尿激酶受体介导的基因转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗的载体可以分为病毒载体和非病毒载体两大类。病毒载体是目前基因治疗的主要载体,但是病毒载体具有携带外源基因片段大小受到限制(7kb左右)、易引起机体免疫反应以及制备、贮存、质量控制比较困难等固有缺点,这促进了人们对非病毒载体的研究。在过去的十多年里,人们对受体介导的基因转移进行了广泛的研究,并取得了较大的进展。受体介导的基因转移有安全、低免疫原性、相对靶向性、载体制备简单、易规模化等许多优点。常用的受体有去唾液酸糖蛋白受体、胰岛素受体、血管内皮细胞生长因子受体、转铁蛋白受体、甘露糖受体、表皮生长因子受体、叶酸受体等。
     肿瘤转移是肿瘤患者死亡的重要原因,尿激酶(urokinase,uPA)以及尿激酶受体(urokinase receptor,uPAR)在肿瘤转移过程中发挥着重要的作用。尿激酶受体以及纤溶系统中某些其它成员成为抑制肿瘤转移的靶标。靶向uPA和uPAR的单克隆抗体、可溶性uPAR、能阻断uPA和uPAR相互作用的uPA衍生肽都可以抑制肿瘤细胞的侵袭和转移,uPAR反义核酸表达质粒对肿瘤细胞的侵袭和转移也有明显的抑制作用。
     为了观察尿激酶受体反义核酸对肿瘤细胞的作用以及探讨尿激酶受体介导的基因转移的可能性,我们先利用重组腺病毒技术,在人肺巨细胞癌高转移株95D细胞中表达了尿激酶受体的反义基因,并观察其作用:同时表达纯化了尿激酶氨基末端的突变体,与报告基因表达质粒组装成复合物,观察该基因转移系统的基因转移效率,并介导尿激酶受体反义核酸靶向尿激酶受体的基因转移。
     一.重组腺病毒介导的uPAR反义基因转移
     为了观察uPAR反义核酸对肿瘤细胞体外侵袭的抑制作用,用PCR方法扩增uPAR cDNA 5’端-46bp至+454bp一段长500bp的序列,克隆到病毒载体pAdeno-X中,构建出重组腺病毒载体pAdeno-X-uPAR(-)和pAdeno-X-uPAR(+)。PacI限制性内切酶线性化重组腺病毒载体,转染HEK293细胞,7天后可以获得滴度(pfu/ml)分别为1.5×10~8和0.5×10~8的uPAR反义和正义核酸表达重组腺病毒,分别命名为Ad-uPAR(-)和Ad-uPAR(+)。以不同的病毒感染指数(MOI)感染人肺巨细胞癌高转移株95D肿瘤细胞,3天后用RNA印迹法可以检测到肿瘤细胞中uPAR正义和反义核酸表达,随着MOI的升高,在Ad-uPAR(-)感染的肿瘤细胞中uPAR蛋白质水平逐渐下降,肿瘤细胞的体外侵袭能力也明显下降,
    
    而感染Ad一uPAR(+)的肿瘤细胞无明显变化。结果表明重组腺病毒可以表达uRAR
    正义和反义核酸,uPAR反义核酸可以下调95D肿瘤细胞uPAR蛋白质水平,并
    明显抑制人肺巨细胞癌高转移株95D肿瘤细胞在体外的侵袭能力。
    二.尿激酶受体介导的报告基因转移
     利用能够被细胞内吞的重组蛋白发展靶向性非病毒载体系统,并进行基因转
    移是一个很有希望的研究方向。融合蛋白ATF一lyS10的氨基末端是尿激酶氨基末
    端135个氨基酸,起结合尿激酶受体的作用;梭基末端是10个赖氨酸,起结合
    质粒DNA的作用。在大肠杆菌中表达的ATF一lyslo主要以可溶形式存在,并具
    有人尿激酶的抗原性。纯化后的ATF一lyslo可以阻滞质粒DNA的迁移,并具有
    和细胞表面的尿激酶受体结合的能力。质粒DNA与ATF一lyslo以及多聚赖氨酸
    组装的基因转移复合物可以介导报告基因的转移,氯喳可以明显提高基因转移的
    效率,流感病毒血凝素融合肚的重组蛋白不能提高基因转移的效率。实验结果表
    明:①以ATF一lyslo重组融合蛋白组装的基因转移系统可以介导基因的转移②具
    有DNA结合能力和细胞靶向性的重组蛋白质ATF一lyslo为非病毒基因转移系统
    提供了一种新的途径。
    三.尿激酶受体介导的ul】AR反义基因转移
     将uPAR反义核酸表达质粒与ATF一lyslo以及多聚赖氨酸组装成基因转移复
    合物,并转染95D细胞。结果发现,AfF一lyslo介导的u队R反义核酸基因转移
    可以下调细胞uPAR蛋白水平,并降低细胞与纤连蛋白的粘附能力。Rl’- PCR可
    以检测到u队R反义核酸的表达,但uPAR mRNA水平没有明显下降。
     ATF一lyslo介导的基因转移具有uPAR靶向性,而且基因转移复合物制备相
    对比较简单。其主要缺点有:①基因转移效率低;②基因转移复合物不够稳定,
    体内实验比较困难;③基因转移复合物存在非特异性结合细胞的可能。
Great progresses have been made in gene therapy in recent years, and virus vectors become the leading vector for gene delivery. But virus vectors have many disadvantages such as limited capacity for foreign genes, immunogenicity, difficulty in manufacture and storage, which result in the development of nonvirus vectors. In recent years, more and more researchers focus on receptor-mediated gene transfer, which have many advantages such as very low immunogenicity, relatively simple manufacturing and storage, safety and relatively targeting. Asialoglycoprotein receptor, transferrin receptor and receptors for lactoferrin, insulin, epidermal growth factor, folic acid and mannose have been used in receptor-mediated gene delivery.
