用户名: 密码: 验证码:
时频分析在雷达信号多参数估计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时频分布形式为非平稳信号的研究提供了有效的手段,而对于这类频谱时变的信号,传统的时域和频率域的分析方法都不能够全面的反映信号的特征。本文主要讨论了时频分析方法与阵列信号处理的结合在雷达信号参数估计中的应用。传统的时频分析方法都着眼于单通道信号的分析,而在雷达信号侦察中由于采用了阵列接收的方式,因此存在利用多通道数据对时频分布进行改善的可能性。本文主要讨论了利用时频分布的到达角估计、高效的时频分布计算方法和信号的时频特征提取等问题。主要工作和贡献有:
     1.虽然Cohen类分布能够提供较高的时频聚集度,但是会产生具有干扰作用的交叉项,并且叠加的噪声也会影响对信号的分析。目前多数处理方法都针对单通道的数据,而本文提出的利用对称阵元的互Wigner分布平均算法,这种方法能够有效的补偿信号在不同阵元上面产生的时差,并且获得较好的表示效果。与传统的Wigner分布阵列平均方法相比,由于到达不同阵元的噪声之间彼此不相干,因此采用互Wigner分布平均的方法能够有效去除噪声的干扰,获得改善的时频分布形式。
     2.计算信号的时频分布并不是最终的目的,而只是为信号的进一步分析进行准备。因此我们考虑时频分布的后处理方法。与通常的计算核函数设计方法有所区别,如果把时频分布当作一幅图像,则每一个时频点都对应着图像中的一个像素,时频分布的幅度对应图像的灰度。从图像处理的角度来看,时频分布中的自项对应图像中有用的对象成分,而交叉项和噪声则构成了图像的干扰背景。因此对时频分布的改善可以等效为对图像中有效成分的提取以及背景抑制的问题。本文提出了利用数字图像处理技术的时频分布改善算法。
     3.指数遗忘分布作为一类高效的时频分布迭代算法被提出,在这种方法中,信号的旧样本不是简单的丢弃,而是通过特殊类型的计算窗口来逐渐的消除其影响。同时在某一个时间点上面的时频分布可以通过有效的利用在前面的数据段上的计算结果来获得,这样将大大提高运算的效率。本文提出了指数遗忘分布的改进算法,分析表明其具有最高效率的计算结构。同时还分析了指数遗忘分布的瞬时频率表示性能,分析表明采用单边计算窗口的时频分布类型不能够准确及时的跟踪信号的频率变化。在分析频率快速变化的信号的时候,该类分布会产生频率表示的漂移现象。
     4.提出了采用对称计算窗口的双边指数遗忘分布形式,与其他类型的时频分布相比,这种方法具有很高的计算效率,同时能够获得比指数遗忘分布更为准确的瞬时频率表示效果,瞬时频率表示的偏差和方差都大大的减小了。文章中还提
    
    出了利用余弦窗口的信号时频分布迭代算法。由于余弦窗口对称并且具有有限的
    宽度,因此这种分布形式能够兼顾计算的效率与实时性要求。
     5.提出了基于对称阵元互Wigner分布平均的瞬时频率估计算法,这种方法利
    用多通道数据对时频分布的瞬时频率估计方法的性能进行了有效的改善,并且能
    够在低信噪比的条件下获得良好的估计效果,
     6.对于具有恒定幅度的调频信号而言,瞬时频率代表了其全部的信息,可以
    据此对信号进行识别和分类。然而如果信号中出现频率或者相位的不连续点的时
    候,会相应的引起时频分布的幅度变化,为有效的提取信号的时频特征,本文对
    由于信号相位和频率的不连续点引起的时频分布幅度变化规律进行了讨论。分析
    表明这种方法能够准确的定位这些不连续点,同时对跳变值进行估计。
     7.提出了基于瞬时频率的信号到达角估计算法。与信号子空间拟合方法不同,
    这种方法有效利用频率的估计结果,对不同阵元上面的时差进行计算,从而估算
    出信号的到达角。这种方法可以应用于宽带信号场合。
    关键词:时频分布,阵列信号处理,空间平滑,迭代算法,瞬时频率,相位不连
    续点,到达角估计
Time-frequency distributions were introduced as a means of representing signals whose frequency content is varying with time, and for which both time domain representation and frequency representation are inadequate to describe the signal appropriately. This dissertation is intended to incorporate time-frequency analysis into array signal processing for the estimation of radar signal parameters. Compared with traditional solutions that try to analyze signals received by single sensor, in the situation of radar signal estimation the source array manifolds make it possible to improve time-frequency representation through time sequences obtained through multi-channel. The estimation of direction of arrival, extraction of time-frequency characters, algorithms for efficient time-frequency computation and the methods to estimate instantaneous frequency are discussed.1. However the Cohen class time-frequency distributions can provide better concentration, they are suffered from the cross-terms and the noise in the time-frequency plane. Different from traditional practice that tries to deal with this problem through samples obtained from single channel, the approach to improve time-frequency distribution using averaged cross Wigner-Ville distributions between the sensors at symmetrical places is investigated, which tries to make full use of the advantage of sensor array. Compared with the array averaged Wigner distribution, it can provide better performance and compensate the time delays among the signals impinging on different antennas. Since the noise arrives at each sensor is uncorrelated. The average of cross Wigner distributions can effectively improve the time-frequency representation.2. To compute time-frequency distribution is not the aim but just a preparation for further estimation. So we consider the post process of TFD. Unlike the methods such as computational kernel design, the time-frequency representation can be considered as an image where the pixels correspond to the time-frequency points and their intensity to the magnitude of the transform. From the viewpoint of image processing, the auto-terms of the signal can be defined as objects in the image while all the interfering cross terms and the noise form the background in the image. Therefore it is natural for the introduction of image processing technique to time-frequency representation area, and the attempt to promote the time-frequency representation is equal to extract these
    
