伪随机多频电磁法观测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伪随机多频信号由何继善院士发明和命名,该信号带宽可控,其能量集中在数个在对数坐标上呈等间距分布的频率上,是电法勘探的理想场源。以此为励信号的伪随机多频电磁法勘探,不仅具有时间域电法勘探工作效率高、在单次测量中获取丰富信息的优点,而且具有频率域电法勘探抗干扰能力强、仪器轻便的优点。本文在双频激电和伪随机三频激电观测系统研究的基础上,对伪随机多频电磁法观测系统进行了系统研究,研究内容包括伪随机多频信号、多频相对相位谱激电法、计算机仿真技术在电法仪器研制和评价中的应用、伪随机多频电磁法信号的数字信号处理方法、伪随机多频电磁法信号发送机、伪随机多频电磁法信号接收机、伪随机多频电磁法数据采集软件的设计及实现等一系列方法技术。
     在伪随机多频信号的研究中,根据伪随机多频波的特点,得出了伪随机多频波在时间域上的表达式,在此基础上导出了伪随机多频波在频率域上的表达式。通过对比伪随机多频波和常规电法中使用的方波的频谱和功率分配,证明伪随机多频信号作为频率域电法勘探场源具有工作效率高、电源利用率高、装备轻便、精度高等优点,是电法勘探的理想场源。
     本文在激电相对相位法的基础上提出了激电相对相位谱观测法,并定义了相对相位谱公式。相对相位观测不需要发送机与接收机之间的同步,同时对电磁耦合效应进行了一阶改正。利用伪随机多频信号作为场源的多频相对相位谱观测法拥有相对相位观测法的优点,同时为异常源的区分提供丰富的信息。本文通过计算具有代表性的COLE-COLE模型的相对相位谱和相位谱,说明相对相位谱观测在异常的反映上与绝对相位谱观测具有相同的能力。野外的试验结果说明多频相对相位谱观测确实能够压制耦合感应。多频激电相对相位谱法充分发挥了伪随机多频信号作为电法勘探场源的优点,可在找水,找矿等勘探中发挥重要作用。
    
     计算机仿真技术广泛应用于航空航天、雷达、电力等领域复杂控
    制系统的分析、设计和改进中。本文针对利用传统方法研制电法仪器
    面临周期长、成本高、风险大等问题,首次将计算机仿真技术应用于
    电法仪器的设计、优化、和改进中。通过对传统的双频激电仪、相对
    相位激电仪和基于数字信号处理的新一代电法仪器的仿真研究,说明
    仿真技术可以在各种电法仪器的设计、优化和改进中发挥重要作用。
    在电法仪器研究中采用仿真技术,可以大大缩短电法仪器的研制周
    期、降低仪器开发的成本和风险。
     本文针对数字信号处理技术将广泛应用于各种电法仪器中这一发
    展趋势,提出了在电法勘探中行之有效的数字信号处理技术,并成功
    应用于研制的伪随机多频电磁法观测系统中。利用数字信号处理技
    术,不但完善了原有的多频激电法,还同时实现了多频电磁法和其它
    电法勘探方法。在完全不需要发送机和接收机之间硬件同步的情况
    下,利用数字自适应相关同步法,实现了多频激电相对相位谱的可靠
    观测。由于不需要发送机与接收机之间的硬件同步,降低了整个观测
    系统的体积、重量、功耗和成本,同时提高了整个观测系统的测量效
    率。
     在多频电磁法观测系统的硬软件集成中,紧跟国际上具有代表性
    电磁法仪器高精度、多功能、多参数的发展趋势,使该系统不但能开
    展以伪随机多频信号作为场源的多种电法勘探方法(如多频SIP、多
    频CSAMT),还能开展各种常规的电法勘探方法(如电阻率法、TDIP、
    FDIP、SIP、TEM、FEM、C SAMT、AMT、MT等);瞄准了目前世
    界上最新电子技术,采用了高精度、低噪声、低功耗精密仪器放大器,
    及程控放大器、门阵列、24位A刃转换器、工业控制计算机、电力
    电子器件等新特器件,使研制的多频电磁法观测系统具有较高的水
    平。采用面向对象分析与设计技术,提出了多功能电磁法观测系统的
    面向对象模型,在W环旧OWS环境下实现了可视化的数据采集软件,
    而国外同类仪器仅实现了DOS环境下的数据采集。
     通过对仪器进行的RC网络试验、水槽试验、抗干扰能力试验,说
    明研制的多频电磁观测系统精度高、抗干扰能力强、工作正常可靠。
Pseudo-random multi-frequency (PRMF) signal is invented and named by academician He Jishan. The bandwidth of PRMF signal is controllable, it's energy concentrates on several frequencies, which are equally spaced on log scale coordinates. It is ideal excitation source for electrical exploration. PRMF electromagnetic exploration method with PRMF signal as excitation signal, not only have time domain electromagnetic method's advantages of high work productivity, acquiring plenty information in single measurement, but also have frequency domain electromagnetic method's advantage of super anti-interference ability, and portable instrument. In this dissertation, based on the study of dual-frequency induced polarization (IP) surveying system and pseudo-random tri-frequency IP surveying system, PRMF electromagnetic survey system is studied systematically, including PRMF signal, PRMF relative phase IP, using computer simulation for design and evaluation of electrical instrument, digital signal processing of PRMF elec
    tromagnetic signal, transmitter for PRMF electromagnetic method, receiver for PRMF electromagnetic method, analysis and realization of data acquisition software for PRMF electromagnetic method, and so on..
    In the study of PRMF signal, based on characteristic of PRMF signal, the expression of PRMF signal in time domain and frequency domain is found. By comparing the spectrum and power distribution of PRMF signal and square wave, which is widely used in ordinary electrical exploration, the advantage of PRMF signal as current source of frequency electromagnetic method exploration, as high work productivity, high power supply utilization ratio, portable instrument, high precision, is proved. It's a ideal waveform for electrical exploration.
    Based on relative phase IP method, the relative phase spectrum IP method is developed. The formula of relative phase spectrum is defined. The relative phase measurement does not need synchronization between receiver and transmitter, and carry out one order correction for
    
    
    electromagnetic coupling in IP. PRMF relative phase spectrum IP method with PRMF signal as excitation has the same advantage of relative phase IP method, and offer rich information for the discrimination of anomaly source. Relative phase spectrum and phase spectrum of representative Cole-Cole IP model show that relative phase spectrum have the same ability as phase spectrum to the detection of anomaly. Field experiment result proves that PRMF spectrum have the ability to suppress electromagnetic coupling. PRMF relative phase spectrum IP show the advantage of PRMF signal as source of electrical exploration, can play important in groundwater exploration, mineral exploration, and so on.