    Tumor metastasis is the important cause for death of most cancer patients. Urokinase receptor and some members in plasminogen activation system play important roles in tumor metastasis, and they have become the main target for tumor therapy. Several technical methods affecting tumor growth and metastasis by targeting the uPA system have been explored, which are monoclonal antibodies directed to uPA or uPAR, soluble recombinant uPAR, uPA-derived peptides to block uPA/uPAR interaction and antisense gene of uPAR.
    To observe the effect of antisense gene of uPAR on tumor cells and investigate the possibility of receptor-mediated gene delivery targeting uPAR, we expressed antisense gene of uPAR in human lung giant caner cell lines 95D using recombinant adenovirus and ligand-conjugated poly-L-lysine-DNA complexes as vector to mediate uPAR antisense gene delivery for inhibiting invasive ability of 95D cells in vitro.
    Section 1 Recombinant adenovirus mediated antisense uPAR gene delivery
    In order to study the effect of uPAR antisense gene on inhibition of invasive ability of human lung giant caner cell lines 95D, 500bp fragment of uPAR cDNA between -46bp~+454bp was amplified, and recombined into plasmid pAdeno-X. The recombinant vectors were named pAdeno-X-uPAR(-) and pAdeno-X-uPAR(+) respectively. 7 days after transfecting HEK293 cell with linearized pAdeno-X-uPAR(-) and pAdeno-X-uPAR(+), the recombinant adenovirus can be obtained, which were named Ad-uPAR(-) and Ad-uPAR(+) respectively. The virus titre(pfu/ml) of
    
    
    Ad-uPAR(-) was 1.5 x108, and the virus titre of Ad-uPAR(+) was 0.5x108. 95D cells were infected with Ad-uPAR(-) in different multiplicity of infection (MOI). Northern blot analysis could detect the expression of antisense and sense RNA for 500bp fragment of uPAR gene. With the increase of MOI, Western blot analysis indicated that the uPAR protein level decreased, and modified Boyden's Chamber assay suggested that the invasive ability of 95D cells also decreased obviously. The results indicated that adenovirus mediated uPAR antisense gene delivery could downregulate uPAR protein level and inhibit the invasive ability of 95D human lung cancer cells.
