基于多孔介质内燃烧的微小型化学推进系统的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了发展具有高分辨率推力和高比冲的微小型化学推进系统,本文采用理论分析和数值模拟的方法,对微推进系统中单个部件内的流动与燃烧过程以及整个系统的燃烧推进过程进行了研究。全文包括四个方面的工作:微通道内低速气体流动和微喷管内超声速气体流动的数值研究、微腔体内预混燃烧的数值研究、惰性多孔介质内低速过滤燃烧的理论与数值研究以及微小型化学推进系统工作循环的数值模拟与性能分析。
     采用不同的滑移连续介质模型,对微通道中低马赫数的气体流动进行了二维和三维数值模拟,研究了通道外形、进出口压比和出口压力等对流场的影响,并采用小扰动方法进行了相应的理论分析。详细讨论了微通道流的可压缩效应、稀薄效应、热蠕动效应、低雷诺数效应、三维效应以及不同滑移条件对计算结果的影响,利用实验结果和DSMC方法验证滑移连续介质模型在不同努森数区域的适用性,并总结出努森数和雷诺数是微通道流的特征参数。
     基于无滑移和有滑移的连续介质模型,对微尺度拉伐尔喷管内的冷态流场进行了二维和三维数值模拟,利用DSMC方法验证微喷管流中的连续介质模型。重点分析微喷管流的低雷诺数效应和三维效应,并研究了喷管外形和工作条件等对流场结构和推进性能的影响。研究表明,雷诺数是表征微喷管推进性能的特征参数,喷管的微型化有助于实现高分辨率推力,而提高工作压力可以降低微喷管流的粘性损失。
     采用良搅拌反应器模型和详细的化学反应机理(GRI-Mech 3.0),对微小空腔内气体预混燃烧过程进行了零维数值模拟,从微小空腔内稳定燃烧的临界半径、临界点火压力以及燃气流率范围着手,分析了燃气成分和环境热损等因素对微尺度燃烧的点火与熄火特性的影响。
     基于一维瞬态反应流模型和一步总包反应机理,对惰性堆积床内低速过滤贫燃过程进行了理论研究,因次分析系统的热输运特性和特征尺度并推导出修正的单温度模型。采用准稳态模型的特征值方法,对充分发展后系统温度分布进行理论分析;基于准稳态的修正单温度模型,考虑变热物性和变输运参数以及热损效应,采用新型火焰区摄动理论和全域温度直接求解法,构建一套完善的耦合封闭的解析模型,并预测燃烧波波速、火焰传播速率和火焰最高温度等燃烧特性参数。
To develop a micro/mini- chemical propulsion system with a low thrust and a high specific impulse, this work seeks to elucidate the underlying characteristics unique to the flow and combustion process in each micro- component of the propulsion system and investigate its whole operation cycle of combustion and propulsion analytically and numerically. Four major aspects are contained, the numerical investigation of low-velocity gaseous flow in micro-channels and supersonic cold flow in micro-nozzles, the numerical investigation of premixed gas combustion in micro-chambers, the analytical and numerical investigation of low-velocity gas filtration combustion in porous inert media, and the modeling of the operation cycle of a micro/mini- chemical propulsion system and its performance predictions. Two-dimensional and three-dimensional modeling are performed to investigate the low Mach number gaseous flows in micro-channels with variations of aspect ratios, inlet to outlet pressure ratios and out pressures by using different continuum-based slip models. Theoretical solutions based on perturbation expansions of the Navier-Stokes equations are developed under different order slip conditions. The influences of the compressibility effects, rarefaction effects, thermal creep effects, low Reynolds number effects, three-dimensional effects and different slip conditions on the computational results are discussed in detail. The validity of slip models are examined by the corresponding experiments and the DSMC method under different Knudsen numbers. Moreover, both of the Knudsen number and the Reynolds number have been identified as key parameters of micro-channel flow.
    Two-dimensional and three-dimensional modeling are performed to investigate the cold flows in micro Laval nozzle by using continuum-based no-slip and slip models, respectively. The validity of the continuum models has been examined by the DSMC method. The low Reynolds number effects and three-dimensional effects of the micro-nozzle flow are emphasized in this work. Moreover, the influences of nozzle geometries and operating conditions on the flow field and thrust performance are discussed. Simulations have shown that the Reynolds number is the key parameter governing the thrust performance. Extremely low thrusts can be achieved in a micro-nozzle, and the strong viscous losses can be mitigated by running at higher chamber pressures.
    A perfectly stirred reactor model and a comprehensive detailed chemical reaction mechanism (GRI-Mech 3.0 releases) are adopted in the zero-dimensional modeling of the premixed gas combustion in micro-chambers. The ignition and extinction characteristics of micro-combustion are analyzed with variations of fuel/oxidant mixtures and external heat loss coefficients. The critical chamber radius, critical ignition pressure and ranges of mass flow rates for stable combustion are obtained, too.
    The low-velocity filtration combustion of lean methane-air mixtures occurring in inert
引文
1. R. Fleeter. Microspacecraft. Reston(USA): The Edge City Press. 1995
    
    2. A.P. London. A systems study of propulsion technologies for orbit and attitude control of microspacecraft. Massachusetts Institute of Technology, Master's Thesis, 1996.
    
    3. A.H. Cpstein. The Inevitability of Small. Aerospace American 38: 30-37, March, 2000.
    
    4. M. Caceres, The emerging nanosatellite market. Aerospace America, 16-18, Feb, 2001.
    
    5. D. Collins, K. Kukkonen and S. Venneri. Miniature, low-cost, highly autonomous spacecraft-a focus for the new millennium. In 46th International Astronautical Congress. IAF-96-U.2.06, 1996.
    
    6. J. Mueller. Thruster options for microspacecraft: a review and evaluation of existing hardware and emerging technologies. In 33rd AIAA/ASME/SAE/ASEE/ Joint Propulsion Conference and Exhibit. AIAA 97-3058, 1997.
    
    7. J. Muller, C. Marrese, J. Polk, et al. An overview of MEMS-based micropropulsion developments at JPL. Acta Astronautics, 52(9-12): 881-895, 2003.
    
