinnec Y., Khodjakov A., Mir L.M., et al., Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells, J. Cell Biol., 1998, 143: 1575-1589.
    20. Gould R.R., Borisy G.G., The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation,J. Cell BioL, 1977, 73:601-15.
    21. Alexey K. and Conly L.R., Centrosomes Enhance the Fidelity of Cytokinesis in Vertebrates and Are Required for Cell Cycle Progression, J Cell BioL, 2001, 153: 237-242.
    22. Erickson HP, Stoffler D, Protofilaments and rings, two conformations of the tubulin family conserved from bacterial fTSz to a , β and y-tubulin, J Cell Biol., 1996, 135:5-8.
    23. Stearns T, Evans L, Kirschner M et al., γ-tubulin is a highly conserved component of the centrosome. Cell, 1991, 65:825-836.
    24. Hinchcliffe E.H. Chuan Li, Elizabeth A., et al., Requirement of cdk2-cyclin e activity for repeated centrosome reproduction in xenopus egg extracts, Science, 1999, 283: 851-854.
    25. Lacey K.R., Jackson P.K., Stearns T., Cyclin-dependent kinase control of centrosome duplication, Proc Natl Acad Sci USA, 1999, 96: 2817-22.
    26. Richard S.M. and Ronald A.D., Connecting Chromosomes, Crisis, and Cancer, Science, 2002, 297:565-569.
    27. Paula K. and Jean M. Debate surges over the origins of genomic defects in cancer, Science, 2002, 26:544-546.
    28. Lingle W.L. Ward H.L., James N. I. et al.,Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity, Proc Natl. Acad. Sci U S A, 1998, 95:
    
    2950-2955.
    29. Lingle W.L., Barrett S.L., Negron V.C., et al., Centrosome amplification drives chromosomal instability in breast tumor development, Proc Natl. Acad, Sci .USA , 2002 , 99:1978-83.
    30. Kim N., Segregating sister genomes:the molecular biology of chromosome separation. Science, 2002, 26:559-564.
    31. D' Assoro AB,Lingle WL Salisbury L. Centrosome amplification and the development of cancer, Oncogene, 2002, 21:6146-6153.
    32. Carroll P.E., Okuda M., Horn H.F. et al., Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression, Oncogene , 1999, 18(11) : 193 5-44.
    33. Fukasawa K., Choi T., Kuriyama R., Abnormal centrosome amplification in the absence of p53, Science, 1996,271:1744-7.
    34. Schatten H, Schatten G, Motility and centrosomal organization during sea urchin and mouse fertilization, Cell Motil Cytoskeleton, 1986, 6(2) :163-75.
    35. Boveri T. 1914, Zur Frage Der Entstehung Maligner Tumoren Jena: Fischer Verlag (1929 English translation by M Boveri Reprinted as ' The origin of Malignant Tumors' Baltimore: Williams and Wilkins Co.)
    36. Kondo T., Minamino N., Nagamura-Inoue T., Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity, Oncogene, 1997, 15(11) : 1275-81.
    37. Zhou, H., J. Kuang, L. Zhong, W.L.et al., Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation, Nat Genet,, 1998, 20:189-193.
    38. Tarapore P, Fukasawa K., Loss of p53 and centrosome hyperamplification, Oncogene, 2002, 21(40) :6234-40.
    39. Blair Zajdel ME, Blair GE.,The intracellular distribution of the transformation-asso ciated protein p53 in adenovirus-transformed rodent cells, Oncogene, 1988,2(6) :579-84.
    40. Brown C.R., Doxsey S.J., White E.,et al., Both viral (adenovirus E1B) and cellular (hsp 70,
    