    objects from the resultant image with background suppression.3. Exponentially forgetting transform (EFT) is discussed in detail in this paper, as an efficient recursive algorithm .to compute time-frequency distribution. In this approach, instead of excluding the old samples, their importance is diminished by using a special computational window, thus recursive operations can be introduced which incorporate knowledge of the time-frequency distribution from previous data blocks into the current estimate and greatly increase the computation efficiency. Under its analysis, we propose the modified version, which has the simplest recursive computation structure. The performance of EFT is investigated, which indicates that time-frequency distributions using single-sided window could not accurately trace the variation of the instantaneous frequency, since their performance depend only on the history of the signal, so they are biased frequency estimator. The excursion of instantaneous frequency representation will be resulted when EFT is applied to signals with rapidly varying frequency contents.4. The double-sided exponentially forgetting transform (DSEFT) is also presented which offers better time-frequency resolution. Compared with other forms of time-frequency representation, DSEFT is highly computational efficient. Analysis shows that DSEFT is superior to traditional exponential forgetting transform as an instantaneous frequency estimator. The bias and the mean square deviation of the estimator are much less than that of the previous one. An
引文
[1] Sayeed A M, Jones D L. Optimal kernels for Wigner-Ville spectral estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-94. 1994, 4:297-300.
    [2] Ristic B, Boashash B. Kernel design for time-frequency signal analysis using the Radon transform. IEEE Transactions on Signal Processing. 1993,41(5):996- 2008.
    [3] Zou Hong, Bao Zheng. An adaptive-kernel design method based on ambiguity domain. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. 1998,197-200.
    [4] Chassande-Mottin, E, Auger F, Flandrin P. Supervised time-frequency reassignment. International Symposium on Time-Frequency and Time-Scale Analysis. 1996, 517 - 520.
    [5] Djurovic I, Stankovic L. A reassignment based method for time-frequency representation. The 6th IEEE International Conference on Electronics, Circuits and Systems. 1999, 3:1357 - 1360.
    [6] Auger F, Flandrin P. The why and how of time-frequency reassignment. International Symposium on Time-Frequency and Time-Scale Analysis. 1994, 197 - 200.
    [7] Barkat B, Boashash B, Zoubir A M. Polynomial Wigner-Ville distribution for the analysis of polynomial FM signals: a performance study. Proceedings of 13th International Conference on.Digital Signal Processing. 1997, 1:161-164.
    [8] Djeddi M, Benidir M. Robust polynomial Wigner-Ville distribution for the analysis of polynomial phase signals in /spl alphaAstable noise. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'04. 2004, 2:613-616.
    [9] Stankovic L, Stankovic S, Djurovic I. An architecture for realization of the cross-terms free polynomial Wigner-Ville distribution. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97. 1997, 3:2053 -2056.
    [10] Stankovic L. On the realization of the polynomial Wigner-Ville distribution for multicomponent signals. IEEE Signal Processing Letters. 1998, 5:157-159.
    [11] Guo Hanwei, Liang Diannong. A novel polynomial Wigner-Ville distribution kernel. 6th International Conference on Signal Processing. 2002, 1:137-138.