    8. G. Sutherland and M. Maes. A review of microrocket technology: 10~(-6) to 1 lbf thrust. Journal of Spacecraft and Rockets, 3(8): 1153-1163, 1966.
    
    9. S.W. Janson, H. Helvajian, S.T. Amimoto, et al. Microtechnology for space systems. Proceedings of IEEE Aerospace Conference, 1:409-418, 1998.
    
    10. C. Rossi, S. Orieux, B. Larangot, et al. Design, fabrication and modeling of solid propellant. Microrocket-application to micropropulsion. Sensors Actuators, 99: 125-133, 2002.
    
    11. R.L. Bayt. Analysis, fabrication and testing of MEMS-based micropropulsion system. Massachusetts Institute of Technology, PhDs Thesis, Cambridge, MA, USA, 1999.
    
    12. J.R. Hammel. Development of an unstructured 3D Direct Simulation Monte Carlo/Particle-in-cell code and the simulation of microthruster flow. Worcester Polytechnic Institute, Master's thesis, 2002.
    
    13. XY Ye, F Tang, HQ Ding, et al. Study of a vaporizing water micro-thruster. Sensors and Actuator A-Physical, 89(1-2): 159-165, 2001.
    
    14. MR Wang and ZX Li. Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures. Microfluidics and Nanofluidics, 1:62-70, 2004.
    
    15. D. Teasdate. Solid propellant microrockets. Berkeley, Master's thesis, 2000.
    
    16. H. David, J.R. Lewis, S.W. Janson, et al. Digital micropropulsion. Sensors and Actuators, 80: 143-154,2000.
    
    17. D.L. Hitt, C.M. Zakrzwski, M.A. Thomas. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struck, 10: 1163-1375, 2001.
    
    18. R.J. Cassady and W.A. Hoskins. A micro pulsed plasma thruster(PPT) for the "Dawgstar" spacecraft. IEEE, 2000.
    
    19. http://www.cast.ac.en/cbw/GJTK/1998/199807/7.HTM
    20. D.R. Bromaghim, J.R. LeDuc, R.M. Salasovich, et al. Review of the electric propulsion space experiment (ESEX) program. Journal of Propulsion and Power, 18(4): 723-730, 2002.
    21. JJ Xiong, ZY Zhou, et al. A colloid micro-thruster system. Microelectronic Engineering, 61-62: 1031-1037, 2002.
    22.毛根旺,韩先伟,杨涓等.电推进研究的技术状态和发展前景.推进技术,21(5):1-5,2000.
    23.尤政,张高飞.基于MEMS的微推进系统的研究现状与展望.微细加工技术,2004(1):1-8,2004.
    24. M. Gad-el-Hak. The fluid mechanics of microdevices-the freeman scholar lecture. Journal of Fluids Engineering. ASME, New York 121: 5-33, 1999.
    25. M. Gad-el-Hak. The MEMS handbook. Boca Raton: CRC Press, 2002.
    26. R.T. Howe, R.S. Muller, K.J. Gabriel, et al. Silicon micromechanics: Sensors and actuators on a chip. IEEE Spectrum, 27(7): 29~35, 1990.
    27. J. Bryzek, K. Petersen, W. Mcculley. Micromachines on the march. IEEE Spectrum, 31(5): 20-31, 1994.
    28. W.S. Trimmer. Micromechanics and MEMS, Classic and Seminal Papers to 1990. New York: Wiley-IEEE: 11-45, 1997
    29. M. Knudsen. Die gesetze der molekularstromung und der inneren reibungsstromung der gase durch rohren. Annalen der Physik 28:75-130, 1909.
    30. A.C. Eringen. Simple microfluid. Int. J. Engineering Science, 22:205-217, 1964.
    31. M.I. Flik, B.I. Chio and K.E. Goodson. Heat transfer regimes in microstructures. Transactions of the ASME. Journal of Heat Transfer, 114: 666-674, 1992.
    32. S.A. Schaff and P.L. Chambre. Flow of rarefied gases. Princeton, New Jersey: Princeton University Press, 1961.
    33. G.E. Karniadakis and A. Beskok. Micro Flows-Fundamentals and simulation. New York: Springer-Verlag, 2002.
    34. D.B. Tuckmann and R.F.W. Pease. High-performance heat sinking for VLST. IEEE Electron Device Letters, EDL-2(5): 126-129, 1981
    35. D.B. Tuckmann and R.F.W. Pease. Optimized convective cooling using micro-machined structure. J. Electochemical Society, 129(3):98, 1982
    36. P Wu and W.A. Little. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators. Cryogenics, 5:273-277, 1983.
    37. P Wu and W.A. Little. Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics, 8:415-420, 1983.
    38. J. Pfahler, J. Harley, H. Bau, et al. Liquid transport in micron and sub micron channels. Sensors and Actuators A, 21-23:431-434, 1990.
    39. J. Pfahler, J. Harley, H. Bau, et al. Liquid and gas transport in small channels. Winter Annual Meeting of the ASME, New York, DSC32:149-157, 1990.
    40. S.B. Choi. Friction factors and heat transfer in microtubes. D.E.Thesis. College of Mechanical and Industrial Engineering. Louisianna. University, 1991.
    41. S.B. Choi, R.F. Barron and .R.O. Warrington. Fluid flow and heat transfer in microtubes. Micromechanical Sensors, Actuators, and System. ASME, New York, DSC32: 123-134, 1991.
    
    42. S.A. Tison. Experimental data and theoretical modeling of gas flows through metal capillary leaks. Vacuum, 44: 1171-1175: 1993.
    
    43. J Liu and Y Tai. MEMS for pressure distribution studies of gaseous flows in microchannels. 0-7803-2503-6. IEEE: 209-215, 1995.
    
    44. D Yu, R.O. Warrington, R.F. Barron, et al. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proc. ASME/JSME Thermal Engineering Conference, Hawaii, 1: 523-530, 1994.
    
    45. J.C. Harley, Y.F Huang, H. Bau, et al. Gas Flow in micro-channels. J. Fluid Mech., 284: 257-274, 1995.
    
    46. J.C. Shih, C Ho, J Liu, et al. Monatomic and polyatomic gas flow through uniform microchannels. In 1996 National Heat Transfer Conference. MEMS, Atlanta. GA., DSC59:197-203, 1996.
    