    Computer simulation technology is widely used in analysis, design, and optimization of complex control system in field of astronautics, radar, electrical power, and so on. Using traditional method develop electrical instrument face the problem of long develop period, high cost and great risk. To overcome above problems, computer simulation method is used in design, optimization, and improvement of electrical instrument. The simulation of dual-frequency IP instrument, relative phase IP instrument and new generation electrical instrument based on digital signal processing show the importance of computer simulation in design, optimization, and improvement of many kinds of electrical instrument. By using simulation in electrical instrument development, period, cost, and risk of electrical instrument development can be greatly reduced.
    Digital signal processing will get wide application in different kind of electrical instrument. In this dissertation, effective digital signal processing method used in electrical exploration is developed, and used in new developed PRMF electromagnetic survey system successfully. By using digital signal processing method, not only realize multi-frequency IP method, but also realize multi-frequency electromagnetic method and other electrical prospecting methods in a instrument. At the condition of no ha
引文
1.白宜诚,崔燕丽,蒲慧如.SQ型双频激电仪的研制[J].物探与化探,2002,26(6):456-460.
    2.鲍光淑,何继善.多参数频域激电观测系统的研究[J].地学仪器.1995,(2):5-10.
    3.蔡庆宇,薛毅,张伯彦.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997.
    4.常欣,邓明,等.高密度电阻率测量系统[J].地学仪器,1996,(1):27-32.
    5.常欣,邓明,等.DDJ-1型多功能激电仪[J].地学仪器,1994,(3):18-20.
    6.曹岩,曹印三,等.DD-1型大功率电磁频测仪[J].地学仪器,1995,(2):26-28.
    7.陈桂明,张明照,等,应用MATLAB语言处理数字信号与数字图象[M],北京:科学出版社,2000.
    8.陈鸿志.DW-1型大功率直流电测仪—找水专用新仪器[J].地学仪器,1997,(3):8-12.
    9.陈丽春,邱德洪.DDZS—1多参数找水仪的研制[J].地质装备,2002,3(1):27-29.
    10.程德福,林君.部分工程与环境物探仪器现状与展望[J].地学仪器,1997,(4):1-4.
    11.重庆地质仪器厂,2002a.DUK-2高密度电法测量系统[OL].http://www.cgif.ocm.cn.products/dianfa/duk-1.htm.
    12.重庆地质仪器厂,2002b.DZD-6多功能直流电法仪[OL].http://www.cgif.com.cn/products/dianfa/dzd-4.htm.
    13.重庆地质仪器厂,2002c.DUK-3智能高密度电法测量系统[OL].http://www.cgif.com.cn/products/dianfa/duk-3.htm.
    14.重庆地质仪器厂,2002d.DDC-5型电子自动补偿仪[OL].http://www.cgif.com.cn/products/dianfa/ddc-5-1.htm.
    15.重庆地质仪器厂,2002e.大功率激电测量系统[OL].http://www.cgif.com.cn/products/dianfa/djf-10.htm.
    16.重庆地质仪器厂,2002f. DDC-6电子自动补偿仪[OL].http://www.cgif.com.cn/products/dianfa/DDC-6.htm.
    17.重庆奔腾数控技术研究所,2002a.WDJF-1数字幅频激电仪[OL].http://www.cqbtsk.com.cn/wdjf_1.htm.
    18.重庆奔腾数控技术研究所,2002b.WGMD-1高密度电阻率测量系统[OL].http://www.cqbtsk.com.cn/wgmdll.htm.
    19.重庆奔腾数控技术研究所,2002c.WGMD-1A高密度电阻率测量系统[OL].http://www.cqbtsk.com.cn/wgma.htm.
    20.重庆奔腾数控技术研究所,2002d.WDJD-1多功能数字直流激电仪[OL].http://www.cqbtsk.com.cn/wdjd_1.htm.
    21.重庆奔腾数控技术研究所,2002e.WDJD-2多功能数字直流激电仪[OL].http://www.cqbtsk.com.cn/wdjd_2.htm.
    22.重庆奔腾数控技术研究所,2002f.WDZS-2多功能电法找水仪[OL].http://www.cqbtsk.com.cn/wdzs_2.htm.
    23.重庆奔腾数控技术研究所,2002g.WDDS-1数字电阻率仪[OL].http://www.cqbtsk.com.cn/wdds_1.htm.
    24.重庆奔腾数控技术研究所,2002h.WDJS-1数字直流激电接收机[OL].http://www.cqbtsk.com.cn/wdjs_1.htm.
    25.重庆奔腾数控技术研究所,2002i.WDFZ-1,WDFZ-2大功率智能发射机[OL].http://www.cqbtsk.com.cn/wdfz_2.htm.
    26.董浩斌,王传雷等.分布式智能化高密度电法仪的特点及应用[A].中国地球物理学会.中国地球物理年会年刊(2000)[C],武汉:中国地质大学出版社,2000.
    27.董浩斌,周东详.24位A/D转换技术及其在地球物理中的应用[A].中国地球物理学会.中国地球物理年会年刊(2000)[C],武汉:中国地质大学出版社,2000.
    28.董浩斌,谢瑞和.多功能PC机数据采集,控制接口的研制及在物探中的应用[A].中国地球物理学会.中国地球物理年会年刊(1998)[C],西安:西安地图出版社,1998.
    29.董浩斌,王传雷.分布式智能化高密度电法测量系统[J].地学仪器,1997(4):26-27.
    30.董绍平,陈世耕,王洋.数字信号处理基础(修订版)[M].哈尔滨:哈尔滨工业大学出版社,1996.
    
    
    31.豆会平,魏启.脉冲瞬变电磁仪的发展状况及对策[J].石油仪器,2000,14(2):26-29.
    32.傅良魁.激发极化法[M].北京:地质出版社,1982.
    33.高俊斌.MATLAB 5.0语言与程序设计[M].武汉:华中理工大学出版社,1998.
    34.高文利,瞿兴昌.JW-4A型地下电磁波仪的设计[J].地学仪器,1997,(2):3-11.
    35.官章全.刘加明.Visual C++ 6.0类库大全[M].北京:电子工业出版社,1999.
    36.郭大江.史燕.低频电流磁场法观测系统[J].地学仪器,1996,(2):14-22.
    37.葛万成,吴凤萍.两步相关法高抗干扰超声波距离测量技术的研究[J].仪器仪表学报,2002,23(2):253-256.
    38.顾启泰.系统设计与仿真[M],北京:清华大学出版社,1995.
    39.何继善,白宜诚,浦慧如,等.伪随机电磁法及多功能仪器研究科研报告[R].长沙:中南大学地球物理勘查新技术研究所,1999.
