用户名: 密码: 验证码:
堤坝渗漏热源法及示踪理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出用热源法对堤坝渗漏进行定性和定量的研究,借鉴环境同位素示踪和人工示踪理论的研究成果,利用环境同位素方法对堤坝渗漏问题进行调查,并提出了人工示踪广义稀释模型。
     首先,利用温度在地层和库水中分布规律的不同,提出用热源法定性研究堤坝的渗漏问题。地层温度的分布规律是温度随深度的增加而升高,而对于库水而言,通常是温度随库水深度增加而递减的。而在钻孔测量温度时,由于地下水流动的影响,钻孔温度曲线将发生异常变化。据此,就可以利用热源法定性地判断堤坝渗漏的途径。
     其次,利用热源法建立了堤坝渗漏的两个定量计算模型。1)建立了堤坝管涌渗漏持续线热源模型。若在一段时间内堤坝的管涌渗漏流速变化相对较小,则渗漏水可以看作是一个持续作用的线热源,在这段时间内线热源的强度与渗漏流速有关,通过研究管涌滲漏水对地层温度的影响,利用热源法的原理建立管涌渗漏的持续线热源法模型。2)建立了堤坝渗漏虚拟热源法模型。与堤坝管涌渗漏持续线热源模型不同的是,虚拟热源法模型研究的对象是长期较为稳定的堤坝管涌渗漏,将堤坝管涌水看作线热源,假设存在一个虚拟的热源,地层温度是由真实的热源和虚拟热源共同作用的结果。通过对管道流温度分布的分析,得出由温度分布计算管涌流速的公式。3)根据能量守恒原理,利用热源法对堤坝渗漏进行定量计算。渗漏水与周围地层将进行热量的交换。低温的渗漏水从地层中吸收热量,而地层则释放出热量。根据能量守恒原理,这两个热量是相等的。由此可以推测出可能的渗漏区域并计算其渗漏量。
     人工示踪方法已在堤坝渗漏探测中得到很多应用。但是,传统点稀释方法由于孔中垂向流的存在以及其它稀释因素的影响,其应用受到限制。针对这一状况,本文对人工示踪方法进行了研究,建立了人工示踪广义稀释模型,对各种情况下模型的应用进行了探讨,并讨论了不同情况下流场畸变系数α的选取。所建立的广义稀释模型可以放宽点稀释方法的限制条件,可以定量地同时测定出地下水的水平流速和垂向流速,扩大了人工示踪方法的应用范围。
     温度和环境同位素示踪方法同属于天然示踪方法,且前者是后者的重要影响因素。本文利用环境同位素示踪方法对堤坝渗漏问题进行分析,作为热源法的辅助方法,使两者相互印证,结论更趋于合理。同时,利用人工广义稀释方法对热源法定量计算模型进行了验证。
Heat resource method is used to study the leakage of dam and dyke qualitatively and quantitatively in this dissert. Environmental tracer and artificial tracer methods are also introduced to study this problem, and a general artificial tracer model is proposed. The main work is as follows:Firstly, given the difference of temperature distribution in strata and reservoir water, heat resource method is proposed to investigate the leakage of dam. The temperature of strata increases with the depth of strata, whereas with the increasing of depth, the temperature of reservoir water decreases. Moreover, influenced by the movement of groundwater, there will be abnormality in temperature distribution curve in borehole. Therefore, heat resource method can be used to determine the dam leakage location qualitatively.Secondly, two quantitative calculation modes for dam leakage are proposed with the heat resource method. The first one is continue line heat resource model. In this model, under the condition that the variation of pipe flow velocity is low comparatively, the influence of piping water to strata temperature is studied. The second one is dummy heat resource model. Difference from the first one, the research object is stable piping velocity during a comparative period. The piping water is regarded as a line heat resource, supposing there is a dummy heat resource, then the strata temperature is influenced by the real and dummy heat resources simultaneously. Through the analysis of temperature in piping flow, a piping velocity equation is proposed. Moreover, based on the principle of energy conservation, a heat resource method is proposed to calculate the leakage of dam. There will be heat exchange between the leakage water and stratum. The energy of leakage from stratum equals to the energy lost of stratum. It can be used to predict the possible leakage area and calculate the leakage volume of reservoir water.Artificial tracer method has been used to investigate dam leakage problem broadly. However, because of the influence of vertical flow in borehole and other dilution factors, the application of traditional point dilution method is limited. In order to solve this problem, a general artificial tracer model is proposed in this dissert. Moreover, the application of this model under difference conditions is discussed. Flow field aberration coefficient a is also discussed in this model. The general artificial tracer model looses the limitation of traditional point dilution method. With the model, the horizontal and vertical flow velocity of groundwater can be calculated simultaneously. Therefore, the application of artificial tracer method is broaden.Both temperature analysis and environmental isotope tracer method are natural tracer method. Temperature is important influence factor to the distribution of environmental isotope. Therefore, environmental isotope tracer method is used as an assistant method to temperature analysis in order to get more reasonable results. Artificial tracer method is also used to verify the result of heat resource models.