    Section2 Urokinase receptor mediated reporter gene delivery
    Recombinant fusion proteins that combine different functions required for cell type-specific uptake and intracellular delivery of DNA present an attractive approach for the development of nonviral vectors for targeted gene delivery. Here, we described a novel protein termed ATF-lys10 which composed of amino-terminal fragment of urokinase and ten lysines at the carboxyl terminus and facilitated cell-specific gene transfer via receptor-mediated endocytosis. Bacterially expressed ATF-lys10 proteins existed in soluble form, and had antigenicity of human urokinase. Purified ATF-lys10 specifically bound to uPAR-expressing cells and formed protein-DNA complexes with plasmid pGL3-control. These complexes after compensation of excess negative charge with poly-L-lysine, served as a specific gene delivery vector for uPAR-expressing cells. Lysosomotropic compounds such as chloroquine drastically increased ATF-lys10 mediated gene delivery, but not fusion peptide of hemagglutinin. Our results suggest that fusion protein with the properties of DNA binding and cell type targeting repres
引文
[1] Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells, 2000, 18(1): 19-39. Review.
    [2] Rainov NG, Ren H. Clinical trials with retrovirus mediated gene therapy—what have we learned? J Neurooncol, 2003, 65(3): 227-36. Review.
    [3] Check E. A tragic setback. Nature, 2002, 420: 116-118.
    [4] Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol, 2003, 4(7): 415-22. Review.
    [5] Herweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther, 2003, 10(6): 453-8. Review.
    [6] 孙兴会,朱运松.受体介导基因治疗存在的主要问题和可能的解决方法.生命的化学,2001,21(3):242-247.
    [7] Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor mediated endocytosis pathway. Pharmacol Rev, 2002, 54(4): 561-87.
    [8] Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand polyethylene glycol-polyethylenimine/DNA complexes. J Control Release, 2003, 91(1-2): 173-81.
    [9] Xu L, Pirollo KF, Tang WH, Rait A and Chang EH. Transferrin liposome mediated systemic p53 gene therapy in combination with radiation in regression of human head and neck cancer xenografts. Hum Gene Ther, 1999, 10: 2941-2952.
    [10] Seki M, Iwakawa J, Cheng H and Cheng PW.p53 and PTEN/MMAC1/TEP1 gene therapy of human prostate PC-3 carcinoma xenograft, using transferrin-facilitated lipofection gene delivery strategy. Hum Gene Ther, 2002, 13: 761-773
    
    
    [11] Wu GY, Wu CH. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem, 1992, 267(18): 12436-9.
    [12] Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem, 1988, 263(29): 14621-4.
    [13] Aramaki Y, Lee I, Arima H, Sakamoto T, Magami Y, Yoshimoto T, Moriyasu F, Mizuguchi J, Koyanagi Y, Nikaido T, Tsuchiya S. Efficient gene transfer to hepatoblastoma cells through asialoglycoprotein receptor and expression under the control of the cyclin A promoter. Biol Pharm Bull, 2003, 26(3): 357-60.
    [14] Gosselin MA, Lee RJ. Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev, 2002, 8: 103-31.
    [15] Gottschalk S, Cristiano RJ, Smith LC, Woo SL. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Ther, 1994, 1(3): 185-91.
    [16] Reddy JA, Dean D, Kennedy MD, Low PS. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J Pharm Sci, 1999, 88(11): 1112-8.
    [17] Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev, 2002, 54(5): 675-93.
    [18] 杨建琪;张锡元;李文鑫.基因治疗中的受体介导反义RNA转移技术.国外医学·分子生物学分册,1995,17(4):168-172.