    [12] Barkat B, Boashash B. Design of higher order polynomial Wigner-Ville distributions. IEEE Transactions on Signal Processing. 1999,47(9):2608 - 2611.
    [13] Boashash B, O'Shea, P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Transactions on Signal Processing. 1994, 42(1):216 - 220.
    [14] De Luigi C, Moreau E. Wigner-Ville and polynomial Wigner-Ville transforms in the
     estimation of nonlinear FM signal parameters. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '02. 2002,2:1433 - 1436.
    
    [15] Barkat B, Boashash B, Zoubir A M. Polynomial Wigner-Ville distribution for the analysis of polynomial FM signals: a performance study. 13th International Conference on Digital Signal Processing Proceedings. 1997, 1:161 - 164.
    [16] Fonollosa J R, Nikias C L. A new positive time-frequency distribution. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-94. 1994, 4:301-304.
    [17] Nickel R M, Tzu-Hsien Sang, Williams W J. A new signal adaptive approach to positive time-frequency distributions with suppressed interference terms. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. 1998, 3:1777-1780.
    [18] Francos A, Porat M. Analysis and synthesis of multicomponent signals using positive time-frequency distributions. IEEE Transactions on Signal Processing. 1999, 47(2): 493 - 504.
    [19] Chen V C, Shie Qian. Joint time-frequency transform for radar range-Doppler imaging. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2):486 - 499.
    [20] Pitton J W, Atlas L E, Loughlin P J. Applications of positive time-frequency distributions to speech processing. IEEE Transactions on Speech and Audio Processing. 1994,2(4):554 - 566.
    [21] Barbarossa S, Scaglione A. Adaptive time-varying cancellation of wideband interferences in spread-spectrum communications based on time-frequency distributions. IEEE Transactions on Signal Processing, 1999, 47(4):957 - 965.
    [22] Steeghs P, Drijkoningen G. Time-frequency analysis of seismic reflection signals. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-96. 1996, 5:2972-2975.
    [23] Lihe Zou, Lin Yin, Spatial-temporal spectral analysis by SVD of signal matrix. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '87. 1987, 12:2332-2335.
    [24] Friedlander B, Weiss A J. Direction finding for wide-band signals using an interpolated array. IEEE Transactions on Signal Processing. 1993, 41(4): 1618 - 1634.
    [25] Krim H, Viberg M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 14(4):67-94.
    [26] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE. 1992, 80(4):520 - 538.
    [27] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proceedings of the IEEE. 1992, 80(4):540 - 568.
    [28] Reina G, Porat B. Comparative performance analysis of two algorithms for instantaneous frequency estimation. 8th IEEE Signal Processing Workshop on Statistical Signal and Array
     Processing. 1996,448-451.
    
    [29] Lovell B C, Williamson R C. The statistical performance of some instantaneous frequency estimators. IEEE Transactions on Signal Processing. 1992,40(7):1708-1723.
    [30] Peleg S, Porat B, Friedlander B. The achievable accuracy in estimating the instantaneous phase and frequency of a constant amplitude signal. IEEE Transactions on Signal Processing. 1993, 41(6):2216-2224.
    [31] Chaparro L F, Suleesathira R, Akan A. Instantaneous frequency estimation using discrete evolutionary transform for jammer excision. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2001, 6:3525-3528.
    [32] Boashash B, O'Shea P, Ristic B. Statistical/computational comparison of some estimators for instantaneous frequency. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1991,5:3193-3196.
    [33] Cohen L, Lee C. Standard deviation of instantaneous frequency. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1989,4:2238-2241.
    [34] Picinbono B. Some remarks on instantaneous amplitude and frequency of signals. IEEE International Symposium on Time-Frequency and Time-Scale Analysis. 1998, 293 - 300.
    [35] Katkovnik V. A new form of the Fourier transform for time-varying frequency estimation. International Symposium on Signals, Systems, and Electronics. 1995, 179-182.
    [36] Picinbono B. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing. 1997,45(3):552-560.
    [37] Rao P, Taylor F J. Estimation of instantaneous frequency using the discrete Wigner distribution. Electronics Letters. 1990, 246-248.
    [38] Katkovnik V, Stankovic L. Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Transactions on Signal Processing. 2001, 46(9):2315-2325.
    [39] Stankovic L, Katkovnik V. Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width. IEEE Signal Processing Letters. 1998, 5(9):224:227.
    [40] White L V, Boashash B. On estimating the instantaneous frequency of a Gaussian random signal by use of the Wigner-Ville distribution. IEEE Transactions on Acoustics, Speech and Signal Processing. 1988, 36(3):417-420.
