盒形件拉深智能化控制关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材成形是金属塑性加工领域的一大分支,在汽车、航空、仪表等工业领域占有重要的地位,其技术水平在某种程度上反映一个国家或地区的工业现代化水平。板材成形自动化由于不具备实时监测、识别、和预测的能力,只能按照预先设定好的加工程序和工艺参数完成成形过程。当被加工对象的材质及工况条件有变化或波动时,不能对工艺参数自动地进行相应的调整。板材成形智能化,由实时监测、实时识别、实时预测和实时控制四个基本要素构成,通过控制科学、计算机科学与板材成形理论的有机结合,根据被加工对象的特点,利用易于监测的物理量,实时确定材料性能参数及最优的工艺参数,并自动以最优工艺参数完成板材成形过程。所以板材成形智能化过程是冲压成形过程自动化及柔性加工系统等新技术的更高级阶段,不但可以改变冲压生产工艺的面貌,而且还将促进冲压设备的变革,同时也会引起板材成形理论的进步与分析精度的提高,在降低板材级别,消除模具与设备调整的技术难度,缩短调模试模时间,提高成品率和生产率等方面都具有十分明显的意义。在工程实践中,工件多为以盒形件为典型代表的非轴对称复杂形状。因此,研究盒形件拉深过程智能化控制技术很有学术价值和实际意义。
     本文在圆锥形零件拉深成形智能化控制的研究成果基础上,分析了盒形件拉深智能化需要解决的关键技术,并对其中的过程监测和识别模型等方面的相关问题展开了系统研究。
     在盒形件拉深智能化控制所要求的四个基本要素中,参数识别模型和最优工艺参数预测模型的建立都是基于对盒形件成形规律的认识程度基础上的。通过假设盒形件圆角区剪应力零线的变形性质同相应的轴对称件相同,根据盒形件变形特点,推导出盒形拉深件法兰区和悬空侧壁区的理论解析,为智能拉深中的参数识别和破裂、起皱预测等问题的研究提供了理论依据。
     利用理论解析和有限元仿真模拟等研究手段,分析了对盒形件拉深成形有影响的主要因素,从而确定盒形件智能拉深过程中的参数识别模型。网络拓扑结构选择前向神经网络结构,Levenberg-Marquarat算法作为网络优化算法,并利用Matlab语言进行编程计算。对于样本数据的采集问题,研究了数值模拟替代部分实验获取样本的可行性。此外,研究了样本数据和隐层节点数目对网络模型效率、精度和泛化能力的影响规律,并提出定压边和阶段识别方案作为盒形件智能拉深参数识别策略,使得多种材料样本数据达到了1‰网络平方和误差。对于泛化结果的处理问题,采用去除奇异点和平均输出的混合方法提高泛化识别精度。
     实时监测和实时控制两个基本要素主要受信号采集发展水平限制,本文分析了
    
    燕山大学工学博士学位论文
    智能拉深实验系统中原基于控制软件Genie的信号采集系统存在的不足,采用美国
    M公司的虚拟仪器控制软件LabviEW、6062E数据采集卡及相关模块,建立了便携
    式数据采集系统。在该系统上开发了信号采集和传感器标定等程序,获得了令人满
    意的信号监测与控制的速度和精度。利用控制软件LabvIEw提供的Matlab scriPt节
    点、开发了信号控制程序和参数识别模型接口程序,解决了智能拉深过程中的参数
    实时识别问题。
As a branch of plastic working field, sheet metal forming possesses the important place in the industry field of automobile, aviation, instrument and so on. Its state of the art reflects industrial modern level of a country or region in some degree. Due to lack of the skill in real-time monitoring, identifying and predicting, the automation of sheet metal forming can only finish forming process in the light of pre-established work program and process parameters. When material quality and operating condition of manufactured object change or fluctuate, process parameters can't be automatically regulated. The intellectualization of sheet metal forming, which includes 4 basic elements, real-time monitoring, identification, prediction and control, is the crossing subject of control-science and sheet metal forming theory. According to the characteristics of the initial piece, utilizing physical quantities easy to be measured, material properties and friction coefficient can be determined in real-time, and then the forming process can be completed automatically with the optimal processing parameters. As a result, the intellectualization of sheet metal forming process is the higher level of new technologies such as press forming automation and flexible process system, by which not only can the feature of manufacturing technique be changed, but also the transformation of press equipment can be forwarded. It brings about the progress of sheet metal forming theory and improvement of analysis precision at the same time, it has the important significance for degrading sheet metal level, eliminating technology difficulty between die and equipment adjustment, shortening die setting time, improving productivity and the rate of finished products, and so on. Most workpieces are non-axial symmetry complex shape represented by rectangular box in engineering practice, so it has much academic value and significance to study intelligent control technology of deep drawing for a rectangular box.