引文
1.王铁生译.大坝的安全.水利水电快报,1984 (5)
    2.孙申登译.混凝土坝岩基的安全性.水利水电快报,1984 (6)
    3.王成梓译.土坝破坏的教训。水利工程管理技术,1986 (3)
    4.董哲仁主编.堤防探险加固与实用技术.中国水利水电出版社,1998
    5.郭建扬,防汛堤坝,堤基结构与渗透变形,岩石力学与工程学报,工程勘察,2000.3
    6.肖四喜,李银平,大堤管涌形成机理分析与治理方法,工程勘察,2000.3
    7.MalDasset拱坝失事研究,国外水利水电,1980,11
    8. Bellier J., Londe P., The Malpasset dam, Engineering Foundation Conf. Pro. The evaluation of dam safety, 1976
    9. Wittke W., Leonards G. A., Modified hypothesis for failure of Malpasset dam, Int. Workshop on dam failures, Purdue University, West—Lafayette, 1985
    10.侯梅芳译,考虑地质应力、变形的有限单元法渗流分析。水利部、交通部南京水利科学研究所编“渗流译文汇编”第十一期,1981
    11. Jaeger, C., Rock Mechanics and engineering, 2rd. Ed. Cambrige, The Univ. Pr., 1979
    12.吴凤池,坝肩稳定的关键因素——梅山水库右坝肩事故处理与运行实践,拱坝技术,1982,2Ⅱ
    13,汝乃华,梅山连拱坝右坝座的错动及其原因分析,水利学报,1988,9
    14.张景秀,坝基防渗与灌浆技术。中国水利水电出版社,2002.8
    15.汪集旸,熊亮萍,黄少鹏.沉积盆地中热的传递和地下水活动[J].第四纪研究,1996年5月,第2期:147~158
    16.张发旺,王贵玲,侯新伟等.地下水循环对围岩温度场的影响及地热资源形成分析—以平顶山矿区为例[J].地球学报,2000年5月,第21卷,第2期:142~146
    17.王贤能,黄润秋,黄国明.深埋长大隧道中地下水对地温异常的影响[J].地质灾害与环境保护,1996年12月,第7卷,第4期:23~27
    18.雷志栋,尚松浩,杨诗秀等。地下水浅埋条件下越冬期土壤水热迁移的数值模拟。冰川冻土,1998年3月,第20卷,第1期:51~54
    19.周志芳,王锦国.金沙江溪洛渡水电站环境水文地质综合评价[J].高校地质学报,2002年6月,第8卷,第2期:227~235
    20.李端有,陈鹏霄,王志旺.温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J].长江科学院院报,2000年12月,第17卷增刊:48~51
    21.刘建刚,陈建生.平面热源法在北江石角段堤基渗漏分析中的应用[J].水利水运工程学报,2002年9月,第3期:63~65
    22.陈建生,余波,陈亮。利用地下水温度场研究江都高水河船厂段堤防的渗漏[J].岩土工程界,第5卷,第12期:37~39
    23.傅碧宏,史基安,张中.LandsatTM热红外遥感数据定量反演地下水富集带的温度信息——以甘肃河西地区石羊河流域为例[J].遥感技术与应用,1999年6月,第14卷,第2期:34~38
    24.[俄]H.H.叶尔马科娃等。皮罗戈夫斯克水利枢纽渗透的温度观测[J]。水利水电快报,2003年4月:20~22
    25.王成秋。社上水库砌石坝(副坝)渗漏量变化特性分析[J]。江西水利科技,2000年6月,第26卷,第2期:115~117
    26.刘宁,柯庆清,阎旭。重力坝的随机温度场初探[J]。河海大学学报,2000年5月,第 28卷第3期:7~13
    27
    
    27.周志芳,王锦国.河流峡谷区地下水温度异常特征分析[J].水科学进展,2003年1月,第14卷第1期:62~65
    28.肖才忠,潘文昌.由温度场研究坝基渗流初探[J].人民长江,1999年5月,第30卷第5期:21~23
    29.王志远,王占锐,王燕.一项渗流监测新技术——排水孔测温法[J].大坝观测与土工测试,1997年8月,第21卷第4期:5~7
    30.张键,葛社民,许鹤华等.利用井温分布估算莺.琼盆地地下流体运移速度[J].地质力学学报,2000年6月,第6卷,第2期:1~5
    31.苏伯林译.将温度作为土石坝性态的指示因子[J],大坝观测技术,1994,(2)
    32. Aufleger M, et al. Fiber optic temperature measurements for dam monitoring [A]. Proceedings of International Conference on Health Monitoring of Civil Infrastructure System [C]. 1999
    33.孙东亚,Markus Aufleger.基于光纤温度测量的土石坝渗漏监测技术。水利水电科技进展,2000年8月,第20卷第4期:29~31
    34. AuflegerM.et al. Fiber optical temperature measurements for dam monitoring [R]. 武汉:长江科学院,1999
    35. Witherspoon P A, Wang J S Y. Validity of cubic law for fluid flow in deformable rock fracture Water Resources Research, 1980 ; 6.. 112~118
    36. Noorishad J, Ayatollahi M S. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1982; 19:185—193
    37. Barton N, Bandis S C. Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985; 22 (3) : 121— 140