    [41] Djurovic I, Stankovic L. Robust Wigner distribution with application to the instantaneous frequency estimation. IEEE Transactions on Signal Processing. 2001,49(12):2985-2993.
    [42] Tacer B, Loughlin P J. Instantaneous frequency and time-frequency distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1995, 2:1013-1016.
    [43] Ivanovic V N, Dakovic M, Stankovic L. Performance of quadratic time-frequency
     distributions as instantaneous frequency estimators. IEEE Transactions on Signal Processing. 2003, 51(l):77-89.
    
    [44] Saso Tomazic. On Short-time Fourier Transform with Single-sided Exponential Window. Signal processing. 1996, 55(4):141- 148.
    [45] 陈砚圃,张介秋,卞正中.一种新的联合时频分析方法.通信学报.2001,22(1):7-11.
    [46] Tomazic S, Znidar S. A Fast Recursive STFT Algorithm. Electrotechnical Conference. 1996, 2:1025- 1028.
    [47] W.Chen. An efficient Recursive Algorithm for Time-Varying Fourier Transform. IEEE signal processing. 1993, 41(7):2488-2490.
    [48] T R Bitmead. On Recursive Discrete Fourier Transform. IEEE Trans Acoust Speech Signal processing. 1987,30:319-322.
    [49] GH.Hostetter. Recursive Disscrete Fourier Transformation. IEEE Acoust Speech signal processing. 1980,28:184-190.
    [50] M G Amin. Computationally Lag-Invariant Recursive Spectrum Estimators. IEEE trans Acoust Speech signal processing. 1987, 35(12):1713-1723.
    [51] Gene H Hostetter. Recursive Discrete Fourier Transform. IEEE Transaction on Acoustics, Speech, and Signal Processing. 1980, 28(2): 184- 190.
    [52] Swami A, Mendel J M. Cumulant-based approach to the harmonic retrieval problem. International Conference on Acoustics, Speech, and Signal Processing, ICASSP-88. 1988, 4:2264-2267.
    [53] Porat B, Friedlander B. Direction finding algorithms based on high-order statistics. IEEE Transactions on Signal Processing. 1991, 39(9):2016 - 2024.
    [54] Porat B, Friedlander B. Direction finding algorithms based on high-order statistics. International Conference on Acoustics, Speech, and Signal Processing. 1990, 5:2675 -2678.
    [55] Dogan M.C, Mendel J M. Applications of cumulants to array processing .1. Aperture extension and array calibration, IEEE Transactions on Signal Processing. 1995,43(5): 1200 - 1216.
    [56] Dogan M.C, Mendel J M. Applications of cumulants to array processing. II. Non-Gaussian noise suppression. IEEE Transactions on Signal Processing. 1995,43(7): 1663 - 1676.
    [57] Gonen E, Mendel J M. Applications of cumulants to array processing. III. Blind beamforming for coherent signals. IEEE Transactions on Signal Processing. 1997, 45(9):2252 - 2264.
    [58] Gonen E, Dogan M C, Mendel J M. Applications of cumulants to array processing: direction-finding in coherent signal. Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers. 1994, 1:633 - 637.
    [59] Jianxun Li, Zheng Bao. Maximum likelihood DOA estimation in cyclic cumulant domains. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. 1999, 336 -
     339.
    [6
    
    [60] Charge P, Yide Wang, Saillard J. An extended cyclic MUSIC algorithm. IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '02). 2002, 3: 3025-3028.
    [61] Charge P, Yide Wang, Saillard J. An extended cyclic MUSIC algorithm. IEEE Transactions on Signal Processing. 2003, 51 (7): 1695-1701.
    [62] Burns P, Zhi Ding. Robustification of cyclostationary array processing techniques. International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95. 1995, 3: 1589-1592.
    [63] 汪仪林,殷勤业,金梁.利用修正的Cyclic-SSF对宽带信号波达方向的估计.西安交通大学学报.1998,32(9):24-27.
    [64] 汪仪林,殷勤业,金梁.利用信号的循环平稳特性进行相干源的波达方向估计.电子学报.1999,27(9):86-89.
    [65] 金梁,姚敏立,殷勤业.宽带循环平稳信号的二维空间谱估计.通信学报.2000,21(3):8-11.
    [66] Schell S V. Performance analysis of the cyclic MUSIC method of direction estimation for cyclostationary signals. IEEE Transactions on Signal Processing. 1994, 42(11): 3043-3050.