    Based on the research achievements of intelligent deep drawing for an axis-symmetric part, the key technologies of intelligent deep drawing for a rectangular box are discussed, and the relevant issues to the process monitoring and identification model have been studied in this paper.
    Among the four basic elements required by intelligent deep drawing for a rectangular box, the establishment of the identification model of parameters and the prediction model of optimal technological parameter is dependent upon the level of understanding the forming law for a rectangular box. With the deformation characteristics of rectangular box
    
    
    
    in deep drawing, the theoretic analysis of stress on deformation area has been obtained on the basis of the hypothesis that deformation law of shear stress zero-line is the same as the corresponding axial symmetric workpieces, which provides the theoretic basis for the identification of parameters and the prediction of fracture and wrinkling.
    The dominant factors influenced on deep drawing forming of a rectangular box have been analyzed by using theoretic analysis and finite element method (FEM) simulation, and then the identification model of parameters for a rectangular box is determined. The Levenberg-Marquarat is chosen as optimal algorithm of neural network whose topology structure is feedforward network, and Matlab language is to program. For the problem of sample data acquisition, the feasibility has been studied that FEM replaces some experiments to get sample data. Furthermore, the influence of sample data and hidden nodes on network convergence efficiency, precision as well as generalization has been studied. The strategy of stage identification with constant blank holder force is put forward as identification scheme for a rectangular box, by which the sum-squared error is stepped downward to l‰ The hybrid method of removing singular points and mean technique is employed to improve generalization precision.
    Real-time monitoring and control depend on the development of data acquisition (DAQ) technol
引文
1 Masami Konishi. Artificial Intelligence for Plastic Deformation. Journal of the Japan Society for Technology of Plasticity (JSTP), 1993, 387(34): 345-351
    2 Kozo Osakada and G.B.Yang. The State-of-the-Art and Perspectives of Knowledge Bases of Metal Forming. Journal of the JSTP, 1993, 387(34): 332-226
    3 Matsuo Miyagawa. Expecting the Intelligent Process for incremental Forming. Journal of the JSTP. 1994, 406(35): 1251
    4 柳本润.知能化技术.塑性加工,1995,415(36):886
    5 杨明.知能化技术.塑性加工,1996,427(37):859-860
    6 Ken-ichi Manabe, M. Yang. Intelligent Technology on Sheet Metal Forming. Journal of the JSTP, 1993,387(34): 398-404
    7 H.J. Park, H. S. Cho. Fuzzy Self-Learning Control Method with Application to Hydroforming Processes. ASME Journal of Engineering for Industry, 1995,117:197-303