    38. Jing L. Tsang C F. Stephansson O. DCOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995; 32 (5) : 399— 408
    39.刘继山.单裂隙受正应力作用时的渗流公式.水文地质工程地质,1987;(2):22~276
    40,仵彦卿.岩体水力学导论.成都:西南交通大学出版社,1994:78~90
    41.仵彦卿,高荣芳。影响油气运移的应力场地温场渗流场耦合的双重介质模型[J].西安理工大学学报,1998年第14卷第2期:113~117
    42.柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J]。水力发电学报,2000,(1):27~35
    43.柴军瑞.龙滩碾压混凝土坝稳定渗流场与稳定温度场耦合分析[J].红水河,第20卷第1期:26~28
    44.柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,(1997)19(2),59—62
    45.柴军瑞,韩群柱,件彦卿.岩体一维渗流场与温度场耦合模型的解析演算[J].地下水,1999年12月,第21卷第4期:180~182
    46.黄涛,杨立中,陈一立.工程岩体地下水渗流-应力-温度耦合作用数学模型的研究.西南交通大学学报,1999年2月,第34卷第1期
    47.杨立中,黄涛。初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究。水文地质工程地质,2000年第2期:33~35
    
    48.贺玉龙,杨立中,赵文.岩体温度对地下水性质的影响[J].辽宁工程技术大学学报,2002年10月,第21卷第5期:584~586
    49.Yuzo Ohnishi,Akirako Bayashi,Makoto Nishigaki.地下工程围岩的热力一水力——力学特性,第六届国际岩石力学会议论文选集《岩石力学的进展》,重庆大学出版社,1990,72—77
    50. Lad, D., Nijampurkar V.N., Rama, S., "Silicon-32 hydrology", Isotope Hydrology 1970 (Proc. Symp. Vienna, 1970) IAEA,Vienna (1970): 847
    51. Rozanski, K., Florkowski, T., "Krypton-85 dating of groundwater", Isotope Hydrology 1978 (Proc. Symp. Neuherberg,1970) Vol.2, IAEA,Vienna (1979): 949
    52. Torgersen, T., Clarke, W.B., Jenkins, W.J., "The tritium/helium-3 method in hydrology", Isotope Hydrology 1978 (Proc. Symp. Neuherberg, 1978) Vol.2 IAEA, Vienna (1979):917
    53. Payne, B.R., Water balance of lake Chala and its relation to groundwater from tritium and stable isotope data, J. Hydrol. 11 (1970) 47
    54. Stichler, W., Moser, H., "An example of exchange between lake and groundwater", Isotopes in Lakes Studies (Proc. Panel Vienna, 1977), IAEA, Vienna (1979) 115
    55. Turkish National Committee, "Investigations of leakage at Keban Dam", (Ⅻme congres des Grands Barrages) Mexico City (1976) Q45,R27
    56. Burgman, J.O.S., Eriksson, E., Kostov, L., Moller, A., "Application of oxygen-18 and deuterium for investigating the origin of groundwater in connection with a dam project in Zambia", Isotope Hydrology 1978 (Proc. Symp. Neuherberg, 1978), IAEA, Vienna (1979) 27
    57. Molinari, J., Recherche et localization de fuites sur retenues naturelies ou artificielles par techniques de tracer, Houille Blanche 314 (1976) 301
    58. Molinari, J., Contribution to discussion of Isotope Hydrology 1978 (Proc. Symp. Neuherberg, 1978), IAEA, Vienna (1979) 41
    59. Andreu Ibarra, B., Galvez Cruz, L., Ruiz Pena, O., Del Arenal, R., "Estudio isotopic de fugas de la presa Las Lajas, Chihuahua, Mexica", Isotope hydrology 1978 (Proc. Symp. Neuherberg, 1978), IAEA, Vienna (1979) 125
    60. Drost, W., "Groundwater measurement at the site of the Sylvenstein Dam in the Bavarian Alps", Isotope Hydrology 1970 (Proc. Symp. Vienna, I970), IAEA, Vienna (1970) 421.