    [67] Yupeng Chen, Chaohuan Hou. High resolution adaptive bearing estimation using a complex-weighted neural network. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-92. 1992, 2:317-320.
    [68] Hirari M, Gotoh K, Hayakawa M. DOA estimation of distributed sources using neural networks. Fourth International Conference on Signal Processing Proceedings, ICSP-98. 1998, 1: 335-338.
    [69] Jouny I I, Amin M G. Direction of arrival estimation using wavelet based beam-space MUSIC. IEEE International Symposium on Antennas and Propagation Society. 1997, 2: 1032-1035.
    [70] 金梁,殷勤业,蒋伯峰.宽带谱相关时空DOA矩阵方法.通信学报.2001,22(7):26-31.
    [71] 金梁,殷勤业.时空DOA矩阵方法.电子学报.2000,28(6):8-11.
    [72] 金梁,殷勤业.时空DOA矩阵方法的分析与推广.电子学报.2001,29(3):300-303.
    [73] 金梁,殷勤业,蒋伯峰.宽带谱相关时空DOA矩阵方法.通信学报.2001,22(7):26-31.
    [74] 金梁,殷勤业.广义谱相关子空间拟合DOA估计原理.电子学报.2000,28(1):60-63.
    [75] 金梁,殷勤业.时频子空间拟合波达方向估计.电子学报.2001,29(1):71-74.
    [76] Yimin Zhang, Weifeng Ma, Amin M G. Subspace analysis of spatial time-frequency distribution matrices. IEEE Transactions on Signal Processing. 2001, 49(4): 747-759.
    [77] Gershman A B, Amin M G. Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions. IEEE Signal Processing Letters. 2000, 7(6):152-155.
    
    [78] Amin M G, Yimin Zhang. Spatial time-frequency distributions and their applications. Sixth International Symposium on Signal Processing and its Applications. 2001, 1:254 - 255.
    [79] Gershman A B, Amin M G. Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions. IEEE Signal Processing Letters. 2000, 7(6): 152 - 155.
    [80] Gershman A B, Amin M G. Coherent wideband DOA estimation of multiple FM signals using spatial time-frequency distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000, 5:3065 - 3068.
    [81] Amin M G, Belouchrani A. Blind source separation using the spatial ambiguity functions. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. 1998,413-416.
    [82] Zhang Y, Amin M G. Blind separation of sources based on their time-frequency signatures. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '00. 2000,5:3132-3135.
    [83] Giulieri L, Thirion-Moreau N, Arques P Y. Blind sources separation based on bilinear time-frequency representations: a performance analysis. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2002. 1649- 1652.
    [84] Belouchrani A, Abed-Meraim K, Cardoso, A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing. 1997,45(2):434 - 444.
    [85] Fevotte C, Doncarli C. Two contributions to blind source separation using time-frequency distributions. IEEE Signal Processing Letters. 2004, 11(3):386 - 389.
    [86] Belouchrani A, Amin M G. Blind source separation using time-frequency distributions: algorithm and asymptotic performance. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1997, 5:3469 - 3472.
    [87] Belouchrani A, Amin M G. Time-frequency MUSIC. IEEE Signal Processing Letters. 1999, 6(5):109-110.
    [88] Zhang Y, Amin, M.G. Beamspace time-frequency MUSIC with application to airborne antenna arrays. Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on, Volume: 1 , 1-4 Nov. 1998, 838 - 841 vol.1
    [89] Lemma A N, van der Veen. Analysis of joint angle-frequency estimation using ESPRIT. IEEE Transactions on Signal Processing. 2003, 51(5): 1264 - 1283.
    [90] Hassanien A, Gershman A B, Amin M G. Time-frequency ESPRIT for direction-of-arrival estimation of chirp signals. Sensor Array and Multichannel Signal Processing Workshop Proceedings. 2002, 337 - 341.
    [91] Qingtai Wang; Changqi Wu. A high reliability DOA estimation method - TF-ESPRIT method. 6th International Conference on Signal Processing. 2002, 1:374 - 377.
    [92] Macleod, M.D. Fast nearly ML estimation of the parameters of real or complex single tones or
     resolved multiple tones. IEEE Transactions on Signal Processing. 1998, 46(1):141-148.
    
    [93] Liang Jin, QinYe In, WenJie Wang. Time-frequency signal subspace fitting method for direction-of-arrival estimation. IEEE International Symposium on Circuits and Systems, 2000, 3:375-378.