    8 Ken-ichi Kawai. Intelligent Spinning Technology. Journal of the JSTP,1993, 387(34): 391-397
    9 Ken-ichi Kawai. Intelligent and/or Flexible Spinning. Journal of the JSTP, 1994, 406(35): 1286-1290
    10 许勇顺,邢渊,阮雪榆.基于神经网络的塑性加工缺陷诊断与预测的方法研究.锻压技术,1998(1):36-40
    11 Koukichi Nakanishi. Knowledge Based System for Forming-Sequence Design of Multistage Cold Forming. Journal of the JSTR 1993, 387(34): 416-421
    12 M. Bakhshi-Jooybari. Development of an Intelligent Knowledge-Based System (IKBS) for Forging Die Design. Journal of Material of Processing and Technology, 1994, 45:689-694
    13 V.L. Xu. Analysis of Ring Compression Using Artificial Neural Network. Journal of Material of Process and Technology, 1994, 44:301-308
    14 R. Roy. Interpolation of Forming Preform Shape Using Neural Network. Journal of Material of Processing and Technology, 1994, 45:695-702
    15 T. Hirai, K. Hara, T. Katayamaetal. Intelligent CAD System for Cold Forging Using Fuzzy Theory. Journal of the JSTP, 1993,387(34): 428-435
    16 刘汉武,顾迎新,丁桦,等.基于有限元模拟的型材挤压专家系统.模具工业,2000,(1):16-18
    17 翟福宝,张质良,夏萼辉,等.基于有限元模拟的筒形件错距旋压智能参数优化系统研究.锻压机械,2000,(2):44-45
    
    
    18 K. Hans Raj, Rahul Swarup Sharma et al.. Medeling of Manufacturing Processes with ANNs for Intelligent Manufacturing. International Journal of Machine Tools and Manufacture, 2000, 40(6): 851-868
    19 潘筱剑.冲压工艺方案的模糊决策与实现.模具技术,2000(3):8-13
    20 Brezocnik, Miran, Balic, et al.. Emergence of Intelligence in Next-Generation Manufacturing Systems. Robotics and Computer-Integrated Manufacturing Systems, 2003, 19(1-2): 55-63
    21 A. Grauel, L. A. Ludwig, G. Klene. Comparison of Different Intelligent Methods for Process and Quality Monitoring, International Journal Approximate Reasoning, 1997, 16(1): 89-117
    22 赵军.圆锥形件拉深成形智能化的研究.[哈尔滨工业大学博士学位论文].1997:1-60
    23 K.A. Stelson. Real Time Identification of Workpiece Material Characteristics from Measurements during Breakforming. Journal of Engineering for Industry, Transactions ASME, 1983, 105(1): 45-53
    24 A. Chandra. Realtime Identification and Control of Springback in Sheet Metal Forming. ASME Journal of Engineering for Industry, 1987, 109(3): 265-273
    25 D.C. Gossard, B.T. Allison. Adaptive Brakeforming. Eight North American Manufacturing Research Conference Proceedings, 1980:252 -256
    26 K.A. Stelson. An Adaptive Pressbrake Control for Strain-Hardening Materials. ASME Journal of Engineering for Industry, 1986, 108:127-132
    27 W. M. Sing, K. P.Rao. Knowledge-Based Process Layout System for Axisymmetrical Deep Drawing Using Decision Tables. Computer & Industrial Engineering, 1997, 32(2): 299-319
    28 R. Singh, G. S. Sekhon. An Expert System for Optimal Selection of a Press for a Sheet Metal Operation, JournaI of Materials Processing Technology, 1999, 86(1-3): 131-138
    29 何大钧,王孝培,罗永建.筒形件拉深CAPP中模糊信息优化技术的应用.锻压技术,2002,1:11-14
    30 吕冬,丁柯,何丹农,等.基于神经网络的拉深力智能化预测系统.中国有色金属学报,2000,10(3):420-425