    61. Carol Kendall, Jeffey J. McDonnell, Isotope Tracers in Catchment Hydrology, ELSEVIER Amsterdam-Lausanne-New York-Oxford-Shannon- Singapore - Tokyo, 1998
    62. Dincer T, Payne B.R. An environmental isotope study of the southwestern Karst Region of Turkey. J. Hydol, 1971, 14:233~258
    63. Fontes J. -C., and Edmunds J.N. The use of environmental isotope techniques in arid zone hydrology. ⅠHP-Ⅲ Project 5.2 UNESCO, Paris, 1989
    64. Coplen T.B. Uses of environmental isotopes. In Regional Ground-water Quality, ed.W.M.Alley, Van Nostrand Reinhold, New York, 1993:227-254
    65. Gat J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu.Rev. Earth Planet. Sci.24, 1996:225-262
    66. Mazor E. Chemical and Isotopic Groundwater Hydrology: The applied Approach. M.Dekker, New York: 413
    67. Clark I. And Fritz P. Environmental isotopes in hydrology. Lewis, Boca Raton, F1
    68. Antonio Plata Bedmar, Manual de fugas en embalses, CEDEX, Centro de Estudios y Experimentacirn de Obras Pǘblicas, 1999
    
    69. W. G. Mook, Environmental Isotopesin Thehydrological Cycle Principles and Applications, IAEA, 2002
    70.关秉均等。用环境同位素氚、碳14、碳13探讨北京地区地下水运动规律。水文地质技术方法,1985,(12)
    71.煤炭工业部地质勘探研究所水文地质室。用氚水作示踪剂的初步尝试。水文地质技术方法,1984,(8)
    72.王东升等,应用环境氚估算娘子关泉域地下水年龄和储存量,勘察科学技术,1989年第4期
    73.王翌善,卢玉楷。中国同位素事业的40年[J].同位素,1995年11月,第8卷第4期:228~237
    74.李玉葆,环境同位素方法在矿坑充水条件研究中的应用探讨,勘察科学技术,1990年第1期
    75.胡宏韬,李同斌,宋雷等。多层渗流系统地下水补给和运动的环境同位素研究[J]。世界地质,1998年6月,第17卷,第2期:55~58
    76.孙洪星等,环境同位素示综技术在矿井水防治中的应用,水文地质工程地质,2000年第5期
    77.刘进达等,影响中国大气降水稳定同位素组成的主要因素分析,勘察科学技术,1997年第3、4期
    78.李云峰等,利用氢氧同位素研究本钢郑家水源地地下水的形成,勘察科学技术,1994年第3期
    79.满开言。用环境同位素氧18、氘、氚探讨地下水运动规律。北方交通大学学报,1994年3月,第18卷第1期:50~55
    80.陈建生、董海洲、陈亮,采用环境同位素方法研究北江大堤石角段基岩渗漏通道,水科学进展,第14卷,第1期(总第52期),2003,57~61
    81.陈建生,汪集踢,同位素方法研究巴丹吉林沙漠与古日乃草原地下水补给,中国地球物理,南京师范大学出版社,2003
    82.陈建生,刘建刚,董海洲,陈亮,环境同位素示踪方法研究新安江右坝肩绕坝渗流,中国工程科学,2004年第1期:57~63
    83.杨松堂、陈建生,小浪底坝肩绕坝渗漏的综合示踪研究,西部探矿工程,总第86期,2003年第7期:1~3
    84.顾慰祖,陆家驹,谢民等。乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,2002年5月,第13卷第3期:326~332
    85.Geyh M A,顾慰祖,刘涌等。阿拉善高原地下水的稳定同位素异常[J].水科学进展,1998,9(4):333-337
    86. Geyh M A, Gu Weizu. Preliminary isotope hydrological study in the arid Gurinai grassland area. Inner Mongolia [A]. In: Isotope Techniques in water resources development 1991 [C]. IAEA, Vienna, 1992
    87. Geyh M A, Gu Weizu, Dieter Jakel. Groundwater recharge study in the Gobi desert [A]. China. Geowissensxhsften, 14, Heft [C]. 7-8,1996