    p53) components interact with centrosomes, J. Cell Physiol., 1994, 160(1) :47-60.
    41. Xu X., Weaver Z., Linke S.P., et al., Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells, Mol. Cell, 1999, (3) :389-95.
    42. Hollander M.C., Sheikh M.S., Bulavin D.V., Genomic instability in Gadd45a-deficient mice, Nat. Genet., 1999,(2) : 176-84.
    43. Balmain A., Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models, Cell, 2002 , 108(2) :145-52.
    44. Fearon E.R. 1997. Human cancer syndromes: Clues to the origin and nature of cancer, Science, 1997, 278:1043-1050.
    45. Godwin A.K., Schultz D.C., Hamilton T.C.,et al., 1997, In gynecologic oncology Principles and practice , Lippencott,Philadelphia. 1997, pp. 107-148.
    46. Wood R.D, Mitchell M., Sgouros J., et al., Human DNA repair genes, Science,2001 291: 1284-1289.
    47. Featherstone C., Src structure crystallizes 20 years of oncogene research, Science, 1997, 275(5303) :1066.
    48. 成军,肿瘤相关基因,北京医科大学出版社,2000,第一版:1.
    49. 鄂征,组织培养和分子细胞学技术,北京出版社,1992,第一版:220-248.
    50. Alber T.,Structure of the leucine zipper, Curr. Opin. Genet. Dev., 1992, 2:205-10.
    51. Helfman D.M., The generation of protein isoform diversity by alternative RNA splicing, Soc. Gen. Physiol.Ser., 1994, 49:105-15.
    52. Hodges D., Bernstein S.I., Genetic and biochemical analysis of alternative RNA splicing, Adv. Genet., 1994, 31:207-81.
    53. Grabowski P.J., Black D.L., Alternative RNA splicing in the nervous system, Prog Neurobiol., 2001, 65(3) :289-308.
    54. Saxon A, Diaz-Sanchez D, Zhang K., Regulation of the expression of distinct human secreted IgE proteins produced by alternative RNA splicing, Biochem. Soc. Trans., 1997, 25(2) :383-7.
    
    
    55. Paoletti A., Moudjou M., Paintrand M, Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles, Journal of Cell Science, 1996, 109: 3089-3102.
    56. Nakayama S., Moncrief N.D., Kretsinger R.H., Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J. Mol Evol., 1992, 34(5) :416-48.
    57. Bhattacharya D., Steinkotter J., Melkonian M., Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants., Plant Mol Biol, 1993, 6:1243-54.
    58. Doxsey S.J., Stein P., Evans L., et al., Pericentrin, a highly conserved centrosome protein involved in microtubule organization, Cell, 1994, 76(4) :639-50.
    59. Moritz M., Braunfeld M.B., Sedat J.W., et al., Microtubule nucleation by Y-tubulin-containing rings in the centrosome, Nature, 1995, 378:638-640.
    60. Elmar Schiebel, r-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation, Current Opinion in Cell Biology, 2000, 12:113-118 .
    61. Dutertre S., Descamps S., Prigent C.,On the role of aurora-A in centrosome function, Oncogene, 2002, 21(40) :6175-83.
    62. Nakamura, M., Masuda H., Horii J., et al., When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to Y-tubulin, J. Cell Biol, 1998,143:1041-1052.
    63. Shu, H.B., and Joshi. H.C., 1995, Y-Tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells, J. Cell Biol., 130:1137-1147.
    64. Doxsey, S., Re-evaluating centrosome function. Nat. Rev. Mol Cell Biol. 2001, 2: 688-698.
    65. Evan G.I., Vousden K.H., Proliferation, cell cycle and apoptosis in cancer, Nature, 2001,17: 411.
    66. Pauli U., Chrysogelos S., Stein G.,et al., Protein-DNA interactions in vivo upstream of a cell
    
    cycle-regulated human H4 histone, Science, 1987, 236:1308-1311.
    67. Vaughan P.S., Aziz F., Van W., et al, Activation of a cell-cycle-regulated histone gene by the oncogenic factor IRF-2, Nature, 1995, 377:362-365.
    68. Ada S., Jorrit M., Enserink J., et al, Molecular characterization of Celtix-1,a bromo domain protein interacting with the transcription factor interferon regulatory factor 2. J Cell. Phys., 2000, 185:269-279.
    69. Hirokawa, N., Sato-Yoshitake, R., Yoshida, T.,et al., 1990. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo, J. Cell Biol. 1990, 111:1027-1037.
    70. Hirokawa, N., Sato-Yoshitake, R., Kobayashi, N., et al., Kinesin associates with anterogradely transported membranous organelles in vivo, J. Cell Biol., 1991, 114: 295-302.
    71. Dahlstrom, A.B., Pfister, K.K., and Brady, ST., The axonal transport motor 'kinesin' is bound to anterogradely transported organelles, quantitative cytofluorimetric studies of fast axonal transport in the rat, Acta Physiol. Scand., 1991, 141:469-476.
    72. Muresan, V., Godek, C.P., Reese, T.S.,et al., Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules, J. Cell Biol. 1996, 135: 383-397.
    73. Ochi T., Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid, Mutat Res., 2002, 499(1) :73-84.
    74. Won K.A., Schumacher R.J., Farr G.W.,et al.,Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT, Mol. Cell Biol, 1998, 18 (12) : 7584-9.
    75. Resnitzky, D., Gossen M., Bujard H.,et al., Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell. Biol. 1994, 14: 1669-1679.
    76. Chheda M.G., Ashery U., Thakur P, et al., Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex, Nat. Cell Biol, 2001, 4:331-8.
    77. Krishnamoorthy R.R., Lee T.H., Butel J.S., Apolipoprotein B gene regulatory factor-2
    