    31 A.K. Stelson, D. C. Gossard. An Adaptive Press Brake Control Using an Elastic-Plastic Material Model. Trans. ASME. J. Eng. Ind, 1992, 104:389-393
    32 A. Wang, G. Kinzel, T. Altan. Mathematical Modeling of Plane Strain Bending of Sheet and Plate_ Journal of Material of Processing and Technology, 1993, 39:279-304
    33 B. Perduijn, S. M. Hoogenboom. The Pure Bending of Sheet. Journal of Material of Processing and Technology, 1995, 51(1-4): 274-295
    34 A.K. Leu. A Simplified Approach for Evaluating Bendability and Spring-back in Plastic Bending of Anisotropic Sheet Metals. Journal of Material of Processing and Technology, 1997, 66(1-3):
    
    9-17
    35 H. Huh, S. S. Han, D. Y. Yang. Modified Membrane Finite Element Formulation Consider Bending Effects in Sheet Metal Forming Analysis. international Journal of Mechanical Sciences, 1994, 36(7): 659-671
    36 M.J. Finn, P.C. Galbraith, et al,. Use of a Coupled Explicit-Implicit Solver for Calculating Spring-back in Automotive Body Panels. Journal of Material Processing Technology, 1995, 50(1-4): 395-409
    37 Hideo Ogawa, Akitake Makinouchi. Development of An Elastic-Plastic FE Code for Accurate Prediction of Spring-back in Sheet Bending Processing and Its Validation by Experiments. ICTP'93:1641-1646
    38 汪晨,张质良.二维板料U形弯曲回弹的数值模拟研究.金属成形工艺,1999,17(4):33-35
    39 刁法玺,张凯峰,板料V形弯曲回弹的动力显式有限元分析.材料科学与工艺,2002,10(2):170-174
    40 W. Bass Robert. Optimal Recurrent Backpropagation Networks for Real-Time Identification. Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, 1990, 5:2756-2765
    41 Deng Xiaosong, D. Popovic, et al.. Backpropagation Neural Network Being Capable of Real-Time Identification. Proceedings of the 1995 IEEE Conference on Control Applications, 1995:572-577
    42 M.V. Inamdar, P. P.Date, U. B. Desai. Studies on the Prediction of Springback in Air Vee Bending Metallic Sheets Using Artificial Neural Network. Journal of Materials Processing Technology, 2000, 108(1): 45-54
    43 宋黎,杨坚,黄天泽,板料弯曲成形的回弹分析与工程控制综述.锻压技术,1996,1:18-22
    44 黄春峰.弯曲弹性回弹及其工艺技术控制方法.模具技术,1998,6:65-74
    45 杨明,岛进,渡部透,等.曲加工制架.第42回塑性加工连合演讲会,1991,9:453-456
    46 A. Forcellese, F. Gabrielli, R. Ruffini. Effect of the Training Set Size on Springback Control by Neural Network in an Air Bending Process. Journal of Materials Processing Technology, 1998, 80-81: 493-500
    47 M.V. Inamdar, P.P.Date, K. Narasimhan. Development of an Artificial Neural Network to Predict Springback in Air Vee Bending. International Journal of Advanced Manufacturing TechnoIogy, 2000, 16(5): 376-381
    48 H.B. Sim, M. C. Boyce. Finite Element Analysis of Real-time Stability Control in Sheet Forming Process. A SME Journal of Engineering Materials and Technology, 1992, 114:181-188
    49 R. Di Lorenzo, G. Perrone, S. Noto La Diega. Design of a Fuzzy Controller for the Deep Drawing
    
    Process by Using Gas.International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 1998, 3:102-108