    88. Geyh M A, Gu Weizu. Isotopically highly enriched shallow groundwater below dry sediments [A]. In: Isotope Techniques in Water resources Development and Management 1999[C]. IAEA, Vienna, 2000
    89. Geyh M A, Gu Weizu, D Jakel. The ecohydrologically degenerative grassland Gurinai within the gobi desert, Inner Mongolia. In: Extended Synopses, Isotopes in Water Resources Management 1995. IAEA, Vienna: 363~364
    
    90. Craig H. Isotopic variations in natural waters. Science 133, 1961:1702-1703
    91. Erikson, E., Major pulses of tritium in the atmosphere, Techn.17 (1966) 118
    92. Erikson, E., "Isotope in hydrometeorology", Isotopes in Hydrology (Proc. Symp. Vienna, 1966) IAEA, Vienna (1967) 21
    93. International Atomic Energy Angency, Environmental Isotope Data No. 1: World Survey of Isotope Concentration in Precipitation (1953-1963), Technical Reports series No.96, IAEA, Vienna (1969)
    94. International Atomic Energy Angency, Environmental Isotope Data No.2: World Survey of Isotope Concentration in Precipitation (1964-1965), Technical Reports series No. 117, IAEA, Vienna (1970)
    95. International Atomic Energy Angency, Environmental Isotope Data No.3: World Survey of Isotope Concentration in Precipitation (1966-1967), Technical Reports series No. 120, IAEA, Vienna (1971)
    96. International Atomic Energy Angency, Environmental Isotope Data No.4: World Survey of Isotope Concentration in Precipitation (1968-1969), Technical Reports series No. 147, IAEA, Vienna (1973)
    97. International Atomic Energy Angency, Environmental Isotope Data No.5: World Survey of Isotope Concentration in Precipitation (1970-1971 ), Technical Reports series No. 165, IAEA, Vienna (1975)
    98. International Atomic Energy Angency, Environmental Isotope Data No.6: World Survey of Isotope Concentration in Precipitation (1972-1975), Technical Reports series No. 192, IAEA, Vienna (1979)
    99.刘进达等,中国大气降水稳定同位素时—空分布规律探讨,勘察科学技术,1997年第3期
    100.刘进达,刘恩凯,赵迎昌等。影响中国大气降水稳定同位素组成的主要因素分析[J]。勘察科学技术,1997年第4期:14~18
    101.贾艳琨等,我国大气降水氚分布特征,勘察科学技术,1989年第4期
    102. Guidebook on Nuclear Techniques in Hydrology[C], IAEA, Vienna. 1983
    103. Drost W., Klotz D., Koch A., Moser H., Neumaier F., Rauert W., Point dilution methods of investigating groundwater flow by means of radioisotopes, Water Resource Research, No.4, 1968
    104. Drost W., Moser H., Isotope methods in groundwater Hydrology, Published by Euri sotop Office Information and Documentation Seruice, 1974
    105. Drost W., Moser H., Neumaier F., Rauert W., Isotope methods in groundwater hydrology. Eurisotop Information Booklet No.61, Eurisotop, Brussels 1974