    (BRF-2) is structurally and immunologically highly related to hepatitis B virus X associated protein-1 (XAP-1) , Biochemistry, 1997, 36(4) :960-9.
    78. Qadri I., Conaway J.W., Conaway R.C., Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH, Proc Natl Acad Sci USA, 1996,93(20) : 10578-83.
    79. Murakami S.,Hepatitis B virus X protein: a multifunctional viral regulator., J Gastro enterol, 2001,36(10) :651-60.
    80. Karin, M., The regulation of AP-1 activity by mitogen-activate protein kinases, J. Biol. Chem. ,1995, 270:166483-16486.
    81. Kapelari B., Bech-Otschir D., Hegerl R., et al., Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome, J. Mol. Biol., 2000, 300(5) : 1169-1178.
    82. Freilich S., Oron E., Kapp Y., et al., The COP9 signalosome is essential for develop ment of Drosophila melanogaster, Curr Biol. 1999, 9(20) : 1187-1190.
    83. Serino G, Tsuge T., Kwok S., et al., Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome, Plant Cell 1999,11(10) : 1967-1980.
    84. Tomoda K., Kubota Y. and Kato J., Degradation of the cyclin-dependent-kinase inhi bitor p27Kipl is instigated by Jab1, Nature, 1999, 398(6723) : 160-165.
    85. Boussiotis V.A., Freeman G.J., Taylor P.A., et al., p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes, Nat. Med., 2000, 6(3) : 290-297.
    86. Kleemann R., Hausser A., Geiger G, et al., Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jabl, Nature, 2000, 408(6809) : 211-216.
    87. Claret F.X., Hibi M., Dhut S., et al., A new group of conserved coactivators that increase the specificity of AP-1 transcription factors, Nature, 1996, 383(6599) : 453-457.
    88. Bianchi E., Denti S., Granata A., et al., Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity, Nature, 2000, 404(6778) : 617-621.
    89. Li S., Liu X. and Ascoli M., p38JABl binds to the intracellular precursor of the
    
    lutropin/choriogonadotropin receptor and promotes its degradation,J. Biol Chem., 2000, 275(18) : 13386-13393.
    90. Chauchereau A., Georgiakaki M., Perrin-Wolff M., et al., JAB1 interacts with both the progesterone and SRC-1, J. Biol Chem., 2000, 275: 8540-8548.
    91. Dechend R., Hirano F., Lehmann K., et al., The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators, Oncogens, 1999, 18(22) : 3316-3323.
    92. Bech-Otschir D., Kraft R., Huang X., et al., COP9 signalosome-specific phosphory lation targets p53 to degradation by the ubiquitin system, EMBO J., 2001, 20(7) : 1630-1639.
    93. Lu C., Li Y., Zhao Y., et al., Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway, FASEB J., 2002, 16(1) : 90-92.
    94. Bae M.K., Ahn M.Y., Jeong J.W., et al., JAB 1 interacts directly with HIF-lalpha and regulates its stability, J. Biol Chem., 2002, 277(1) : 9-12.
    95. Chamovitz D.A. and Segal D., JAB1/CSN5 and the COP9 signalosome. A complex situation, EMBO, 2001, 2 (2) : 96-101.
    96. Burridge, K. et al. Focal adhension,contractility and signaling, Annu.Rev.Cell.Dev.Biol. 1996, 12:463-519.