    47. K Pong, C Ho, J Liu, et al. Non-linear pressure distribution in uniform microchannels. In: Application of Microfabrication to Fluid Mechanics. ASME Winter Annual Meeting, Chicago, IL, FED197: 51-56, 1994.
    
    48. E.B. Arkilic, K.S. Breuer and M.A. Schmidt. Gaseous slip flow in microchannels. In: Application of Microfabrication to Fluid Mechanics. ASME Winter Annual Meeting, Chicago, IL, FED197: 57-66, 1994.
    
    49. E.B. Arkilic, M.A. Schmidt and K.S. Breuer. Gaseous slip flow in long microchannels. J. MEMS, 6(2): 167-178,1997.
    
    50. A. Takuto, M.S. Kim, H. Iwai, et al. An experimental investigation of gaseous flow characteristics in microchannels. Proc. of the Int. Conference on Heat and Transport Phenomena in Microscale: 155-161, 2000.
    
    51. S.E. Turner, H Sun, M. Faghri, et al. Local pressure measurement of gaseous flow through microchannels. ASME-Publications-HTD, 364(3): 71-80, 1999.
    
    52. S.E. Turner, H Sun, M. Faghri, et al. Effect of surface roughness on gaseous flow through microchannels. ASME-Publications-HTD, 366(2): 291-298, 2000.
    
    53. W.A. Ebert and E.M. Sparrow. Slip flow in rectangular and annular ducts. Trans. ASME J. Basic Eng., 87: 1018-1024, 1965.
    
    54. A.C. Eringen. Theory of the microfluids. J. Mathematical Analysis and Application, 38: 480-496, 1972.
    
    55. R. Prud'homme, T. Chapman and J. Bowen. Laminar compressible flow in a tube. Applied Scientific Research, 43: 67-74, 1986.
    
    56. H.R. Van den Berg, C.A. Seldam and P. S. Gulik. Compressible laminar flow in a capillary. J. Fluid Mech., 246: 1-20,1993.
    
    57. A. Beskok and G.E. Karniadakis. Simulation of slip-flows in complex micro-geometries. ASME Proceedings DSC40: 355-370, 1992.
    
    58. A. Beskok and GE. Karniadakis. Simulation of heat and momentum transfer in complex micro-geometries. J. Thermophys. Heat Transfer, 8(4): 647-655,1994.
    
    59. A. Beskok, G.E. Karniadakis and W. Timmer. Rarefaction and compressibility effects in gas microflows. J. Fluid Eng., 118:448-456, 1996
    
    60. A. Beskok. Simulations and models of gas flows in microgeometries. Ph.D. thesis, Princeton University, Princeton, New Jersey, 1996.
    61. E.S. Piekos and K.S. Breuer. Numerical modeling of micromechanical devices using the Direct Simulation Monte Carlo Method. J. Fluids Eng., 118: 464-469, 1996.
    62. K.S. Breuer, E.S. Piekos and D.A. Gonzales. DSMC simulations of continuum flows. Presented at AIAA Conference, 1995.
    63. H.P. Kavehpour, M. Faghri and Y. Asako. Effects of compressibility and rarefaction on gaseous flow in microchannel. Numerical Heat Transfer, 32(A): 677-696, 1997.
    64. R.F. Barron, XM Wang, R.O. Warrington, et al. Evaluation of the Eigenvalues for the Graetz problem in slip-flow. Int. J. Heat Mass Transfer, 23(4): 563-574, 1996.
    65. R.F. Barron, XM Wang, and T.A. Ameel. The Graetz problem extended to slip-flow. Int. J. Heat Mass Transfer, 40(8): 1817-1823, 1997.
    66. C.K. Oh, E.S. Oran and R.S. Sinkovits. Computations of high-speed, high Knudsen number microchannel flows. J. of Thermophysics and Heat Transfer, 11(4): 497-505, 1997.
    67. E.S. Oran, C.K. Oh and B. Cybyk. Direct Simulation Monte Carlo: Recent advances and applications, Annu. Rev. Fluid Mech., 30: 403-441, 1998.
    68. Colin S, Lalonde P, Caen R. Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng., 25(3): 23-30, 2004.
    69. Barber R W, Emerson D R. Challenges in modelling gas-phase flow in microchannels: from slip to transition. In Proceeding on CDROM of 3rd Int. Conference on Microchannels and Minichannels. Toronto, Ontario, Canada, ICMM2005 75074: 1-10, 2005.
    70. Hadjiconstantinou N G. Validation of a second-order slip model for transition-regime gaseous flow. In Proceedings of 2nd Int. Conference on Microchannels and Minichannels (ICMM2004). Rochester, New York, USA: 267-271, 2004.
    71.秦丰华,孙德军,尹协远.微管道气体流动的蒙特卡洛直接模拟.计算物理,18(6):507-510,2001.
    72. ZX Li and Wang M R. Similarity of ideal gas flow at different scales. Science in China (Series E), 46(6): 661-670, 2003.
    73.王沫然,李志信.微通道内气体流动的三维效应.工程热物理学报,25(5):840-842,2004.
    74.王沫然,李志信.微纳通道内稠密气体流动和换热的Monte Carlo模拟.中国科学E辑,35(7):708-716,2005.
    75. X Zhu, MD Xin and Q Liao. An analysis for heat transfer between two unsymmetrically heated parallel plates with micro space in slip flow regime. Microscale Thermophys. Engineering, 6(4): 287-302, 2002.
    76.朱恂,辛明道,廖强.滑移流区任意截面微槽道内流动边界条件对流动特性的影响.自然科学进展,12(6):585-589,2002.
    77.朱恂,辛明道,廖强.气体在任意截面形状微尺度槽道中的滑移流动.化工学报,54(7):902-906,2003.
    78.朱恂.速度滑移及温度跳跃区微尺度通道内流动与换热.重庆大学,博士论文,2002.
    79. J Fan, C Shen. Statistical simulation of low-speed rarefied gas flows. Journal of computational Physics, 167:393-412, 2001.
    80. P. Massier, L. Back, M. Noel, et al. Viscous effects on the flow coefficient for a supersonic nozzle. AIAA Journal, 8(3): 605-607, 1970.
    81. G.A. Kuluva and N.M. Hosack. Supersonic nozzle discharge coefficients at low Reynolds numbers.AIAA Jouranl, 9(9): 1876-1877, 1971.
    