    106. Drost W., Application of groundwater measurements by means of radioisotopes on groundwater exploration, Water for the Human Environment Ⅰ (Proc. Congress Chicago, 1973), IWRA, Champaign, Illinois (1975) 357
    107. Plata A. Detection of leaks from reservoir and lakes, Using of artificial tracer in hydrology, IAEA-TECDOC-601. Vienna: IAEA, 1991:71
    108.南京水利科学研究所同位素应用组,用放射性同位素观测龙河口水库的坝基渗流,水利水运科技情报,1978.4
    109. Chen Jiansheng ,et al. A test of using isotope trace in single hole to detect the flow direction of underground water, Second Symposium on Exploration Geophysics, China Academic Publishers, 1986
    
    110. Chen Jiansheng and Fang Jie, Isotope Methods in Environmental Studies, hydrology and Geochemistry, Beijing, P314-327, 1988,IAEA
    111. Chen Jiansheng and Dai Honggui, Determining Direction and Velocity of Deep Underground Water Flow in Single Borehole, Geophysics, USA, 1987
    112. Chen Jiansheng and Fang Jie, Isotope Methods in Environmental Studies, hydrology and Geochemistry, Beijing, P 163-173, 1990, IAEA
    113.陈建生,方杰,应用放射性同位素示踪方法研究喀斯特地区地下水,南京大学学报,第25卷第3期,1989
    114.陈建生,探测地下水参数的同位素示踪仪及其应用,物理,第18卷,第4期,1989
    115.陈建生,方杰等,同位素方法在枣庄市地下水均衡试验场研究中的应用,工程勘察,第1期,1988
    116.陈建生,戴鸿贵,介绍一种测定地下水流速流向的仪器,石油物探信息,2月25日,1987
    117.陈建生,许惠义等,煤田地下水勘探同位素示踪技术,煤田地质与勘探,第5期,1990
    118.陈建生,易永森等,海子水库南付坝~(131)Ⅰ示踪测渗试验,核技术,第12卷第3期,1988
    119.陈建生,曹大正等,同位素示踪弥散试验预评价海水入侵海河后对两岸环境的影响,勘察科学技术,第6期,1987
    120.陈建生,戴鸿贵等,单井同位素示踪法测定地下水流速流向试验,第二届勘探地球物理学术讨论会论文集,中国学术出版社,1986
    121.陈建生,地下水同位素示踪探头,核科学与工程,第8卷,第一期,1988
    122.陈建生,同位素示踪单井试验研究,地下水,第2期,1987
    123.陈建生,地下水IC型示踪探头,同位素,第1卷第1期,1988
    124.陈建生,戴鸿贵,同位素~(113)In在地下水示踪研究中的应用,核技术,第10卷,第7期,1987
    125.陈建生,NF-1型核荧地下水流向流速仪的研制,使用方法和效果,勘察科学技术,第5期,1988
    126.陈建生,郝福振等,同位素示踪单孔测定地下水含水层流向,石油测井,1989
    127.陈建生,煤矿涌水勘察中同位素示踪方法研究,现代勘察,第2期,1991
    128.陈建生等,放射性同位素示踪方法在煤田、水文测量中的应用研究,水文物探,第1期,1991
    129.陈建生等,同位素示踪方法测定地下水及含水层参数,水文地质与工程地质,第6期,1991
    130.陈建生等,同位素示踪技术在水库大坝渗漏探测中的应用,核农学通报,第13卷,第5期,1992
    131.陈建生等,同位素示踪技术在煤田、水利、水文测井中的应用研究,工程物探,第4期,1992
    132.陈建生,地下水同位素示踪仪,核技术,第15卷第3期,1992
    133.陈建生等,同位素示踪技术在广州蓄能电站水文地质中的应用研究,工程勘察,第2期,1993
    134.陈建生,探测地下水动态参数的同位素示踪方法及仪表研究,第五届核电子学会论文集,1990
    135.陈建生等,同位素示踪法测定多含水层混合井试验研究,勘察科学技术,第5期,1994
    
    136.陈建生等,八盘峡水电厂右副坝绕坝渗流场探测研究,大坝观测与土工测试,第6期,1994
    137.陈建生等,同位素示踪技术在枫树坪水库渗漏探测中的应用研究,广东水电科技,第3期,1995
    138. Chen Jiansheng et al, RADIOACTIVE OR NATURAL TRACER TECHNIQUES FOR LEAK DETERMINING OF DAM ABUTMENT, NUCLEAR SCIENCE AND TECHNIOUES, Vol.6 No.4 November 1995
    139.陈建生等,利用天然与人工示踪法探测岩体裂隙渗流构造及渗透性研究,西北水资源与水工程,第4期,1995