    50 S. Hinduja, J. Atkinson, D. K. Y. Lau, et al., Intelligent Controller for Improving the Quality of Deep Drawn Components. CIRP Annals-Manufacturing Technology, 2000, 49(1): 221-224
    51 Ken-ichi Manabe, Kentaro Soeda, et al.. Adaptive Control Method of Deep Drawing Using the Variable Blank Holding Force Technique. Journal of the Japan Society for Technology of Plasticity. 1992, 33(375): 423-428
    52 真锅键一,杨明.材料特性同定应用异方性材料适应制御深绞法.第43回塑性加工连合讲演会.1992,10:141-144
    53 K. Manabe Fuzzy Controlled Variable Blank Holding Force Technique for Circular Cup Deep Drawing of Aluminum Alloy Sheet. Technical Paper-Society of Manufacturing Engineers. MF, n MF95-127, 1995
    54 赵军,秦泗吉,曹宏强,等.轴对称曲面件智能化拉深成形过程的解析定量描述.塑性工程学报,1998,5(4):47-58
    55 赵军.锥形件智能化拉深系统中材料参数和摩擦系数的在线识别,塑性工程学报,1998,8(3):48-52
    56 赵军,曹宏强,马丽霞,等.锥形件智能化拉深实验系统.冲压加工技术最新进展,中国机械工程学会锻压学会第五届冲压学术年会论文集.南昌:江西高校出版社,1998:136-139
    57 赵军,官英平,郑祖伟,等.基于神经网络的材料性能参数和摩擦系数的实时识别.塑性工程学报,2001,8(2):36-39
    58 赵军,郑祖伟,王凤琴.轴对称件拉深成形智能化控制中参数实时识别的GA-ENN建模.中国机械工程,2003,14(1):72-74
    59 赵军,潘文武,曹宏强,等.拉深过程智能化控制中的侧壁起皱临界条件,第八届全国塑性加工学术年会及全球华人先进塑性加工技术研讨会论文集.2002:726-729
    60 Kenichi Manabe, Hiroshi Koyama, Shoichiro Yoshihara, et al.. Development of a Combination Punch Speed and Blank-holder Fuzzy Control System for the Deep-Drawing process. Journal of Materials Processing Technology, 2002, 125-126:440-445
    61 Kenichi Manabe, Shoichiro Yoshihara, Nishimura Hisashi. Theoretical Analysis of Punch Speed and Blank Holder Force Control in Deep Drawing Process of Strain-Rate-Sensitive Materials. Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, 1996, 58:175-182
    62 杨明,真锅健一.板材成形的智能传感与控制系统.第八届全国塑性加工学术年会及全球华人先进塑性加工技术研讨会论文集.2002:743-747
    63 S.H. Zhang, K. B. Nielsen. J. Danckert et al.. Finite Element Analysis of the Hydromechanical
    
    Deep-drawing Process of Tapered Rectangular Boxes. Journal of Materials Processing Technology, 2000, 102(1-3): 1-8
    64 L. F. Menezes, C. Teodosiu. Three-dimensional Numerical Simulation of the Deep-Drawing Process Using Solid Finite Elements. Journal of Materials Processing Technology, 2000, 97(1-3): 100-106
    65 鄂大辛.非回转对称拉深变形规律的研究.中国机械工程,2002,13(2):137-140
    66 孙惠学,胡金华,李春科,等.方盒形件拉深弹塑性有限元分析.燕山大学学报,1998,22(3):210-213
    67 Shi Xiaoxiang, Wei Yuanping, Ruan Xueyu. Simulation of Sheet Metal Forming by a One-Step Approach: Choice of element. Journal of Materials Processing Technology, 2001, 108(3): 300-306
    68 姚华,陈军.BP神经网络在盒形件坯料外形预测中的应用.模具技术,1999,5:15-19
    69 Shim Hyunbo, Son Kichan, Kim Kwanghee, Optimum Blank Shape Design by Sensitivity Analysis, Journal of Materials Processing Technology, 2000, 104(3): 191-199
    70 Son Kichan, Shim Hyunbo. Optimal blank shape design using the initial velocity of boundary nodes. Journal of Materials Processing Technology, 2003, 134(1): 92-98
    71 O. Barlet, J. L. Batoz, Y. Q. Guo, et al.. Inverse Approach and Mathematical Programming Techniques for Optimum Design of Sheet Forming Parts. American Society of Mechanical Engineers, Petroleum Division (Publication) PD, 1996, 75(3): 227-234