    40.何继善,柳建新.伪随机多频相位法及其应用简介[J].中国有色金属学报,2002,12(2):374-376.
    41.何继善.2~n系列伪随机信号及应用[A].中国地球物理学会.中国地球物理年会年刊(1998)[C],西安:西安地图出版社,1998.
    42.何继善.电法勘探的发展和展望[J].地球物理学报,1997,40(增):308-316.
    43.何继善.伪随机三频电法研究[J].中国有色金属学报,1994,4(1):1-7.
    44.何继替等著.双频道激电法研究[M].长沙:湖南科学术出版社,1989.
    45.何继替,鲍光淑,张友山著.双频道数字激电仪[M].长沙:中南工业大学出版社,1988.
    46.洪志全,洪学海主编.现代计算机接口技术,第二版[M].北京:电子工业出版社,2002.2.
    47.冯永江,周演伦.多功能直流电法仪的设计思想及应用实例[J].地学仪器,1994,(4):13-22.
    48.冯永江,苗定忠,等.DDC-5型电子自动补偿仪[J].地学仪器,1995,(4):18-21.
    49.冯水江,付志红.DJD6-1型多道激电仪[J].地学仪器,1994,(3):33-36.
    50.冯永江,周寅伦.DZD-2型多功能直流电法仪[J].地学仪器,1993,(4):32-37.
    51.胡广书.数字信号处理[M].北京:国防工业出版社,1996.
    52.姜作勤.国内外地学领域计算机应用设备配置的现状[J].地学仪器,1997,(3):1-7.
    53.简清华,杨高波.基于Matlab Simulink仿真方法研究[J].工业仪表与自动化装置,2001,(4):41-43.
    54.柯马罗夫B A.激发极化法电法勘探[M].阎立光等.北京:地质出版社,1983.
    55.兰峰.多功能电法仪-V5[J].中地装备,1999,(4):31-33.
    56.李江华.谢红,于蕾.仪表放大器技术初探与应用[J].应用科技,2001,28(9):9-12.
    57.李金铭.电法勘探方法发展概况[J].物探与化探,1996,20(4):250-258.
    58.李杰,韦志棉,黄行健.Matlab在数字电路仿真中的应用[J].微型电脑应用.2000,16(9):39-42.
    59.李实,李创社,等,高性能瞬变电磁仪的研制及应用[J].物探与化探,2000,24(1):76-80.
    60.李实,宋建平,李创社.瞬变电磁仪中几种干扰的消除方法[J].西安交通大学学报,2001,35(4):373-379.
    61.李望消.24位A/D器件的D/A功能及应用[J].石油仪器,1997,11(3):26-27.
    62.李志武.多通道电探系统[J].地学仪器,1995,(4):1-7.
    63.梁庆九,梁咏仁,等.GUGTEM2001工程型瞬变电磁仪[A].中国地球物理学会.中国地球物理年会年刊(2001)[C],昆明:云南科技出版社,2001.
    64.梁咏仁,梁庆九,罗延钟.GUGTEM-2000型瞬变电磁仪[A].中国地球物理学会.中国地球物理年会年刊(2000)[C],武汉:中国地质大学出版社,2000.
    65.梁咏仁,梁庆九,罗延钟.LGM-2000型高密度电法仪[A].中国地球物理学会.中国地球物理年会年刊(2000)[C],武汉:中国地质大学出版社,2000.
    66.林君,石磊.GPS在地球物理勘探中的应用展望[J].地学仪器,1996,(4):1-5.
    67.林君,石磊.卡式仪器的现状与未来[J].地学仪器,1995,(1):1-8.
    68.林君.浮点数据采集原理与实现技术[J].地学仪器,1996,(2):23-28.
    69.林君.虚拟仪器的概念及其进展[J].地学仪器,1995,(3):1-6.
    70.林品荣,赵子言.分布式被动源电磁法系统及其应用[J].地震地质,2001,23(2):138~142.
    
    
    72.刘刚,余全辉,等编著.半岛体器件—电力、敏感、光子、微波器件[M].北京:电子工业出版社,2000.9.
    73.刘桂雄,冯云庆,申柏华.现场总线与虚拟仪表技术相融合的发展新趋势[J].传感器技术,2002,21(7):59-61.
    74.柳建新,何继善,等.一种区分矿与非矿的有效方法—伪随机多频相位法原理及其应用[J].中国地质,2001,28(9):41-46.
    75.刘继利.韩培春.TEM晶体同步系统[J].地学仪器,1993,(1):59-62.
    76.刘乐善,叶济忠,叶永坚.微型计算机接口技术原理及应用[M].武汉:华中理工大学出版社,1996.
    77.刘士毅,张明华.中国金属矿地球物理勘查[J].地学前缘,1998,5(1-2):201-207.
    78.刘崧.谱激电法[M].武汉:中国地质大学出版社,1998.
    79.刘崧,徐建华.用复电阻率法探测油气藏的研究[J].地球科学,1997,22:627~632.
    80.刘松强.数字信号处理系统及其应用[M].北京:清华大学出版社,1996.
    81.刘益成,罗维炳.信号处理与过抽样转换器[M],北京:电子工业出版社,1997.
    82.刘国岁编著.随机信号理论与应用[M].北京:兵器工业出版社,1992.4.
    83.厉雅萍,于淑红,等.数字逻辑电路的Simulink仿真[J].测控技术,1999,18(2):48-50.
    84.罗延钟,张桂青.频率域激电法原理[M].北京:地质出版社,1988.
    85.罗延钟,潭义东.高密度电阻率法新观测方案及其数据处理和成图软件系统[J].物探化探计算技术,1996,18(2):134~140.
    86.马立峰.WDC-2A瞬变电磁测量系统中的高速采集电路[J].地学仪器,1997,(3):24-26.
    87.马立峰,潘霞.10千瓦瞬变电磁发送系统技术特点技术及GTR应用技术研究[J].地学仪器,1997,(2):13-16.
    88.马明建,周长城.数据采集与处理技术[M],西安:西安交通大学出版社,1998.
    89.慕文斋,刘静,等.相位激电法中相角Ψs测量方法纵横谈[J].地学仪器,1996,(3):13-19.
    90.年宗元.我国勘查地球物理的若干进展[J].物探与化探[Jl,1996,20(6):401—418.
    91.秦瑞杰,张淑艳,等.ISA总线驱动与隔离卡的实现[J].地学仪器,1996,(1):11-14.
    92.秦树人.虚拟仪器——测试仪器从硬件到软件[J].振动、测试与诊断,2000,20(1):1-7.