    [19] 王雪皎;张连峰;蔡有余.靶向性基因治疗.国外医学·遗传学分册,1995,18(5):243-246.
    [20] 颜子颖;乔健;贡惠宇;王海林;李艳春;侯云德.特异性导向肝细胞表达和复制的EB病毒载体系统的组建.病毒学报 1997,13(2):97-102.
    [21] 颜子颖;乔健;贡惠宇;侯云德.能在肝癌细胞特异表达的自主复制型肝导向基因转移系统.中国科学·C辑,1997,27(4):341-346.
    
    
    [22] 隋宝全;韩峰;吴淑华;郭德本.肝细胞导向的促红细胞生成素基因转移在肾性贫血基因治疗的初步研究.中华实验和临床病毒学杂志,1998,12(2):161-164.
    [23] 田培坤;任圣俊;任常春;滕青山;曲淑敏;姚明;顾健人.一种新的以细胞表面受体为靶向的基因导入系统.中国科学·C辑,1998,28(6):554-560.
    [24] 韩峻松;田培坤;柳湘;姚明;顾健人.靶向性非病毒载体介导p21WAF-1基因对肝癌细胞的抑制作用.中国科学·C辑,2000,30(5):523-527.
    [25] 韩峻松;田培坤;李钧敏;姚明;顾健人.血管内皮生长因子受体介导的靶向性非病毒载体的改进与体内导入实验.中华医学杂志,2000,80(5):378-382.
    [26] Choong PF, Nadesapillai AE Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop. 2003, (415 Suppl): S46-58.
    [27] Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000, 57(1): 25-40. Review.
    [28] Liu S, Bugge TH, Leppla SH. Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem, 2001, 276(21): 17976-17984.
    [29] Drapkin PT, O'Riordan CR, Yi SM, Chiorini JA, Cardella J, Zabner J, Welsh MJ. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia. J Clin Invest, 2000, 105(5): 589-96.
    [30] Rajagopal V, Kreitman RJ. Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the alpha(2)-macroglobulin receptor. J Biol Chem, 2000, 275(11): 7566-7573.
    [31] Wiethoff CM, Middaugh CR Barriers to nonviral gene delivery. J Pharm Sci, 2003, 92(2): 203-17. Review.
    [32] Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review.
    
    Int J Cancer, 1997, 72(1): 1-22.
    [33] Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci, 2000, 57(1): 25-40.
    [34] Schmitt M, Wilhelm OG, Reuning U, Harbeck N, Lengyel E, Graeff H, et al. The urokinase plasminogen activator system as a novel target for tumor therapy. Fibrinolysis and Proteolysis, 2000, 14(2/3): 114-132.
    [35] Bugge TH, Suh TT, Flick MJ, Daugherty CC, Romer J, Solberg H, Ellis V, Dano K, Degen JL. The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility. J Biol Chem, 1995, 270(28): 16886-16894.
    [36] Dewerchin M, Nuffelen AV, Wallays G, Bouche A, Moons L, Carmeliet P, Mulligan RC, Collen D. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest, 1996, 97(3): 870-878.
    [37] 廖劲晖,连福治,朱运松.尿激酶受体反义RNA表达质粒的构建.上海医科大学学报,1998,25:276-279.
    [38] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989: 888-898.
    [39] 徐韶华,廖劲晖,朱运松.尿激酶受体反义RNA抑制人乳腺癌细胞的侵袭作用.中国生物化学与分子生物学报,2000,16(6):814-819.
    [40] Wang Y. The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med Res Rev, 2001, 21(2): 146-170.
    [41] Mazar AP. The urokinase plasminogen activator receptor(uPAR) as a target for the diagnosis and therapy of cancer. Anti-Cancer Drugs, 2001, 12: 387-400.
    [42] Kook YH, Adamski J, Zelent A, Ossowski L. The effect of antisense inhibition of urokinase receptor in human squamous cell carcinoma on malignancy. EMBO J, 1994, 13(17): 3983-3991.