    72 Y.Q. Guo, J. L. Batoz, H. Naceur, et al.. Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach. Computers and Structures, 2000, 78(1): 133-148
    73 D.W. Jung, S. J. Lee. Determination of Initial Blank Shape by Using the One-Step Finite Element Method and Experimental Verification. Journal of Materials Engineering and Performance, 2000, 9(2): 183-192
    74 郑晓丹,汪锐,何丹农.应用专家系统进行盒形件拉深成形极限的分析.锻压机械,2000,5:49-50
    75 Y. Marumo, H. Saiki, T. Mori. Combined Effects of Strain Hardening Characteristics and Tool Geometry on the Deep-Drawability of Square Aluminum Cups. Journal of Materials Processing Technology, 1999, 89-90:30-36
    76 J. Cao, M. Boyce. Wrinkling Behavioe of Rectangular Plates under Lateral Contraint. International Journal of Solids and Structures, 1997, 34(2): 153-176
    77 Jian Cao, A. Karafillis, M. Ostrowski. Prediction of Flange Wrinkles in Deep Drawing. Advanced Methods in Materials Processing Defects, 1997:301-310
    78 S. Yossifon, K. Sweeney, M. Ahmetogtu et al.. On the Acceptable Blank-holder Force Range in the
    
    Deep-drawing Process. Journal of Materials Processing Technology, I992, 33(1-2): 175-194
    79 M. Ahmetoglu, T. R. Broek, G. Kinzel et al.. Control of Blank Holder Force to Eliminate Wrinkling and Fracture in Deep-drawing Rectangular Parts. CIRP Annals - Manufacturing Technology, 1995, 44(1): 247-250
    80 Li-Ping Lei, J, Kim, Beom-soo Kang. Bursting Failure Prediction in Tube Hydroforming Processes by Rigid-plastic FEM Combined with Ductile Fracture Criterion. International Journal of Mechanical Science, 2002, 44:1411-1428
    81 H. Takuda, T. Yoshii, N. Hatta. Finite EIement Analysis of the Formability of a Magnesium-Based Alloy AZ31 Sheet. Journal of Materials Processing Technology, 1999, 89-90: 135-140
    82 E.J. Obermeyer, S. A. Majlessi. A Review of Recent Advances in the Application of Blank-holder Force towards Improving the Forming Limits of Sheet Metal Parts. Journal of Materials Processing Technology, 1998, 75(1-3): 222-234
    83 熊志卿.筒盒拉深的应力通解.塑性工程学报,1995,2(2):9-17
    84 杨玉英.盒形件机理的探讨问题.锻压技术,1989,6:13-17
    85 雷君相,圆锥形零件冲压成形悬空侧壁圆锥台变形区的应力应变计算.塑性工程学报,1999,6(1):52-58
    86 李硕本.冲压工艺学.北京:机械工业出版社,1985:105-107
    87 万敏,杨玉英,李硕本.圆锥形零件成形时极限承载的确定.机械工程学报,1997,33(3):80-86
    88 Bernspang Lars, Hammam Tag, Mattiasson Kjell et al.. Verification of an Explicit Finite-element Code for the Simulation of the Press Forming of Rectangular Boxes of Coated Sheet Steels. Journal of Materials Processing Technology, t993, 39(3-4): 431-453
    89 Choi T H, Huh H. Sheet Metal Forming Analysis of Planar Anisotropic Materials by a Modified Membrane Finite Element Method with Bending Effect. Journal of Materials Processing Technology, 1999, 89-90:58-64
    90 L. K Menezes, C. Teodosiu. Three-dimensional Numerical Simulation of the Deep-drawing Process Using Solid Finite Elements. Journal of Materials Processing Technology, 2000, 97(1-3): 100-106