    82. D. Rothe. Electron-beam studies of viscous flow in supersonic nozzles. AIAA Journal, 9(5): 804-811, 1971.
    
    83. W. Rae. Some numerical results on viscous low-density nozzle flows in the slender-channel approximation. AIAA Journal, 9(5): 811-821, 1971.
    
    84. T.A. Grisnik, S.P. Smith and L.E. Saltz. Experimental study of low Reynolds number nozzles. In 19~(th) AIAA/DGLR/JSASS International Electric Propulsion Conference. AIAA 87-0992, 1987.
    
    85. S.C. Kim. Calculations of low-Reynolds-number resistojet nozzles. J. Spacecraft and Rockets, 31(4): 259-264, March-April 1994.
    
    86. M. Zelesnik, D. Micci and L. Long. Direct simulation Monte Carlo model for low Reynolds number nozzle flows. J. Propulsion and Power, 10(4): 546-553, 1994.
    
    87. S.W. Jason and H. Helvajian. Batch-fabricated microthruster: initial results. In 32~(nd) AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA 96-2988, 1996.
    
    88. S.W. Jason. Batch-fabricated resistojets: initial results. In International Electric Propulsion Conference. Electric Rocket Propulsion Society IEPC-97-070, 1997.
    
    89. D.H. Lewis, S.W. Janson, R.B. Cohen, et al. Digital Micropropulsion. In MEMS'99 Orlando, FL, IEEE, 1999.
    
    90. J. Mueller, W. Tang, A. Wallace, et al. Design, analysis and fabrication of a vaporizing liquid micro-thruster. In 33~(rd) AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 97-3054, 1997.
    
    91. E.S. Piekos and K.S. Breuer, Numerical modeling of micro-mechanical devices using the Direct Simulation Monte Carlo method. Journal of Fluids Engineering, 118: 464-469, 1996.
    
    92. R.L. Bayt, A.A. Ayon and K.S. Breuer. A performance Evaluation of MEMS-base Micronozzles. 33~(rd) AIAA Joint Propulsion Conference, AIAA paper 97-3169, 1997.
    
    93. R.L. Bayt and K.S. Breuer. Viscous effects in supersonic MEMS-fabricated micronozzles. In: Proceedings of the 3~(rd) ASME Microfluids Symposium, Anaheim, CA: 117-123, 1998.
    
    94. R.L. Bayt and K.S. Breuer. Systems design and performance of hot and cold supersonic microjets. 37~(th) AIAA Joint Propulsion Conference, AIAA paper 2001 -0721, 2001.
    
    95. M.S. Ivanov, G.N. Markelov, A.D. Ketsdver, et al. Numerical study of cold gas micronozzle flows. In 37~(th) Aerospace Sciences Meeting and Exhibit. AIAA 99-0166, 1999.
    
    96. M.S. Ivanov, G.N. Markelov and S.F. Gimelshein. Statistical simulation of reactive rarefied flows: numerical approach and applications. 34~(th) AIAA Joint Propulsion Conference, AIAA paper 98-2669, 1998.
    
    97. G.N. Markelov and M.S. Ivanov. Numerical study of 2D/3D micronozzle Flows. In Proceedings of 22~(nd) Symposium on Rarefied Gas Dynamics, Sydney, Australia, 539-546, 2001.
    
    98. A.A. Alexeenko, R.J. Collins, S.F. Gimelshein, et al. Challenges of three-dimensional modeling of microscale propulsion devices with the DSMC method. In Proceedings of 22~(nd) Symposium on Rarefied Gas Dynamics, Sydney, Australia, 464-471, 2001.
    
    99. Ahsan R. Choudhuri, Benjamin Barid, S. R. Gollahalli, Effects Geometry and Ambient Pressure on Micronozzle flow. 37~(th) AIAA Joint Propulsion Conference, AIAA paper 2001-3331,2001.
    100. Brain Reed, Decomposing Solid Micropropulsion Nozzle Performance Issues. 39~(th) AIAA Joint Propulsion Conference, AIAA paper 2003-0672,2003.
    
    101. J. Kohler, J. Bejhed, H. Kratz, et al. A hybrid cold gas microthruster system for spacecraft. Sensors Actuators A 97-98: 587-598, 2002.
    
    102. T. Hyakutake and K. Yamamoto. Numerical simulation of rarefied plume flow exhausting from a small nozzle. In: AIP Conf. Proc. 663(1): 604-611,2003.
    
    103. 王沫然, 陈泽敬, 李志信. 微喷管内流动和换热的数值模拟与分析. 微纳电子技术, 40(7): 61-64, 2003.
    
    104. Clark T.-C. Nguyen. Micro electro Mechanical Systems Programs at MTO. On DARPA Technology Symposium, 2002
    
    105. A.H. Epstein, et al. Micro turbine generators. Final Technical Report prepared flor MIT Lincoln Laboratory, 1995.
    
    106. A.H. Epstein, et al. MIT-ARO micro-gas turbine generator review. MIT-Army Research Office, Multi-disciplinary University Research Initiative First Annual Program Review, May 1996.
    
    107. A.H. Epstein, et al. Micro gas turbine generators. First Semi-Annual Interim Technical Progress Report on Grant # DAAH04-95-1-0093, January 1996.
    
    108. A.H. Epstein and S.D. Senturia. Macro power from micro machinery. Science, 276: 1211, 1997.
    
    109. A.H. Epstein, S.D. Senturia, G. Anathasuresh, et al. Power MEMS and microengines. In Transducers 97 Chicago: digest of technical papers. 753-756. IEEE, Chicago,III,1997.
    
    110. A. Mehra. Development of a high power density combustion system for a silicon micro gas turbine engine. MIT, PhD Thesis, 2000.
    