    93.瞿德福,张云尔.概述我国激电仪行业标准和国外仪器水平[J].国外地质勘探技术,1996,(6):12-22.
    94.日丹诺夫MC.电法勘探[M].潘玉玲,王守坦.武汉:中国地质大学出版社,1990.397-405.
    95.石福升.GPS同步高速大容量数据采集系统设计[J].石油仪器,1998,12(5),12~14.
    96.石福升.GPS卫星定位系统在地学仪器中时间同步技术研究[J].地学仪器,1997,(1):1-6.
    97.石福升.VB在数据采集装置中访问硬件资源[J].地学仪器,1997,(3):31-34.
    98.石松连.第三十届国际地质大会科学展览会:勘查地球物理仪器一瞥[J].地学仪器,1996,(4):6-9.
    99.石松连.“八五”期间勘查地球物理仪器设备的若干进展[J].地学仪器,1996,(2):1-5.
    100.石松连.“八五”计算机在物化探中应用的回顾与展望[J].物探化探计算技术,1996,18(1):1—5.
    101.沈兰荪编著.智能仪器与信号处理技术[M].北京:科学出版社,1990.
    102.沈兰荪编著 高速数据采集系统的原理与应用[M].北京:人民邮电出版社,1995.
    103.沈民奋,孙丽莎著.现代随机信号与系统分析[M].北京:科学出版社,1998.
    104.宋万杰,罗丰,等编著.CPLD技术及其应用[M].西安:西安电子科技大学出版社,1999.
    105.孙鹤旭,迟岩,等.电力电子系统计算机仿真与辅助分析[M].哈尔滨:哈尔滨工程大学出版社,1994.
    106.田琬逸,张效民.信号检测与估值[M].西安:西北:工业大学出版社,1990.3.
    107.宛延闿,定海.面向对象分析和设计[M].北京:清华大学出版社,2001.
    108.王华军,梁庆九,等.中心回线瞬变电磁野外数据采集,处理解释软件系统[A].中国地球物理学会.国地球物理年会年刊(2001)[C],昆明:云南科技出版社,2001.
    109.王宏禹.数字信号处理专论[M].北京:国防工业出版社,1995.
    110.王鸿钰.网络化测量和控制[J].仪表技术[J].2001,(1):46-49.
    111.王庆乙.TEMS-3S瞬变电磁测深系统的研制[J].地学仪器,1996,(2):5-13.
    112.王兴泰中,万明浩.等.工程与环境物探新方法新技术[M].北京:地质出版社,1996.
    
    
    113.王玉明.提高频谱激电物探接收机抗干扰能力的一种探讨[J].地学仪器,1994,(4):22-28.
    114.魏文博,邓明,等.我国海底大地电磁探测技术研究的进展[J].地震地质,2001,23(2):131~137.
    115.魏文博,邓明,等.海底大地电磁系统的研究[A].中国地球物理学会.中国地球物理年会年刊(2001)[C],昆明:云南科技出版社,2001.
    116.魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245~254.
    117.吴大正主编.信号与线性系统分析(第2版)[M].北京:高等教育出版社,1986.
    118.吴汉荣.激电相对相位测量及其地质效果[A].吴汉荣,谢婷婷,等.勘查地球物理勘查地球化学文集第3集—激发极化法专集[C].北京:地质出版社,1985.295-300.
    119.吴其斌,崔霖沛.国外勘查地球物理的若干进展——1996年[J].物探与化探,1998,22(1):10-20.
    120.吴湘淇.信号、系统与信号处理(上、下)[M].北京:电子工业出版社,1999.
    121.吴翊,李永乐,胡庆军遍著.应用数理统计[M].长沙:国防科技大学出版社,1994.
    122.吴旭光,王新民.计算机仿真技术及应用[M].西安:西北工业大学出版社,1998.
    123.扬生,鲍光淑,张全胜.远参考大地电磁侧深法应用研究[J].物探与化探,2002,26(1):27-31.
    124.杨世儒,杭柏林,等.仪器仪表接地理论与实践[J].吉林化工学院学报,1995,12(4):38-42.
    125.遥测电磁项目组.被动源电磁阵列系统及其在某铜矿区的应用试验[J].物探与化探,1998,22(4):247-250.
    126.余晓龙,丁仁杰,等.全网同步监测装置GPS接口模块的改进设计与实现[J].电子技术应用,2001,(12):41-43.
    127.夏训银.多频激电相对相位法数值模拟和物理模拟研究[D].长沙:中南大学,2000.
    128.谢捷生.我国时间域激电仪的发展过程及现状[J].地学仪器,1996,(1):7-10.
    129.谢捷生.JJ-6型微机激电仪[J].地学仪器,1994,(2):17-21.
    130.奚家鉴,石松连.微机在物探化探工作中的开发与应用专辑[M],勘查地球物理勘查地球化学文集,第16集.北京:地质出版社,1993.8.
    131.许波,刘征,MATLAB工程数学应用[M].北京:清华大学出版社,2000.
    132.薛克先.微型计算机的变迁与勘探仪器[J].地学仪器,1996,(1):1-6.
    133.薛克先,冯永江.重庆地质仪器厂地震,电法勘探,测井等仪器的回顾与展望[J].地学仪器,1993,(3):12-24.
    134.姚立真编.通用电路模拟技术及软件应用SPICE和PSPICE[M].北京:电子工业出版社,1994.
    135.于桂玲,张升文.仪器仪表及其接地[J].自动化与仪器仪表,2000,(2):54-55.
    136.于生宝,林君.瞬变电磁法中发射机关断时间的影响研究[J].石油仪器,1999,13(6):15~17。
    137.应怀樵.波形和频谱分析与随机数据处理[M].北京:中国铁道出版社,1983.
    138.周安昌.杨冠鼎.激发极化相对相位测量在两个矿床上的实验结果[A].吴汉荣,谢婷婷,等.勘查地球物理勘查地球化学文集第3集—激发极化法专集[C].北京:地质出版社,1985:291-294.
    139.邹桂根.仪器仪表可靠性设计[M].上海:上海交通大学出版社,1990.3.
    140.张恒涛.仪器设备抗干扰技术研究[J].石油仪器,14(2):35-37.
    141.张赛珍,王庆乙,罗延钟.中国电法勘探发展概况[J].地球物理学报,1994,37(增1):408-424.
    142.张宪润,陈儒军.激电相对相位法区分矿与非矿异常的成功实例[J].物探与化探,1998,22(4):251~254.
    143.张友山,何继善.三频激电相对相位观测法[J].中南矿冶学院学报,1994,25(4):417-421.
    144.张友山,何继善.伪随机三频波激电法[J].中南大学学报,1995,26(2):157-161.