    91 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999:1-3
    92 李泉永,孙希廷,杨连发.单元选择对板料拉深成形过程数值模拟的影响.2002 ANSYS中国用户年会论文集
    93 A. Makinouchi. Sheet Metal Forming Simulation in Industry. Journal of Materials Processing Technology, 1996, 60(1-4): 19-26
    
    
    94 金朝海.板料成形动力显示弹塑性有限元仿真技术研究.[哈尔滨工业大学博士学位论文].1997:4-7
    95 A. Makinouchi, M. Kawka. Process Simulation in Sheet Metal Forming. Journal of Materials Processing Technology, 1994, 46(3-4): 291-307
    96 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993:1-6
    97 K. Osakada, Guobin Yang. Application of Neural Networks to an Expert System for Cold Forging. Internationai Journal of Machine Tools & Manufacture, 1991, 31 (4): 577-587
    98 K. Osakada, Guobin Yang. Neural Networks for Process Planning of Cold Forging. Manufacturing Technology, CIRP Annals, 1991, 40(1): 243-246
    99 许勇顺,邢渊,阮雪榆.基于神经网络的塑性加工缺陷诊断与预测的方法研究.锻压技术,1998,(1):36-40
    100 张兴全,彭颖红,阮雪榆,等.基于有限元和神经网络的缺陷预测.机械科学与技术,1998,17(2):342-344
    101 胡小平,毛征宇,胡燕平.基于人工神经网络的一种板形反馈控制.制造业自动化,2001,23(3):40-45
    102 朱万政.板材成形摩擦系数测试分析系统的研究.[燕山大学硕士学位论文].2003
    103 W. C. Carpenter, M. E. Hoffman. Selecting the Architecture of a Class of Back-propagation Neural networks used as Approximator. Artificial Intelligence for Engineering Design, Analysts and Manufacturing: AIEDAM, 1997, 11 (1): 33-44
    104 M. Aberbour, H. Mehrez. Architecture and Design Methodology of the RBF-DDA Neural Network. Proceedings-IEEE International Symposium on Circuits and Systems, 1998, 3: 199-202
    105 姚华,罗仁平,陈军.盒形件毛坯外形预测中BP网络结构的确定.模具技术,1999,6:26-29
    106 D. C. Hyland, Neural network Architecture for On-line System Identification and Adaptively Optimized Control. Proceedings of the IEEE Conference on Decision and Control, 1991, 3: 2552-2557
    107 陈国良.遗传算法及其应用.北京:人民邮电出版社,1999:1-8
    108 戈玲,吴新余.优化反向传播神经网络的自适应遗传算法.南京邮电学院学报,1998,18(3):1-8
    109 周伟良,何鲲,曹先彬,等.基于一种免疫遗传算法的BP网络设计.安徽大学学报,1999,23(1):63-66
    110 A. K. Srivastava, S. K. Srivastava, K. K. Shukla. Genetic Evolution of Neural Network Based on a New Three-Parents Crossover Operator. Proceedings of the IEEE International Conference on Industrial Technology, 2000, 2:153-158
    111 M. T. Hagen, M. B. Menhaj. Training Feedforward Networks with the Levenberg- Marquardt
    
    Algorithm. IEEE Trans on Neural Networks, 1994, 5(6): 989-993
    112 司捷,周贵安,李函,等.基于梯度监督学习的理论与应用(Ⅰ)—基本算法.清华大学学报,1997,37(7):71-73
    113 袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997:373-403
    114 张莹莹,王劭伯.基于LM的神经网络偏差补偿预测控制及其应用.福州大学学报(自然科学版),2001,29(1):43-46
    115 左敦稳,朱纪军,王珉.基于LM算法的无氢类金刚石薄膜喇曼高斯分解.中国机械工程,2000,11(11):1296-1298
    116 闻新.MATLAB神经网络应用设计.北京:科学出版社,2000
    117 刘君华,贾惠芹,丁晰,等.虚拟仪器图形化编程语言.西安:西安电子科技大学出版社,2001:1-8
    118 汪敏生译著.LabVIEW基础教程.北京:电子工业出版社,2002:1-16
    119 Gary W Johnson著,武嘉澍泽.LabVIEW图形编程.北京:北京大学出版社,2002:1-28
    120 石博强,赵德永,李畅,等.LabVIEW6.1编程技术实用教程.北京:中国铁道出版社,2002:173-184