    111. A.C. Fernandez-Pello, D. Liepmann, A.P. Pisano, et al. MEMS rotary combustion laboratories. Univ. of California at Berkeley Internet Documents, 2001. http://www.me.berkeley.edu/mrc 1/.
    112. K. Fu. Miniature-scale and micro-scale rotary internal combustion engines for portable power systems. Univ. of California at Berkeley. PhD Thesis, 2001.
    113. M. Allen, et al. Research topics-miniature MEMS free-piston engine generator. Georgia Institute of Technology Internet Document, 2001. http://comblab5.ae.gatech.edu/Minipiston/intro.htm.
    114. I.A. Waitz, G. Gauba and Y. Tzeng. Combustor for micro-gas turbine engines. J. Fluids Engineering 120(1): 109-117,1998.
    
    115. S.C. Jacobsen, M. Olivier, C. Davis, et al. Direct energy conversion actuators for ambulatory robotic systems. Presented at DARPA Smart Structures Technology Interchange Meeting, Baltimore, Maryland, June 26-28, 2000.
    
    116. L. Sitzki, K. Borer, E. Schuster, et al. Combustion in microscale heat-recirculating burners. In the 3~(rd) Asia-Pacific Conference on Combustion. Seoul, Korea June, 2001.
    
    117. K. Maruta, K. Takeda, K., L. Sitzki, et al. Catalytic combustion in microchannel for MEMS power generation. In the 3rd Asia-Pacific Conference on Combustion, Seoul, Korea, June, 2001.
    
    118. L. Sitzki, K. Borer, S. Wussow, et al. Combustion in microscale heat-recirculating burners. Paper No. 2001-1087,39~(th) AIAA Aerospace Sciences Meeting, Reno, NV, January, 2001.
    119. S. Onishi, S.H. Jo, K. Shoda, et al. Active thermo-atmosphere combustion (ATAC)-a new combustion process for internal combustion engines. SAE Technical Paper 790501, 1979.
    120. H.T. Aichlmayr, D.B. Kittelson and M.R.Zachariah. Miniature free-piston homogeneous charge compression ignition engine-compressor concept—Part Ⅰ: performance estimation and design considerations unique to small dimensions. Chemical Engineering Science, 57: 4161-4171, 2002.
    121. H.T. Aichlmayr, D.B. Kittelson and M.R.Zachariah. Miniature free-piston homogeneous charge compression ignition engine-compressor concept—Part Ⅱ: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kineteics. Chemical Engineering Science, 57:4173-4186, 2002.
    122. H.T. Aichlmayr, D.B. Kittelson and M.R.Zachariah. Micro-homogeneous charge compression ignition (HCCI) combustion: investigations employing detailed kinetic modeling and experiments. Personal communication, 2002.
    123. C.M.Spadaccini, X Zhang, C.P. Cadou, et al, Development of a catalytic silicon micro-combustor for hydrocarbon-fueled power MEMS. IEEE: 228-231, 2002.
    124. C.M.Spadaccini, X Zhang, C.E Cadou, et al, Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sensors and Actuators A, 103: 219-224, 2003.
    125. K. Maruta, K. Tekeda, J. Ahn, et al, Extinction limits of catalytic combustion in microchannels. On Colloquium topic: 14 New Concepts in Combustion Technology, 1-8.
    126. S.J. Schneider, G.A. Boyarko and C.J. Sung. Catalyzed ignition of bipropellant in microtubes. AIAA 2003-0764, 2003.
    127. C.W. Park and M. Kaviany. Combustion-thermoelectric tube. J. of Heat Transfer, 122(4): 721-729, 2000.
    128. O. Deutschmann, R. Schmidt, F.Behrendt, et al. Numerical simulation of catalytic ignition. In: Proc. of 26th Symposium (International) on Combustion. USA: The Combustion Institute, Pittsburgh, PA: 1747-1754, 1996.
    129. M.M. Ohadi and S.G. Buckley. High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization. Experimental Thermal and Fluid Science, 25: 207-217, 2001.
    130. L.L. Raja, R.L. Kee, O. Deutschmann, et al. A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today, 59: 47-60, 2000.
    131. O. Deutschmann, L.I. Maier, U. Riedel, et al. Hydrogen assisted catalytic combustion of methane on platinum. Catalysis Today, 59:141-150, 2000.
    132. J. Daou and M. Matalon. Influence of conductive heat-losses on the propagation of premixed flames in channels. Combustion and Flame, 128: 321-339, 2002.
    133. V.N. Kurdyumov and E. Fernandez-tarrazo. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. Combustion and Flame, 128: 382-394, 2002.
    134.王光润,G. Eigenberger.甲烷催化燃烧的实验研究.化学反应工程与工艺,13(1):94-97,1997.
    135.李保国,曹崇文,刘相东.脉动燃烧技术及其应用.中国农业大学学报,3(2):36-40,1998.
    136.柴宁,姜培学,任泽霈,等.微型固体火箭内部点火阶段温度场的数值模拟.中国工程热物理学会第十届年会传热传质学学术会议论文集,青岛:747-751,2001.
    137.朱彤,饶文涛,刘敏飞,等.低NO_x高温空气燃烧技术.热能动力工程,16(3):328-331,2001.
    138.王锡高,杨俊均,邹江,等.微小型燃烧技术.工业加热,31(5):5-8,2002
    139.薛元,陈剑波,姚强.超微型燃烧器的研究现状及进展.燃气轮机技术,15(1):22-26,2002.
    140.张孝友,卫尧,李德桃,等.开放微型发动机燃烧器遇到的问题和解决途径.内燃机工程,24(4):70-73,2003.
    141.钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟.工程热物理学报,24(1):173-176,2003.
    142.钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟.热能动力工程,18(6):584-589,2003.
    143.曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧.化工学报,55(1):42-47,2004.
    144.焦国凤,刘辉,杨立英,等.蜂窝体催化燃烧反应器中流动特性的数值模拟.北京化工大学学报,31(2):1-6,2004.
    [145] F.J. Weinberg. Combustion temperature: the future? Nature, 233(5317): 239-241, 1971.
    [146] K. Hanamura, R. Echigo and S.A. Zhdanok. Superadiabatic combustion in a porous medium. Int. J. Heat and Mass Transfer, 36(13): 1993.
    [147] D. Trimis, F. Durst, O. Pickenacker, et al. Porous medium combustor versus combustion systems with free flame. Personal communication.
    [148] S. Moβbauer, O. Pickenacker, K. Pickenacker, et al. Application of the porous bruner technology in engery-and heat-engineering. In: 5th International Conference on Technologies and Combustion for a Clean Environment(Clean Air V), Lisbon, Protugal, 12-15 July, 1999, Volume 1, Lecture 20.2: 519-523.
    [149] S.A. Zhdanok, L.A. Kennedy and G.E. Koester. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combustion and Flame, 100(1-2): 221-231, 1995..
    [150] Y.M. Laveskii and V.S. Babkin. Propagation of heat waves in heterogeneous media. In: Filtration Combustion of Gases, Nauka, Novosibirsk, Russia: 108-145, 1982.
    [151] L.A. Kennedy, A.A. Fridman and A.V. Saveliev. Superadiabatic combustion in porous media: wave propagation, instabilities, new type of chemical reactor. Fluid Mechanic Research, 22: 1-26, 1995.
    [152] V.S. Babkin, A.A. Korzhavin and V.A. Bunev. Propagation of premixed gaseous explosion flames in porous media. Combustion and Flame, 87:182-190, 1991.
    [153] A.I. Rozlowskii. Technical principles of explosion-proof upon work with gaseous fuel and vapors. Khimiya, Moscow, pp. 135, 1980.
    [154] A.A. Korzhavin, V.A. Bunev, R.K. Abdullin, et al. Flame zone in gas combustion in an inert porous medium. Combustion, Explosions and Shock Waves. 18(6): 628, 1982.
    [155] V.S. Babkin, V.A. Bunev., A.A. Korzhavin, et al. Gas combustion in a vessel with a highly porous inert medium. Combustion, Explosions and Shock Waves. 21(5): 519, 1985.
    [156] G.A. Lyamin and A.V. Pinaev. Fast subsonic combustion of gases in an inert porous medium with a smooth rise in the pressure in the wave. Combustion, Explosions and Shock Waves. 23(4): 399, 1987.
    [157] A.V. Pinaev and G.A. Lyamin. Fundamental laws governing subsonic and detonating gas combustion in inert porous media. Combustion, Explosions and Shock Waves. 25(4): 448-454, 1989.
    [158] D.R. Hardesty and F.J. Weinberg. Burners producing large excess enthalpies. Combustion Science and Technology, 8: 201-214, 1974.
    [159] S.A. Lloyd and F.J. Weinberg. A burner for mixture of very low heat content. Nature, 251: 47, 1974.
    [160] S.A. Lloyd and F.J. Weinberg. Limits on energy release and utilization from chemical fuels. Nature, 257: 367, 1975.
    