    [43] Mohanam S, Chintala SK, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan ZL, Sawaya R, Rao JS. In vitro inhibition of human glioblastoma cell line
    
    invasiveness by antisense uPA receptor. Oncogene, 1997, 14(11): 1351-1359.
    [44] Barnett BG, Crews CJ, Douglas JT. Targeted adenoviral vectors. Biochim Biophys Acta, 2002, 1575(1-3): 1-14.
    [45] Mohan PM, Chintala SK, Mohanam S, Gladson CL, Kim ES, Gokaslan ZL, Lakka SS, Roth JA, Fang B, Sawaya R, Kyritsis AP, Rao JS. Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res, 1999, 59(14): 3369-3373.
    [46] Lakka SS, Rajagopal R, Rajan MK, Mohan PM, Adachi Y, Dinh DH, Olivero WC, Gujrati M, Ali-Osman F, Roth JA, Yung WK, Kyritsis AP, Rao JS. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in Non-small cell lung cancer cell lines. Clinical cancer res, 2001, 7(4): 1087-1093.
    [47] Pearson AS, Koch PE, Atkinson N, Xiong M, Finberg RW, Roth JA, Fang B. Factors Limiting Adenovirus-mediated Gene Transfer into Human Lung and Pancreatic Cancer Cell Lines. Clinical Cancer Res, 1999, 5(12): 4208-4213.
    [48] Tomko RP, Xu RL, Philipson L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA, 1997, 94(7): 3352-3356.
    [49] Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol, 2000, 12(5): 613-20.
    [50] Jimenez PA, Teliska M, Liu B, Antonaccio MJ. Urokinase-type plasminogen activator stimulates wound healing in the diabetic mouse. Inflamm Res, 1997, 46 Suppl 2: S169-70.
    [51] Sabbag KR, Casanova JE, Grabel LB. Plasminogen activator expression in F9 teratocarcinoma embryoid bodies and their endoderm derivatives. Development, 1989, 106(1): 195-201.
    [52] Webb DJ, Nguyen DH, Sankovic M, Gonias SL. The very low density lipoprotein receptor regulates urokinase receptor catabolism and breast cancer cell motility in
    
    vitro. J Biol Chem, 1999, 274(11): 7412-7420.
    [53] Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell, 2001, 12(5): 1467-1479.
    [54] Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA: serpin complexes. EMBO J, 1997, 16(10): 2610-2620.
    [55] Fabbrini MS, Carpani D, Bello-Rivero I, Soria MR. The amino-terminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: internalization is toxin mediated. FASEB J, 1997, 11(13): 1169-1176.
    [56] Wang X, Zhang YQ, Li P, Hou M, Sun XH, Tan L, Zhu YS. Biological Function of Fusion Protein ATF-PAI2CD. Acta biochim Biophys Sin, 2003, 35: 624-628.
    [57] Sun XH, Zhang YQ, Wang X, Hou M, Tan Li, Li P, Zhu YS. Fusion expression and purification of HA20-1ys 10 in E. coli and its gel Retardation experiments. Fudan Univ J Med Sci, 2004, 31(1): 32-35.
    [58] Dai FH, Chen Y, Ren CC, Li JJ, Yao M, Han JS, Gong Y, Yang SL, Zhu JD, Gu JR. Construction of an EGF receptor-mediated histone H1 (0)-based gene delivery system. J Cancer Res Clin Oncol, 2003, 129: 456-462.
    [59] Stoppelli ME Tacchetti C, Cubellis MV, Corti A, Hearing VJ, Cassani G, Appella E, Blasi F. Autocrine saturation of pro-urokinase receptors on human A431 cells. Cell, 1986, 45: 675-684.
    [60] Uherek C, Fominaya J, Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem, 1998, 273(15): 8835-8841.
    [61] Ziady AG, Ferkol T, Gerken T, Dawson DV, Perlmutter DH, Davis PB. Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells.
    
    Gene Ther, 1998, 5(12): 1685-1697.