    145.张友山,何继善.DF-1微机程控多功能大功率发送机的研制[J].物探与化探,1995,19(2):142-147.
    146.张友山,柳建新.跟踪斩波抗耦研究[J].地学仪器,1995,(2):11-16.
    147.詹艳,汤吉等.GMS-06电磁测深系统及应用[A].中国地球物理学会.中国地球物理学会年刊(2001)[C].昆明:云南科技出版社,2001.
    148.赵新民.智能仪器设计基础[M].哈尔滨:哈尔滨工业大学出版社,1999.
    149.郑彩君.GPS卫星定位系统在地学同步测量中的应用探讨[J].地学仪器,1997,(4):5-10.
    150.郑彩君.智能仪器提高采样速率的方法[J].地学仪器,1995,(2):19-25.
    151.中国地质大学(武汉)应用地球物理系组编.应用地球物理学进展[M].武汉:中国地质大学出版社,
    
    1996.
    152. ABEM, 2002a. Terrameter SAS 4000 [OL].http://www.abem.com/resistivity/sas4000.htm.
    153. ABEM, 2002b. Terrameter SAS 1000 [OL].http://www.abem.com/resistivity/sas1000.htm.
    154. ABEM, 2002c. Lund Imaging System [OL].http://www.abem.com/resistivity/dia.htm.
    155. Advanced Geosciences, Inc., 2002a. AGI SuperSting R8-IP 8 channel Memory Earth Resistivity and IP Meter[OL]. http://www.agiasa.com/supersting.shtml.
    156. Advanced Geosciences, Inc., 2002b. AGI SuperSting R1-IP single channel Memory Earth Resistivity and IP Meter[OL]. http://www.agiusa.com/supersting-r1.shtml.
    157. Advanced Geosciences, Inc., 2002e. AGI EarthImager 2D inversion and modeling software[OL]. http://www.agiusa.com/agi2dimg.shtml.
    158. Advanced Geoseiences, Inc., 2002d. SuperSting R8 Marine Marine Logging System[OL] http://www.aginsa.com/marinesystem.shtml.
    159.Ambardar A.信号、系统与信号处理(第2版)(上、下)[M].冯博琴,冯岚,等.北京:机械工业出版社,2001。
    160. Arai E. Development of the IP tomography system and field testing in the Seta area, Japan[A]. 67th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1997, 1961-1964.
    161. Atkinson, A,C., and A.N, Donev, Optimum Experimental Designs, Oxford Science Publications 1992.
    162.Becker A,Cheng G.重复电磁信号的检测[A].米萨克.G.纳比吉安.勘查地球物理电磁法第一卷理论[C].赵经祥,王艳君译,北京:地质出版社,1992.1.
    163. Booch G. Object-oriented analysis and design with Applications[M]. 2nd ed. Redwood City, CA: Benjamin/Cummings Publishing Co., 1994.
    164.Burns S G,Bond P R.电子电路原理(上、下)(第2版)[M].黄汝激.北京:机械工业出版社,2001.
    165. Burrus, C. S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB, Englewood Cliffs, New Jersey, Prentice Hall, 1994.
    166. Buselli G, Hwang H S, Pik J P. AEM noise reduction with remote referencing[J]. Expl. Geophys., 1998, 29:71-76.
    167. Buselli G, Cameron M. Robust statistical methods for reducing sferics noise contaminating transient electromagnetic measurements[J]. Geophysics, 1996, 61: 1633-1646.
    168. Box, G.E.P., W.G. Hunter, and J.S. Hunter. Statistics for Experimenters. Wiley, New York. 1978.
    169. Coad P, Nicola J. Object-oriented programming[M]. Englewood Cliffs, NJ: Prentice Hall, 1993.
    170. Coad P, North D, Mayfield M. Object models: Strategies, patterns, and applications[M]. Englewood Cliffs, NJ: Prentice Hall, 1995.
    171. Coad P, Yourdon E. Object-oriented design[M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
    172. Coad P, Yourdon E. Object-oriented analysis[M]. 2nd ed, Englewood Cliffs, NJ: Prentice Hall, 1991.
    173.Cohoon J P, Davidson J W. C++程序设计:程序设计和面向对象入门(英文版)(第3版)[M].北京:清华大学出版社,2002.
    174. Dahlin, T. (1996) 2D resistivity surveying for environmental and engineering applications, First Break, vol 14, no 7, p 275-283.
    175. Dahlin, T., Johansson, S. and Landin, O. (1994) Resistivity Surveying for Planning of Infrastructure, in Procs. SAGEEP'94 (Symposium on the Application of Geophysics to Engineering and Environmental Problems), Boston 7-31 March 1994, p 509-528.
    176. Dahlia, T. (1993) On the Automation of 2D Resistivity Surveying for Engineering and Environmental Applications, Ph.D.Thesis, ISRN LUTVDG/TVDG-1007-SE, ISBN 91-628-1032-4, Lund University, 187p.
    177. de Lima, Olivar A L, Araujo F F S. Subsurface contaminant tracking by ground-penetrating radar and spectral induced polarization[A]. 66th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1996, 924-927.
    178.Deitel M H,Deitel P J. C++大学教程[M].邱仲潘,张荣,等.北京:电子工业出版社,2001.
    179.[美]D.M.康西丁主编.仪器仪表与控制大全[M],杨树智等译.北京:科学出版社,1985.
    180.Eckel B.C++编程思想(Thinking in C++)[M].刘宗田,邢大红.等.北京:机械工业出版社,2000。
    181. ElectroMagnetic Instruments, Inc., 2002. MT24 system [OL]. http://www.emjinc.com/m24.html.
    182. Fink J B, McAlister E O, Sternberg B B, Wiederwilt W G, Ward S H. Induced polarization[M], Soc. Of Expl.
    
    Geophys., 1990.
    183.FisherA E,Eggert D W, et al. C语言程序设计实用教程[M].裘岚,张晓芸,等.北京:电子工业出版社,2001.
    184. Frangos W. Stable-oscillator phase IP systems[A], in Ward, S. H., Ed., Induced polarization[C]: Soc. Of Expl Geophys., 1990, 79-90.
    185.[英]G.C.巴尼.智能仪器设计——微处理机在检测与控制中的应用[M],李西林等译.上海:上海科学技术文献出版社,1992.2
    186. Garner, Dr. Stephen and Webb, Mr. Derek, Broadband MT and IP electrical property mapping with MIMDAS, 70th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 2000, Session: MIN 1.7.
    187. Geometries, Inc., 2002a. OhmMapper Capacitively Coupled Resistivity[OL]. http://www.geometrics.com/OhmMapper/ohmmap.html.