    [161] F.J. Weinberg. Advanced combustion methods. Academic Press: London, 1986.
    [162] A.R. Jones, S.A. Lloyd and F.J. Weinberg. Combustion in heat exchangers. In: Proc. Roy. Soc.A360. 97-115, 1978.
    [163] T. Takeno and K. Sato. An excess enthalpy flame theory. Combustion Science and Technology, 20: 73-84, 1979.
    [164] T. Takeno, K. Sato and K. Hase. A theoretical study on an excess enthalpy flame. In: Proc. of 18~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 465-472, 1981.
    [165] J. Buckmaster and T. Takeno. Blow-off and flashback of an excess enthalpy flame. Combustion Science and Technology, 25: 153-158, 1981.
    [166] Y. Kotani and T. Takeno. An experimental study on stability and combustion characteristics of an excess enthalpy flame. In: Proc. of 19~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1503-1509, 1982.
    [167] K. Sato, K. Hase and T. Takeno. A further experimental study on an excess enthalpy flame. Trans. Japan Soc. Aero. Space Sci., 26(72): 65-79, 1983.
    [168] T. Takeno and K. Hase. Effects of solid length and heat loss on an excess enthalpy flame. Combustion Science and Technology, 31: 207-215, 1983.
    [169] T. Takeno and M. Murayama. One-dimensional flame with extended reaction zone. In: Progr. In Astro. Aero. Sci., 105:246-262, 1986.
    [170] R. Echigo. Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces. In: Proc. of 7~(th) Int. Heat Transfer Conf., Munich, Vol. VI: 361-366, 1982.
    [171] R. Echigo, Y. Yoshizawa, K. Hanamura, et al. Analytical and experimental study on radiative propagation in porous media with internal heat generation. In: Proc. of 8~(th) Int. Heat Transfer Conf., San Francisco, California, Vol. II: 827-832, 1986.
    [172] R. Echigo. Radiation enhanced/controlled phenomena of heat and mass transfer in porous media. In: Proc. of the 3~(rd) ASME/JSME Thermal Engrg. Joint Conf., Reno, Nevada, Vol. 4: xxi-xxxii, 1991.
    [173] Y. Yoshizawa, K. Sasaki and R. Echigo. Analytical study of the structure of radiation controlled flame. Int. J. Heat Mass Transfer, 31(2): 311-319, 1988.
    [174] S.B. Sathe, M.R. Kulkarni, R.E. Peck, et al. An experimental study of combustion and heat transfer in porous radiant burner. 1989 Western States Section/Combustion Institute, Livermore, California, Oct. 23-24, 1989.
    [175] S.B. Sathe, R.E. Peck and T.W. Tong. Flame stabilization and multimode heat transfer in inert porous media, a numerical study. Combustion Science and Technology, 70: 93-109, 1990.
    
    [176] S.B. Sathe, M.R. Kulkarni, R.E. Peck, et al. An experimental and theoretical study of porous radiant burner performance. In: Proc. of 23~(rd) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1011-1018, 1990.
    [177] S.B. Sathe, R.E. Peck and T.W. Tong. A numerical analysis of heat transfer and combustion in porous radiant burners. Inter. J. Heat Mass Transfer, 33(6): 1331-1338, 1990.
    [178] D.K. Min and H.D. Shin. Laminar premixed flame stabilized inside a honeycomb ceramic. Int. J. Heat Mass Transfer, 43(2): 341-356, 1991.
    