    [94] Aigang Feng, Zheng Zhao, Qinye Yin. Wideband direction-of-arrival estimation using fast chirplet-based adaptive signal decomposition algorithm. 54th IEEE Vehicular Technology Conference. 2001, 3:1432 - 1436.
    [95] Bultan A, Arikan O. Parallelized matching pursuit algorithm for the four-parameter chirplet decomposition. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. 1998,421 -424.
    [96] WangLing, Chen TianQi. Frequency and DOA estimation of LFM in fractional Fourier domain. IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions. 2002, 2:1029 - 1033.
    [97] Ozaktas H M, Erkaya N, Kutay M A. Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class. IEEE Signal Processing Letters. 1996, 3(2):40-41.
    [98] Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Transactions on Communications. 2001, 49(6):1011 -1020.
    [99] Stankovic L, Alieva T, Bastiaans M J. Fractional-Fourier-domain weighted Wigner distribution. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing. 2001,321-324.
    [100] Shinde S, Gadre V M. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Transactions on Signal Processing. 2001,49(11):2545 - 2548.
    [101] SooChang Pei, MinHung Yeh, ChienCheng Tseng. Discrete fractional Fourier transform based on orthogonal projections. IEEE Transactions on Signal Processing. 1999, 47(5): 1335 - 1348.
    [102] Ozaktas H M, Arikan O, Kutay M A. Bozdagt G. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing. 1996, 44(9):2141 - 2150.
    [103] 肖先赐.阵列信号处理在电子对抗中的应用:过去、现在和未来.电子对抗.2004,94:1-7
    [104] Doron M A, Weiss A J. On focusing matrices for wide-band array processing. IEEE Transactions on Signal Processing. 1992, 40(6): 1295 - 1302.
    [105] di Claudio, E D Parisi. WAVES: weighted average of signal subspaces for robust wideband direction finding. IEEE Transactions on Signal Processing. 2001,49(10):2179- 2191.
    [106] Guaning Su, Morf M. The signal subspace approach for multiple wide-band emitter location. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1983, 31(6):1502 - 1522.
    [107] Chandran S, Ibrahim M K. DOA estimation of wide-band signals based on time-frequency
     analysis. IEEE Journal of Oceanic Engineering. 1999, 24(1): 116-121.
    [1
    
    [108] 邹红星,戴琼海.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性.中国科学(E辑),2001,31:348-354.
    [109] Minsheng Wang, Chan A K, Chui C K. Linear frequency-modulated signal detection using Radon-ambiguity transform. IEEE Transactions on Signal Processing. 1998, 46(3): 571-586.
    [110] Amin M G, Belouchrani A, Zhang Y. The spatial ambiguity function and its applications. IEEE Signal Processing Letters. 2000, 7(6): 138-140.
    [111] 徐春光,谢维信.自适应线性核时频信号分析.系统科学与电子技术,2000,22(6):22-24.
    [112] Ma Ning, V ray D. Time-frequency representation of Multicomponent Chirp Signals. Signal Processing, 1997, 56: 149-155.
    [113] Ma Ning, Vray D. Time-Frequency Representation of Multi-component Chirp Signals. Signal Processing, 1997, 56: 149-155.
    [114] 邹红星,李衍达.基于时频面旋转的线性调频信号增强.清华大学学报(自然科学版).1999,39(7):103-106.
    [115] Junfeng Wang, Xiang Yan, Costa A H. A weighted decomposition of the Wigner distribution. roceedings of the 11th IEEE Signal Processing Workshop onStatistical Signal Processing. 2001, 337-340.
    [116] Shie Qian, Dapang Chen. Decomposition of the Wigner-Ville distribution and time-frequency distribution series. IEEE Transactions on Signal Processing. 42(10): 2836-2842.
    [117] Kayhan A S, Amin M G. Spatial evolutionary spectrum for DOA estimation and blind signal separation. IEEE Transactions on Signal Processing. 2000, 48(3): 791-798.
    [118] Giulieri L, Thirion-Moreau N, Arques P Y. Blind sources separation based on quadratic time-frequency representations: a method without pre-whitening. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '03. 2003, 5: 289-292.
    [119] Farina D, Fevotte C, Doncarli C. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Transactions on Biomedical Engineering. 2004, 51 (9): 1555-1567.
    [120] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Processing. 1998, 46(11): 2888-2897.
    [121] Fevotte C, Doncarli C. Two contributions to blind source separation using time-frequency distributions. IEEE Signal Processing Letters. 2004, 11(3): 386-389.
    [122] Belouchrani A, Abed-Meraim K, Amin M G. Blind separation of nonstationary sources. IEEE Signal Processing Letters. 2004, 11(7): 605-608.