    188. Geometries, Inc., 2002b. StrataGem Electromagnetic Imaging System[OL]. http://www.geometrics.com/Stratagem/stratagem.html.
    189.GEOPEN集团,2002a.E60C型高密度电法工作站[OL].http://www.geopen.net/ch_ver/introduction/resistivity/e60c.htm.
    190.GEOPEN集团,2002b.E60BN型高密度电法工作站[OL].http://www.geopen.net/ch_ver/introduction/resistivity/e60bn.htm.
    191.GEOPEN集团,2002c.E60B型高密度电法工作站[OL].http://www.geopen.net/ch_ver/introduction/resistivity/e60b.htm.
    192.GEOPEN集团,2002d.EM96型地震高密度电法联合勘探系统[OL].http://www.geopen.net/ch_ver/introduction/resistivity/em96.htm.
    193.GEOPEN集团,2002e.SE2464GR型综合工程物探工作站[OL].http://www.geopen.net/ch_ver/introduction/orther/se2464gr.htm.
    194. Guptasarma, D., True and apparent spectra of buried polarizable targets[J]. Geophysics, 1984, 49:171-176.
    195. Guiqiug, Zhang and Yanzhong, Lno, The application of IP and resistivity methods to detect underground metal pipes and cables, in Ward, Stanley H., Ed., Geotechnical and environmental geophysics, 03: Soc. Of Expl. Geophys., 1990, 239-248.
    196. Gomez-Trevino, E. and Mondragon, M., Uneven effect of random noise in magnetotelluric apparent resistivity definitions(short note)[J]. Geophysics, 1995, 60: 1238-1242.
    197. Griffiths, D.H., Turnbull, J., Olayinka, A.I., 1990. Two-dimensional resistivity mapping with a computer-controlled array. First Break 8(4), 121-129.
    198. Griffiths, D.H. and Turnbull, J., 1985. A multi-electrode array for resistivity surveying. First Break 3(No. 7), 16-20.
    199.Guru B S,Hiziroglu H R.电磁场与电磁波(英文版)[M].北京:机械工业出版社,2002.
    200. Hallof, P.G. and Yamashita, M., The use of the IP method to locate gold-bearing sulfide mineralization, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 227-279.
    201. Hallol, P.G. The IP phase measurement and inductive coupling[J]. Geophysics, 1974, 39(5): 650-665.
    202. Halverson, M. O., Real-time telluric cancellation in broadband IP exploration, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 199-226.
    203. Hanneson, J. E., A model for interpreting IP/resistivity data from areas of steep dip and thin overburden, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990,128-149.
    204. Hasegawa, Nobusuke, Shima, Hiromasa and Sakurai, Ken, An application of two-dimensional IP image profiling to characterization of an active fault, 66th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1996, 928-931.
    205. Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.
    206. He, Jishan, Frequency domain electrical methods employing special waveform field sources, 67th Ann. Internat.Mtg: Soc. Of Expl. Geophys., 1997,338-341.
    207. Hogg, R.V., and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.
    208. Hohmann, G. W., Three-dimensional IP models, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 150-178.
    209. Hohmann,, Gerald W., Electromagnetic coupling between grounded wires at the surface of a two-layer
    
    earth[J]. Geophysics, 1973, 38: 854-863.
    210. HP 33120A Function Generator/Arbitrary Waveform Generator User's Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.
    211. IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common Commands for Use with IEEE Std 4881.-1987, IEEE Standard Digital Interface for Programmable Instrumentation, Institute of Electrical and Electronics Engineers, New York, NY, 1992.
    212. Ioup, Juliette W. and Ioup, George E., Noise removal and compression using a wavelet transform, 68th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1998, 1076-1079.
    213. Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard, Object-oriented software engineering: A use case driver approach. New York: Addison-Wesley, 1992.
    214. Jenkins G M, Watts D G. Spectral analysis and its application[M]. San Francisco: Holden-Day, 1968.
    215. Johnson, I. M., Spectral IP parameters derived from time-domain measurements, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 57-78.
    216. Johnson, Ian M., Spectral IP parameters determined through time-domain measurements, 53rd Ann. Internat. Mtg: Sac. Of Expl. Geophys., 1983, Session:M1.4.
    217. Kamen E W, Heck B S. Fundamentals of signals and systems using MATLAB[M]. New Jersey: Prentice-Hall,1997.
    218. Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ: Prentice Hall, 1988.
    219. Kemna, Andreas, Dresen, Lothar and Raekers, Eiko, Field applications of complex resistivity tomography, 69th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1999, 331-334.
    220. Koopmans L H. The spectral analysis of time series[M]. New York: Academic Press, 1974.
    221. Kruglinski D J, Wingo S, Shepherd G, Programming Visual C++ 6.0技术内幕(第五版)(修订版)[M].希望图书创作室.北京:北京希望电子出版社,1999.
    222. LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A. and Owen, E., The effects of noise on Occam's inversion of resistivity tomography data[J]. Geophysics, 1996, 61: 538-548.
    223. Lewis, R. J. G. and Bishop, J. R., Target discrimination with time-domain spectral IP inversion, 57th Ann, Internat. Mtg: Soc. Of Expl. Geophys., 1987, Session:MIN1.6.
    224. Linville, A. Frank and Meek, Robert A., A procedure for optimally removing localized coherent noise[J]. Geophysics, 1995, 60:191-203.
    225. Lake, M.H. and Barker, R.D. (1996) Rapid least-squares inversion of apparent resistivity pseudo-sections by a quasi-Newton method, Geophysical Prospecting, vol44, no 1, p131-152.
    226. Lake, M.H. and Barker, R.D. (1994) Rapid least-squares inversion of apparent resistivity pseudo-sections, Extended Abstracts of Papers 56th EAEG Meeting Vienna, Austria 6-10 June 1994, 1002.
    227.Mano M M,Kime C R.数字逻辑与计算机硬件设计基础(英文版)(第2版)[M].北京:电子工业出版社,2002.
    228. Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall, 1987.
    229. Meyer, W. H., Electromagnetic inversion of spectral IP data, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 104-127.
    230.Mirho C A,Terrisse A.WINDOWS 95通信编程[M].贺军.高胜友,等.北京:清华大学出版社,1997.
    231. Nelson, P. H., Induced-polarization effects from grounded structures[J]. Geophysics, 1977,42(6): 1241-1253.
    232.Nelson V P,Nagle H T,et al.数字逻辑电路分析与设计(英文版)[M].北京:清华大学出版社,1997.
    233. Nemeth, Tamas, Sun, Hongchuan and Schuster, Gerard T.,Separation of signal and coherent noise by migration filtering[J], Geophysics, 2000, 65: 574-583.