    [179] M.R. Kulkarni, K.P. Chavali and R.E. Peck. Emission Characteristics of radiant surface burners. Presented at the 1992 Fall Meeting of the Western States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    
    [180] M.R. Kulkarni and R.E. Peck. Analysis of a bilayered porous radiant burner. Presented at the 1992 Fall Meeting of the Western States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    
    [181] M.D. Rumminger, R.W. Dibble, N.H. Heberle, et al. Gas Temperature Measurement above a porous radiant burner: comparison of measurements and model predictions. In: Proc. of 26~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1755-1762, 1996.
    
    [182] M.D. Rumminger. Numerical and experimental investigation of heat transfer and pollution formation in porous direct-fired radiant burners. Univ. of California, Berkeley, PhD Thesis, 1996.
    [183] R. Mital. An experimental and a theoretical investigation of combustion and heat transfer characteristics of reticulated ceramic burners. Purdue University, PhD Thesis, 1996.
    [184] R. Mital, J.P. Gore and R.A. Viskanta. Study of the structure of submerged reaction zone in porous ceramic radiant burners. Combustion and Flame, 111, 175-184, 1997.
    [185] L.B. Younis and R. Viskanta. Experimental determination of volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transfer, 36(6): 1425-1434, 1993.
    [186] R. Viskanta and J.P, Gore. Overview of cellular ceramics based porous radiant burners for supporting combustion. Environ. Combust. Tech., 1: 167-203, 2000.
    [187] D.J. Diamantis, E. Mastorakos and D.A. Goussis. Simulations of premixed combustion in porous media. Combust. Theory and Modeling, 6:383-411,2002.
    