    [123] Stankovic L. Analysis of noise in time-frequency distributions. IEEE Signal Processing Letters. 2002, 9(9): 286-289.
    
    [124] Wolfgang Martin, Patrick Flandrin. Wigner-Ville Sperctral Analysis of Nonstationary Processes. IEEE transaction on Acoustics, Speech, and Signal Processing. 1985,1461-1470.
    [125] Yimin Zhang, Amin M G. Spatial averaging of time-frequency distributions for signal recovery in uniform linear arrays. IEEE Transactions on Signal Processing. 2000, 48(10):2892 -2902.
    [126] Yimin Zhang, Amin M G Spatial averaging of time-frequency distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '99. 1999,3:1337-1340.
    [127] T.R.Bitmead. On Recursive Discrete Fourier Transform. IEEE Trans Acoust Speech Signal processing. Vol.30,1982,319-322.
    [128] GH.Hostetter. Recursive Disscrete Fourier Transformation. IEEE Acoust Speech signal processing. Vol.28,1980,184-190.
    [129] M.GAmin Computationally Lag-Invariant Recursive Spectrum Estimators. IEEE trans Acoust Speech signal processing. Vol.35(12), 1987,1713-1723.
    [130] Tomazic S, Znidar S. A Fast Recursive STFT Algorithm. Electrotechnical Conference. 1996, 2:1025-1028.
    [131] Saso Tomazic. On Short-time Fourier Transform with Single-sided Exponential Window. Signal processing. 1996, 55(4): 141- 148.
    [132] 陈砚圃,张介秋,卞正中.一种新的联合时频分析方法.通信学报.2001,22(1):7-11.
    [133] Weifeng Mu, Amin M G, Yimin Zhang. Bilinear signal synthesis in array processing. IEEE Transactions on Signal Processing. 2003, 51(l):90- 100.
    [134] Amin M G, Weifeng Mu, Yimin Zhang. Improved time-frequency synthesis using array manifolds. Sixth International, Symposium on Signal Processing and its Appications. 2001, 1: 158-161.
    [135] Amin M G, Weifeng Mu, Yimin Zhang. Spatial and time-frequency signature estimation of nonstationary sources. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing. 2001, 313-316.
    [136] Cirillo L A, Amin M G. Auto-term detection using time-frequency array processing. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003, 6: 465-468.
    [137] Belouchrani A, Amin M G, Abed-Meraim K. Direction finding in correlated noise fields based on joint block-diagonalization of spatio-temporal correlation matrices. IEEE Signal Processing Letters. 1997,4(9):266- 268.
    [138] Weifeng Mu, Amin M G. SNR analysis of time-frequency distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000, 2:645-648.
    [139] Gershman A B, Pesavento M, Amin M G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays. IEEE Transactions on Signal Processing. 2001,
     49(12):2924-2934.
    
    [140] Zhang Y, Amin M G, Obeidat B A. Direction finding using spatial polarimetric time-frequency distributions. Seventh International Symposium on Signal Processing and Its Applications. 2003, 1:133-136.
    [141] Chenshu Wang, Amin M G. Zero-tracking time-frequency distributions. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97. 1997, 3:2021 -2024.
    [142] Waldo D J, Chitrapu P R. Crossterm reduction by a nonlinear combination of time-frequency signal representations. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. 1992, 253 - 256.
    [143] Cirillo L A, Zoubir A M, Ning Ma. Automatic classification of auto- and cross-terms of time-frequency distributions in antenna arrays. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2002, 2:1445 - 1448.
    [144] Friedman D H. Detection and frequency estimation of narrow-band signals by means of the instantaneous-frequency distribution (IFD). Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling. 1988, 71-76.
    [145] Lovell B C, Williamson R C, Boashash B. The relationship between instantaneous frequency and time-frequency representations. IEEE Transactions on Signal Processing. 41(3):1458-1461.
    [146] Ristic B, Boashash B. Instantaneous frequency estimation of quadratic and cubic FM signals using the cross polynomial Wigner-Ville distribution. IEEE Transactions on Signal Processing. 1996, 44(6): 1549- 1553.
    [147] Ristic B, Boashash B. Instantaneous frequency estimation of quadratic and cubic FM signals using the cross polynomial Wigner-Ville distribution. IEEE Transactions on Signal Processing. 1996,44(6):1549-1553.