    [62] Cubellis MV, Nolli ML, Cassani G, Blasi F. Binding of single-chain prourokinase to the urokinase receptor of human U937 cells. J Biol Chem, 261(34): 15819-15822.
    [63] Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M. Endosomes, lysosomes: their implication in gene transfer. Adv Drug Deliv Rev, 2000, 41(2): 201-208.
    [64] Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferring polylysine/DNA complexes: Towards a synthetic virus-like gene transfer vehicle Proc Natl Acad Sci USA, 1992, 89(17): 7934-7938.
    [65] Schoen P, Chonn A, Cullis PR, Wilschut J, Scherrer P. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther, 1999, 6(5): 823-832.
    [66] Lee TK, Han JS, Fan ST, Liang ZD, Tian PK, Gu JR, Ng IO. Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular carcinoma cells. Int J Cancer, 2001, 93(3): 393-400.
    [67] Matsumoto T. Membrane destabilizing activity of influenza virus hemagglutinin based synthetic peptide: implications of critical glycine residue in fusion peptide. Biophys Chem, 1999, 79(2): 153-162.
    [68] Klasse PJ, Bron R, Marsh M. Mechanisms of enveloped virus entry into animal cells. Adv Drug Deliv Rev, 1998, 34(1): 65-91.
    [69] 贡惠宇,吴小兵,舒跃龙,王海林,侯云德,颜子颖.一种通过表皮生长因子受体介导的基因转移系统.中华实验和临床病毒学杂志,1998,12(1):43-46
    [70] Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer system. J Biol Chem, 1994, 269(17): 12918-12924.
    [71] Li JM, Hart JS, Huang Y, Tain PK, Qu SM, Yao M, Jiang HQ, Wan DF, Luo JC, Gu CX, Gu JR. A novel gene delivery system targeting cells expressing VEGF
    
    receptors. Cell Res, 1999, 9(1): 11-25.
    [72] Perales JC, Ferkol T, Molas M, Hanson RW. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem, 1994, 226(2): 255-266.
    [73] Aris A, Feliu JX, Knight A, Coutelle C, Villaverde A. Exploiting viral cell-targeting abilities in a single polypeptide, non-infectious, recombinant vehicle for integrin-mediated DNA delivery and gene expression. Biotechnol Bioeng, 2000, 68(6): 689-696.
    [74] Chen J, Wharton SA, Weissenhorn W, Calder LJ, Hughson FM, Skehel JJ, Wiley DC. A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. Proc Natl Acad Sci USA, 1995, 92(26): 12205-12209.
    [75] Nielsen LS, Kellerman GM, Behrendt N, Picone R, Dano K, Blasi E A 55,000—60,000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem 1988, 263: 2358-2363.
    [76] Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol. 2002, 3(12): 932-43.
    [77] Dumler I, Kopmann A, Weis A, Mayboroda OA, Wagner K, Gulba DC, Haller H. Urokinase activateds the Jak/Stat signal transduction pathway in human vascular endothelial cells. Arterioscler Thromb Vasc Biol, 1999, 19: 290-297.
    [78] Nguyen DH, Hussaini IM, Gonias SL. Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal-regulated kinase 1 and 2 which is required for increased cellular motility. J Biol Chem, 1998, 273: 8502-8507.
    [79] Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol, 1999, 144: 1285-1294.
    [80] de Bock CE, Wang Y. Clinical significance of urokinase-type plasminogen activator receptor (uPAR) expression in cancer.
    
    Med Res Rev, 2004, 24(1): 13-39.
    [81] Kjoller L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol Chem, 2002, 383(1): 5-19.
    [82] Adachi Y, Chandrasekar N, Kin Y, Lakka SS, Mohanam S, Yanamandra N, Mohan PM, Fuller GN, Fang B, Fueyo J, Dinh DH, Olivero WC, Tamiya T, Ohmoto T, Kyritsis AP, Rao JS. Suppression of glioma invasion and growth by adenovirus-mediated delivery of a bicistronic construct containing antisense uPAR and sense p 16 gene sequences. Oncogene, 2002, 21 (1): 87-95.