    140.许惠义,刘应翘,刘洪福,陈建生,应用同位素示踪技术测试多含水层分层参数的研究,水文地质与工程地质,第3期,1996
    141.陈建生等,多含水层稳定流非干扰多孔混合井流理论及示踪测井方法,水利学报,No.5,1997
    142.陈建生,同位素及天然示踪法探测坝基渗流场研究,江苏农业学报,第12卷,第4期,1996
    143.陈建生,张发明,张虎成,龙羊峡大坝同位素示踪方法探测渗流场研究,河海大学学报,第11期,1999
    144.陈建生,赵维炳,单孔示踪方法测定岩体裂隙渗透性研究,河海大学学报,第3期,2000
    145.陈建生,王媛,赵维炳,钻孔与岩体裂隙斜交渗流场井流理论与示踪方法研究,水利学报,第12期,1999
    146.陈建生,王媛,赵维炳,孔中同位素示踪方法研究岩体裂隙渗流,水利学报,第11期,1999
    147.陈建生,董海洲,二维岩体裂隙网络渗流同位素示踪研究,重庆大学学报,2000,10(23增刊)
    148.刘光尧,陈建生,同位素示踪测井,江苏科学技术出版社,1999年10月
    149. Makowski, J., "Radiometric Method For Investigating The Permeability of Reservoir Beds", Isotope Hydrology 1970 (Proc. Symp. Vienna, 1070), IAEA, Vienna (1970) 727
    150.李樟苏等编著。同位素技术在水利工程中的应用。水利电力出版社,1990
    151.高占兴。放射性同位素多孔脉冲法测定层状含水层的有效孔隙度。勘察科学技术,1989:4
    152.高占兴,刘光尧。黄水河地下水库多层结构含水层参数的同位素示踪测定。勘察科学技术,1991:5
    153.唐金荣,刘光尧等。寨子汶河河谷天然流场二维弥散试验和参数计算。水文地质工程地质,1989:3
    154. Plata A. Single well technique using radioactive tracers. IAEA-TECDOS-291,1983
    155. Moser H, Drost W. Application of single and multi-well techniques in fractured rocks, Isotope techniques in the study of the hydrology of fractured and fissured rocks. IAEA-AG-329.2/12. Vienna: IAEA, 1989:223
    156. Drost W., Single well techniques Isotope Hydralogy, IAEA, 1982
    157. Drost W. Single-well and Multi-Well Nuclear Tracer Techniques, Unesco Pads, 1989
    158.王钧,黄尚瑶,黄歌山,汪集旸等.中国地温分布的基本特征[M].北京:地震出版社,1990.59-63
    159.汪集旸.中低温对流型地热系统[M].北京:科学出版社,1993.8
    160.张洪济,热传导,高等教育出版社,1992.10
    
    161.刘蕴华,张乃良.数学物理方程及其应用.河海大学出版社
    162.林睦曾,岩石热物理学及其工程应用[M].重庆大学出版社,1991.7
    163. Max Jakob. Heat Transfer[M]. New York JOHN WILEY & SONS, Ins., London CHAPMAN & HALL, Limited. March, 1955, Volume Ⅰ
    164.O.卡普迈耶,R.海涅尔著,北京大学地质学系地热研究室译,地热学及其应用,科学出版社,1981
    165. Dansgaard, W., The isotope composition of natural waters (with special reference to the Greenland Ice Cap), Meddel. Gronland, Kobenlaavn, (1965) Bd. 165, No.2
    166. Dansgaard, W., Stable isotopes in precipitation, Tellus 16 (1964) 436
    167. Gat, J. R., Tzur, Y., "Modification of the isotopic composition of rainwater by processes which occur before groundwater recharge", Isotopes in Hydrology 1978 (Proc. Symp. Vienna, I966), IAEA, Vienna (1967) 49
    168. Bortolami, G. C., Ricci, B. et al., "Isotope hydrology of the Val Corsaglia, Maritime Alps, Piedmont, Italy", Isotope Hydrology 1978 (Proc. Symp. Neuherberg, 1978) Vol. 1, IAEA, Vienna, (1979) 327
    169.唐金荣,单孔稀释法公式中α系数的数学分析,勘察科学技术,第3期,1989
    170.复旦大学、清华大学、北京大学合编。原子核物理实验方法[M]。北京:原子能出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700