    [148] Ristic B, Boashash B. Use of the cross polynomial Wigner-Ville distribution for instantaneous frequency estimation of non-linear FM signals. IEEE International Symposium on Time-Frequency and Time-Scale Analysis. 1994,252 - 255.
    [149] Morelande M, Senadji B, Boashash B. Complex-lag polynomial Wigner-Ville distribution. Proceedings of IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications. 1997, 1:43-46.
    [150] TzuHsien Sang, Williams W J. A new energy distribution on the time-frequency plane. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis. 1998,313-316.
    [151] Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Transactions on Signal Processing,. 2001. 49(10):2232-2239.
    [152] Hlawatsch F, Kozek W. Second-order time-frequency synthesis of nonstationary random
     processes. IEEE Transactions on Information Theory. 1995, 41(1):255 - 267.
    
    [153] Frost O. High resolution 2-D spectral analysis at low SNR. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-80. 1980, 5:580- 583.
    [154] Frost O, Sullivan T. High-resolution two-dimensional spectral analysis. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-79. 4:673 - 676.
    [155] L Cohen. Time-frequency distributions-a review. Proc. IEEE 1989, 77(7):941:981.
    [156] Katkovnik V. A new form of the Fourier transform for time-varying frequency estimation. International Symposium on Signals, Systems, and Electronics. 1995, 179-182.
    [157] Czerw inski R N, Jones D L. Adaptive Short-Time Fourier Analysis. IEEE Signal Processing Letters, 1997, 4(2):42-45.
    [158] Kwok H K C, Jones D L. Instantaneous frequency estimation using an adaptive short-time Fourier transform. Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. 1996, 1:543-547.
    [159] Boashash B, O'Shea P. Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency. IEEE Transactions on Signal Processing. 1993, 41(3):1439 - 1445.
    [160] Durak L, Arikan O. Short-time Fourier transform: two fundamental properties and an optimal implementation. IEEE Transactions on Signal Processing. 2003, 51(5):1231 - 1242.
    [161] Hagiwara m, nakagawa m. Automatic estimation of an input signal type. Proceedings of IEEE GLOBECOM'87, 1987:254-258.
    [162] Kay S. Statistically/computationally efficient frequency estimation. International Conference on Acoustics, Speech, and Signal Processing. 1988, 4:2292-2295.
    [163] So H C, Chan Y T, Ma Q. Comparison of various periodograms for single tone detection and frequency estimation. IEEE International Symposium on Circuits and Systems. 1997, 4:2529-2532.
    [164] So H C, Chan Y T, Ma Q. Comparison of various periodograms for sinusoid detection and frequency estimation. IEEE Transactions on Aerospace and Electronic Systems. 1999, 945-952.
    [165] de Bastos. A new method for estimating the instantaneous frequency based on maximum likelihood. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000, 2:677-680.
    [166] Maranda B H. On the false alarm probability for an overlapped FFT processor. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(4): 1452-1456.
    [167] Djurovic I, Stankoic L. Influence of high noise on the instantaneous frequency estimation using quadratic time-frequency distributions. IEEE Signal Processing Letters. 2000, 7(11): 317-319.
    [168] Rife D, Boorstyn R. Single tone parameter estimation from discrete-time observations. IEEE
     Transactions on Information Theory. 1974, 20(5):591 - 598.
    
    [169] Mammone R J, Rothaker R J. Estimation of carrier frequency .modulation type and bit rate of an unknown modulated signal. Proceeding of ICC97. 1997:1006-1012.
    [170] Soliman S S, Hsue S Z. Signal classification using statistical moments. IEEE Trans Commun. 1994,40(5) :908-916 .
    [171] Nikias C, L Mendel. Signal processing with higher-order spectra. IEEE Signal Processing Magazine. 1993, 10(7): 10-37.
    [172] Nikias C L, Petropulu A P. Higher-order spectra analysis A nonlinear signal processing framework. New Jersy; Prentice Hal 1, 1993.
    [173] K. C Ho, Y Y Chan. Modulation identification of digital signals by the wavelet transform. IEE Pro-Radar. Sonar Navig. 2000, 147(4): 169-176.
    [174] Chan Y T, Plews J W, HO K C. Symbol rate estimation by the wavelet transform. Proceedings of IEEE ISCAS'97, Hong Kong. 1997:177-181.
    [175] Chan Y T, Plews J W, Wu Q. Optimum wavelet design for transient detection. Proceedings of IEEE Seventh SP Workshop on statistical signal and array processing. 1994, 255-258.
    [176] Ta Nhi P. Wavelet packet approach to radio signal modulation classification. ICCS'94. 1(1): 210-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700