    234.Norman R J.面向对象系统分析与设计[M].周之英,肖奔放,柴洪钧.北京:清华大学出版社,2000.
    235. Oldenburg, D. W. and Li, Y, Inversion of induced polarization data[J]. Geophysics, 1994, 59:1327-1341.
    236. Oldenburg, Douglas W., Li, Yaoguo and Ellis, Robert G., Joint interpretation of DC, IP, magnetic, airborne EM, geological, and mineralization data: A case history from Mt. Milligan, 64th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1994, 512-515.
    237. Olhoeft, Gary R., Complex resistivity spectra by linear regression analysis, 50th ann.Internat. Mtg: Soc. Of Expl. Geophys., 1980, Session:M.22.
    238. Oppenheim A V, Schafer R W. Digital signal process[M]. New Jersey: Prentice-Hall Inc, 1977.
    239. Oppenheim, A.V,, and R.W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.
    
    
    240. Orfanidis, S.J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1996.
    241. Overmeeren, R.A. van and Ritsema, I.L. (1988) Continuous vertical electrical sounding, First Break, vol 6, no10, p313-324.
    242. OYO Corporation, 2000. McOHM-EL instruments[OL].http://www.oyo.co.jp/english/instru_e/electric/mcohm_el.html.
    243. Panissod, C., Dabas, M., Hesse, A., Jolivet, A., Tabbagh, J. and Tabbagh, A., 1998. Recent developments in shallow depth electrical and electrostatic prospecting using mobile arrays. Geophysics, 65, 1542-1550.
    244. Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley & Sons, 1987.
    245. Part-Enander E, Sjoberg A. MATLAB 5手册[M]. 王艳清,孙锋,等.北京:机械工业出版社,2000.
    246. Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall, 1996.
    247. Peltoniemi, M. P.and Vanhala, H. T., Spectral IP in frequency and time domain - A comparative study of six ore prospects in Finland, 62nd Aun. Internat. Mtg: Soc. Of Expl. Geophys., 1992, 416-419.
    248. Pelton, William H. and Smith, Peter K., Mapping porphyry copper deposits in the Philippines with IP[J]. Geophysics, 1976, 41:106-122.
    249. Pelton, W. H.,Ward, S.H., Hallof, P. G., Sill, W. R., and Nelson, P. H. Mineral discrimination and removal of inductive coupling with multi-frequency IP[J]. Geophysies, 1978, 43(3): 588-609.
    250. Phoenix Geophysics, 2002a. V-6A Receiver Multi-Function geophysical data acquisition station[OL]. http://www.phoenix-geophysics.com/Products/V6Receiver.htm.
    251. Phoenix Geophysics, 2002b, V5 system 2000[OL], http://www.phoenix-geophysics.com/Products/V52000.html.
    252.
    253. Phoenix Geophysics, 2002c. The MTU satellite synchronized data acquisition units[OL], http://www.phoenix-geophysics.com/Products/MTU.html.
    254. Phoenix Geophysics, 2002d. MT/AMT field sensors[OL],http://www.phoenix-geophysics.com/Products/FeildSensors.html.
    255. Phoenix Geophysics, 2002e. The T-200 high-power current source [OL],http://www.phoenix-geophysics.com/Products/T-200.html.
    256. Phoenix Geophysics, 2002f. The T-3 resistivity transmitter[OL],http://www.phoenix-geophysics.com/Products/T3Transmitter.html.
    257. Phoenix Geophysics, 2002g. The V5-ultra geophysical receiver [OL],http://www.phoenix-geophysics.com/Products/V5Ultra.html.
    258. Phoenix Geophysics, 2002h. The multi-x geophysical current source[OL],http://www.phoenix-geophysics.com/Products/MultiX.html.
    259. Phoenix Geophysics, 2002i. The T-4 Battery high-power current source[OL], http://www.phoenix-geophysics.com/Products/T4Transmitter.html.
    260. Phoenix Geophysics, 2002j. The TXU-3IP transmitter[OL],http://www.phoenix-geophysics.com/Products/TXUTransmitter.html.
    261. Phoenix Geophysics, 2002k. The V-7 geophysical instrument[OL].http://www.phoenix-geophysics.com/Products/V7.html.
    262. Routh, Dr. Partha and Oldenburg, Dr. Douglas, Electromagnetic coupling in frequency domain IP data: A method for removal, 70th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 2000, Session: MIN 1.6.
    263. Routh, Dr. Partha and Oldenburg, Dr. Douglas, Complex conductivity inversion from EM coupling contaminated frequency domain IP data, 70th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 2000, Session: MIN 1.8.
    264. Routh, Partha S., Oldenburg, Douglas W. and Li, Yaoguo, Regularized inversion of spectral IP parameters from complex resistivity data, 68th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1998, 810-813
    265. Routh, Partha S. and Oldenburg, Douglas W., Electromagnetic coupling removal from frequency domain IP data in 2-D environments, 66th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1996, 1275-1278
    266.[美]R·英里森著.仪器设备的接地和屏蔽技术[M],第二版,梁怀璧译.北京:科学普及出版社,1988.4
    267. Ryjov, Albert A., Efficiency of IP method at the search of petroleum deposits, 58th Mtg.: Eur. Assn. Geosci. Eng., 1996, Session:P078.
    
    
    268. Saizhen, Zhang, Yingxian, Li, Jiping, Zhou, Xinwu, Nie, Anchang, Zhou and Guanding, Yang, The induced polarization (IP) method in oil exploration-The cause of the IP anomaly, in Jingxiang, Z., Ed., An overview of exploration geophysics in China: Soc. Of Expl. Geophys., 1988, 247-272.
    269. Sakurai, K., Hasegawa, N. and Shima, H., Study of the efficiency and quality of complex resistivity measurement, 67th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1997, 466-469.
    270. Sampaio, Edson E.S., Santos, Atahebson Bezerra and Sato, Hedison K., Spectral induced polarization and mineral discrimination, 68th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1998,740-743.
    271. Santarato, G. and Spagnolini, U., Cancelling directional EM noise in magnetotellurics[J]. Geophys. Prosp., 1995, 43: 605-621.
    272. Scales, John A. and Snieder, Roel, What is noise? [J]. Geophysics, 1998, 63:1122-1124.
    273. Schaeh S R. 面向对象与经典软件工程(英文版)(第5版)[M].北京:机械工业出版社,2002.
    274. Scintrex, Inc., 2001a. SARIS-Scintrex Automated Resistivity Imaging System[OL]. http://www.scintrexltd.com/Products/Resistivity.htm.
    275. Scintrex, Inc., 2001b. IPR-12 Time Domain Induced Polarization/Resistivity Receiver[OL]. http://www.scintrexltd.com/Products/IP.htm.