    [83] Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 2003, 22(38): 5967-75.
    [84] 孙兴会,谭理,李平,张宇清,王霞,侯敏,宋后燕,朱运松.腺病毒介导的uPAR反义核酸转移抑制肿瘤细胞的侵袭.生物化学与生物物理进展,2003,30(5):761-766.
    [85] 廖劲晖,徐韶华,唐辉滨,连福治,朱运松.尿激酶受体反义核糖核酸抑制肺癌细胞的侵袭转移.中华病理学杂,2001,30(5):357-360.
    [86] Busk M, Pytela R, Sheppard D. Characterization of the integrin alpha V beta 6 as a fibronectin-binding protein. J Biol Chem, 1992, 267(9): 5790-5796.
    [87] Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor Dormancy Induced by Downregulation of Urokinase Receptor in Human Carcinoma Involves Integrin and MAPK Signaling. J cell Biol, 1999, 147(1)89-104.
    [88] Hall DE, Neugebauer KM, Reichardt LF. Embryonic neural retinal cell response to extracellular matrix proteins: developmental changes and effects of the cell substratum attachment antibody(CSAT). J Cell Biol, 1987, 104(3): 623-634.
    [89] Erbacher P, Roche AC, Monsigny M, Midoux P. Putative role of chloroquine in
    
    gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exper Cell Res, 1996, 225: 186-194.
    [90] Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci, 2003, 92(2): 203-217.
    [91] Joubert D, van Zyl J, Hawtrey A, Ariatti M. A note on poly-L-lysine-mediated gene transfer in HeLa cells. Drug Deliv, 2003, 10(3): 209-11.
    [92] Perales JC, Grossmann GA, Molas M, Liu G, Ferkol T, Harpst J, Oda H, Hanson RW. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem, 1997, 272(11): 7398-407.
    [93] Ziady AG, Ferkol T, Dawson DV, Perlmutter DH, Davis PB. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. J Biol Chem, 1999, 274(8): 4908-16.
    [94] Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Scherrer P, Cullis PR. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther, 1999, 6(2): 271-81.
    [95] Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release, 1998, 54(1): 39-48.
    [96] Nah JW, Yu L, Han SO, Ahn CH, Kim SW. Artery wall binding peptide-poly(ethylene glycol)-grafted-poly(L-lysine)-based gene delivery to artery wall cells. J Control Release, 2002, 78(1-3): 273-84.
    [97] Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A, 2002, 99(23): 14640-5.
    [98] Kichler A, Leborgne C, Marz J, Danos O, Bechinger B. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells.
    
    Proc Natl Acad Sci U S A, 2003, 100(4): 1564-8.
    [99] Munkonge FM, Dean DA, Hillery E, Griesenbach U, Alton EW. Emerging significance of plasmid DNA nuclear import in gene therapy. Adv Drug Deliv Rev, 2003, 55(6): 749-60.
    [100] Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther, 2002, 9(3): 157-67.
    [101] 叶亦舟,王以政,郭爱克.RNA干扰技术及其应用.生命的化学,2002,22(6):503-506.
    [102] 付文金,巢时斌,彭剑雄.RNA干扰.细胞生物学杂志,2002,24(5):279-282.
    [103] 徐荣,陈峻,邓可京.RNA干扰技术在果蝇中的应用.生物化学与生物物理进展,2002,29(1):23-25.
    [104] Russell WC. Update on adenovirus and its vectors. J Gen Virol, 2000, 81(Pt 11): 2573-604.
    [105] Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther, 2003, 10(11): 935-40. Review.
    [106] St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther, 2003, 10(14): 1135-1141. Review.
    [107] Peng KW, Vile R. Vector development for cancer gene therapy. Tumor Targeting, 1999, 4: 3-11.