    276. Seigel, H. O., Vanhala, H. and Sheard, S. N., Some case histories of sonrce discrimination using time-domain spectral IP[J], Geophysics, 1997, 62:1394-1408.
    277. Seigel, H. O., Ehrat, R. and Brcic, I., A microprocessor based nmltichannel time-domain IP receiver, in Ward, S. H., Ed., Induced polarization: Soc. Of Expl. Geophys., 1990, 91-103.
    278. Seigel, Harold O., The magnetic induced polarization (MIP)method[J]. Geophysics, 1974, 39: 321-339.
    279. Selesnick, I.W., and C.S. Burrus. "Generalized Digital Butterworth Filter Design." Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 3(May 1996).
    280. Selesnick, I.W., M. Lang, and C.S. Burrus. "Constrained Least Square Design of FIR Filters without Specified Transition Bands."Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2(May 1995). Pgs. 1260-1263.
    281. Slatcr L D, Sandberg S K. Resistivity and indnced polarization monitoring of salt transport under natural hydraulic gradients[J]. Geophysics, 2000, 65: 408-420.
    282. Slater, Lee D. and Sandberg, Stewart K., Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients[J]. Geophysics, 2000, 65: 408-420.
    283. Soininen, Heikki T and Vanhala, Heikki, Spectral induced polarization method in mapping soils polluted by organic chemicals, 54th Mtg.: European Association of Geophysical Exploration, 1992, 366-367
    284. Song, Liu and Vozoff, K., The complex resistivity spectra of models consisting of two polarizable media of different intrinsic properties[J]. Geophys. Prosp., 1985, 33:1029-1062.
    285. Stefaniuk, M., Czerwinski, T, Wajda, A. and Mrzygloo, T., Some Problems of MT Survey Under Conditions of Complex Geology and Strong EM Noise-a Polish Carpathians Case Stady, 60th Mtg.: Eur. Assn. Geosci,Eng., 1998, Session:R063.
    286. Sterns S D, David R A. Signal processing algorithms[M]. New Jersey: Prentice-Hall, 1988.
    287. Stummer, Peter, Maurer, Hansruedi and Boerner, David. Real-time experimental design: Application to 3-D high-resolution DC resistivity and IP surveys, 69th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1999, 555-558.
    288. Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice Hall, 1997.
    289. Ulrych, Tadeusz J., Sacchi, Mauricio D. and Graul, J. Michael, Signal lind noise separation: Art and science[J]. Geophysics, 1999, 64: 1648-1672.
    290. Uyemura J P. 数字系统设计基础教程[M].陈怒兴,曾献君,等.北京:机械工业出版社,2000.
    291. Vanhala, Heikki. Mapping oil-contaminated sand and till with the spectral indaced polarization(SIP) method[J]. Geophys. Prosp., 1997, 45: 303-326.
    292. Vanhala, Heikki and Soininen, Heikki. Laboratory technique for measurement of spectral induced polarization response of soil samples[J]. Geophys. Prosp., 1995, 43: 655-676.
    293. Vanhalla, Heikki and Soininen, Heikki, Spectral-induced polarization method at the Keivitsa Ni-Cu deposit, northern Finland, 64th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1994, 516-519.
    294. Vanhala, H. and Peltoniemi, M., Spectral IP studies of Finnish ore prospects[J]. Geophysics, 1992, 57:1545-1555.
    295. van Voorhis, G. D., Nelson, P. H. and Drake, T. L., Complex resistivity spectra of porphyry copper
    
    mineralization[J]. Geophysics, 1973, 38:49-60.
    296.Walnum C.C++高级参考手册[M].苏师华,陈维义,等.北京:电子工业出版社,2000.
    297. Welch, P.D. "The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms." IEEE Trans. Audio Electroacoust. Vol. AU-15(June 1967). Pgs. 70-73.
    298. Wight, D.E. and Bostick, F.X., Cascade decimation - A technique for real time estimation of power spectra, in Vozoff; K., Ed., Magnetotelluric methods: Soc. Of Expl. Geophys., 1986, 215-218.
    299. Wirfs-Brock, R. I., B. Wilkerson, and L. Wiener, Designing object-oriented software. Englewood Cliffs, NJ: Prentice Hall, 1990.
    300. Wynn, Jeffrey C. and Zonge, Kenneth L., EM coupling its intrinsic value its removal and the cultural coupling problem [J]. Geophysics, 1975, 40:831-850.
    301. Yonrdon, E., Object-oriented system design: An integrated approach. Englewood Cliffs, NJ: Prentice Hall,1994.
    302. Yuval, and Oldenburg, D. W., Computation of Cole-Cole parameters from IP data[J]. Geophysics, 1997, 62:436-448.
    303. Zerilli, A., Botta, M. and Apolloni, B., Improving magnetotelluric data degraded by correlated noise with robust regression analysis and recurrent neural networks, 67th Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1997, 366-369.
    304. Zonge Engineering, 2003. The GGT-3 Backpackable Transmitter[OL], http://www.zonge.com/gtggt3.htm.
    305. Zonge Engineering, 2002a. The GGT-10 Medium-Power Transmitter[OL],http://www.zonge.com/gtggt10.htm.
    306. Zonge Engineering, 2002b. The GGT-30 High Power and Fast Turn-off Transmitter[OL]. http://www.zonge.com/gtggt30.htm.
    307. Zonge Engineering, 2002c. The XMT-32S Transmitter Controller[OL]. http://www.zonge.com/gtxmt32s.htm.
    308. Zonge Engineering, 2002d. The NT-20 Multi-Function Battery-Powered TEM Transmitter[OL].http://www.zonge.com/gtnt20.htm.
    309. Zonge Engineering, 2002e. The ZT-30 Battery-Powered EM/Resistivity Transmitter[OL]. http://www.zonge.com/gtzt30.htm.
    310. Zonge Engineering, 2001a. GDP-32Ⅱ[OL]. hhttp://www.zonge.com/grgdp322.htm.
    311. Zonge Engineering, 2001b. GDP Manual[OL]. http://www.zonge.com/grgdpm.htm.
    312. Zonge Engineering, 1999. The NT-32 Embedded NanoTEM Transmitter[OL].http://www.zonge.com/gtnt32.htm.
    313. Zonge, K. L., Hughes, L. J. and Carlson, N. R., Hydrocarbon exploration using inducod polarization apparent resistivity, and electromagnetic scattering, 51st Ann. Internat. Mtg: Soc. Of Expl. Geophys., 1981, Session:P3.6.
    314. Zonge, Kenneth L. and Wynn, Jeffrey C. Recent advances and applications in complex resistivity measurements[J]. Geophysics, 1975, 40: 851-864.