    [188] F.C. Christo, B.B. Dally, P.V. Lanspeary, et al. Development of porous burner technology for ultra-lean combustion systems. Report for South Australian State Energy Research Advisory Committee, 2002.
    [189] Y. Huang, C.Y.H. Chao and P. Cheng. Effects of preheating and operation conditions on combustion in a porous medium. Int. J. Heat Mass Transfer, 45: 4315-4324, 2002.
    [190] Chung-jen Tseng. Effects of hydrogen addition on methane combustion in a porous medium burner. Int. J. Hydrogen Energy, 27: 699-707,2002.
    [191] M. Sahraoui and M. Kaviany. Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium. Int. J. Heat Mass Transfer, 37(18): 2817-2834, 1994.
    [192] C.L. Hackert, J.L. Ellzey and O.A. Ezekoye, et al. Combustion and heat transfer in model two-dimensional porous burner. Combustion and Flame, 116: 177-191, 1999.
    [193] XY Fu. Modeling of a submerged flame porous burner/radiant heater. Purdue University, PhD Thesis, 1997.
    [194] XY Fu, R. Viskanta and J.P. Gore. Combustion and heat transfer interaction in a pore-scale refractory tube burner. J. Thermophys. Heat Transfer, 12: 164-171, 1998.
    [195] G. Brenner, K. Picken ǎ cker, O. Picken ǎ cker, et al. Numerical and experimental inverstigation of matrix-stabilized methane/air combustion in porous inert media. Combustion and Flame, 123: 201-213, 2000.
    [196] I. Malico, X.Y. Zhou and J.C.F. Pereira. Two-dimensional numerical study of combustion and pollutants formation in porous burners. Combustion Science and Technology, 152: 57-79, 2000
    [197] I. Malico and J.C.F. Pereira. Numerical study on the influence of radiative properties in porous media combustion. ASME Journal of Heat Transfer, 123:951-957,2001.
    [198] Y.K. Chen, R.D. Matthews and J.R. Howell. The effect of radiation on the structure of a premixed flame within a highly porous inert medium. In: Radiation, phase change, heat transfer and thermal systems. ASME publication HTD-Vol. 81, 35-42, 1987.
    [199] Y.K. Chen, P.F. Hsu, I.G. Lim, et al. Experimental and theoretical investigation of combustion within porous inert media. In: Proc. of 22~(nd) Symposium (International) on Combustion, Post Paper, USA: The combustion institute, Pittsburgh, PA, 1988.
    [200] W.D. Evans, J.R. Howell and P. Varghese. An experimental investigation of practical lean limit of methane combustion inside a porous ceramic matrix. In: AIAA/SAE/ASME/ASEE Joint Propulsion Conf., Sacramento, California, June, 1991.
    [201] C. Chaffin, M. Koenig, M. Koeroghlian, et al. Experimental investigation of premixed combustion within highly porous media. In: Proc. of ASME/JSME Thermal Engineering Joint Conf.4: 219-224, 1991.
    [202] C. Chaffin. Reduction of NOx emissions using the technique of two-stage combustion within porous inert media. Univ. of Texas at Austin, Master's Thesis, 1991.
    [203] P.F. Hsu. Analytical and experimental study of combustion in porous inert media. Univ. of Texas at Austin, PhD Thesis, 1991.
    [204] P.F. Hsu and J.R. Howell. The necessity of using detailed chemical kinetics in models for premixed combustion in porous media. Combustion and Flame, 93: 457-466, 1993.
    [205] P.F. Hsu, W.D. Evans and J.R. Howell. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combustion Science and Technology, 90: 149-172, 1993.
    [206] P.F. Hsu, J.R. Howell and R.D. Matthews. A numerical investigation of premixed combustion within porous inert media. ASME J. Heat Transfer, 115(3): 744-750, 1993.
    [207] J.R. Howell, M.J. Hall, and J.L. Ellzey. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 22: 121-145, 1996.
    [208] I.G. Lim A numerical study of combustion within a porous inert medium burner. Univ. of Texas at Austin, PhD Thesis, 1992.
    [209] I.G. Lim and R.D. Matthews. A model for turbulent premixed combustion within porous inert media. ASME, Emerging Energy Technology, PD-Vol. 50: 85-94, 1993.
    [210] I.G. Lim and R.D. Matthews. Development of a model for turbulent combustion within porous inert media. In: Proc. of the 6th International Symposium on Transport Phenomena in Thermal Engineering, Vol. 1: 631-636, 1993.
    [211] V. Khanna. Experimental analysis of radiation for methane combustion within a porous medium burner. Univ. of Texas at Austin, Master's Thesis, 1992.
    [212] V. Khanna, R. Goel and J.L. Ellzey. Measurement of Emissions and Radiation for Methane Combustion within a Porous Medium Burner. Combustion Science and Technology, 99: 133-142, 1994.
    [213] C.L.Hackert. Two-dimensional simulation of flames in porous media. Univ. of Texas at Austin, PhD Thesis, 1998.
    [214] M.R. Henneke and J.L. Ellzey. Modeling of filtration combustion in a packed bed. Combustion and Flame, 117:832-840, 1999.
    [215] M.R. Henneke. Simulation of transient combustion within porous inert media. Univ. of Texas at Austin, PhD Thesis, 1998.
    [216] W.M. Mathis and J.L. Ellzey. Flame stabilization, operating range, and emissions for a methane/air porous burner. Combustion Science and Technology, 175: 826-839, 2003.
    [217] A.J. Barra, G. Diepvens, J.L. Ellzey, et al. Numerical study of the effects of material properties on flame stabilization in a porous burner. Combustion and Flame, 134: 369-379, 2003.
    [218] A.J. Barra. Computational study of a two-section porous burner. Univ. of Texas at Austin, Master's Thesis, 2003.
    [219] A.J. Barra and J.L. Ellzey. Heat recirculation and heat transfer processes in porous burners. Combustion and Flame, 137:230-241, 2004.
    [220] M.T. Smucker and J.L. Eilzey. Computational and experimental study of a two-section porous burner. Combustion Science and Technology, 176:1171-1189, 2004.
    [221] B. Vogel and J.L. Ellzey. Subadiabatic and superadiabatic performance of a two-section porous burner. Combustion Science and Technology, 177:1323-1338, 2005.
    [222] 吕兆华,孙思诚,裴锦华,等.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究.燃烧科学与技术,1(2):129-134,1995.
    [223] 吕兆华,王志武,孙思诚,等.多孔陶瓷燃烧器火焰温度的测定.发电设备,1997(8/9):35-41,1997.
    [224] 吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示.燃烧科学与技术,4(3):242-246,1998.
    [225] 吕兆华,R.D Matthews.分段多孔介质燃烧器的二次进气燃烧排放研究.燃烧科学与技术,6(2):124-128,2000.
    [226] 杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展.热能动力工程,17(3):221-226,2002.
    [227] 解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景.燃烧科学与技术,8(6):520-524,2002.
    [228] 杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨.能源工程,2003(5):6-11,2003.
    [229] 杜礼明,解茂昭.预混合燃烧系统中多孔介质作用数值研究.大连理工大学学报,44(1):70-75,2004.
    [230] 邓洋波,解茂昭,刘宏升,等.多孔介质内往复流动下超绝热燃烧的实验研究.燃烧科 学与技术,10(1):82-87,2004.
    [231] 邓洋波,解茂昭.多孔介质内预混合超绝热燃烧的排放特性.大连理工大学学报,44(3):392-397,2004.
    [232] 马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟.热能动力工程,19(4):384-390,2004.
    [233] 杜礼明,解茂昭.多孔介质的热物性对往复流动下超绝热火焰的影响.热能动力工程,20(2):148-153,2005.
    [234] 王恩宇,程乐鸣,吴学成,等.渐变型多孔介质中预混燃烧试验研究.浙江大学学报(工学版),36(6):685-690,2002.
    [235] 王恩宇,程乐鸣,骆仲泱,等.渐变型多孔介质中预混燃烧温度分布试验.热科学与技术,2(1):64-69,2003.
    [236] 王恩宇,程乐鸣,骆仲泱,等.天然气在渐变型多孔介质中的预混燃烧.燃烧科学与技术,10(1):1-6,2004.
    [237] 李吴,程乐鸣,王恩宇,等.往复式多孔介质燃烧器流动特性的试验研究.能源工程,2004(4):1-5,2004.
    [238] 王恩宇,程乐鸣,骆仲泱,等.多孔介质中预混火焰淬熄及自稳定性研究.热科学与技术,2(1):58-62,2005.
    [239] 褚金华,程乐鸣,王恩宇,等.预混天然气在多孔介质燃烧器中的燃烧与传热.燃料化学学报,33(2):166-170,2005.
    [240] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Mechanisms of the propagation of combustion waves in porous medium in gas filtration. Doklady Akademii Nauk SSSR, 265(5): 1157-1161, 1982.
    [241] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Filtration combustion of gases. Fizka goreniya Vzryva, 19(2): 17-26, 1983.
    [242] S.I. Potytnyakov, V.S. Babkin, Laevskil, et al. Thermal structure of an in situ gas combustion wave. Combustion, Explosions and Shock Waves, 21(2): 146-151, 1985.
    [243] G.E. Koester, L.A. Kennedy and V.V. Subramaniam. Low temperature wave enhanced combustion in porous systems. In: Proc. of the 4th ASME/JSME Thermal Engineering Joint Conference, Lahaina, Maui, Hawaii, March 19-24, 1995.
    [244] G.E. Koester. Propagation of wave-like unstabilized combustion fronts in inert porous media: he Ohio State University, PhD Thesis, 1997.
    [245] S.I. Futko, S.I. Shabunya and S.A. Zhdanok. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed. In: Proc. of 26th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 3377-3382, 1996.
    [246] S.I. Futko. Effect of kinetic properties of a mixture on wave macrocharcteristics of filtration combustion of gases. Combustion, Explosion, and Shock Waves, 39(1): 11-22, 2003.
    [247] S.I. Futko. Mechanism of upper temperature limits in a wave of filtration combustion of gases. Combustion, Explosion, and Shock Waves, 39(2): 130-139, 2003.
    [248] L.A. Kennedy, A.V. Saveliev and A.A. Fridman. Transient filtration combustion. In: Proc. of Mediterranean Combustion Symposium, 1: 105-139, 1999.
    [249] L.A. Kennedy, J.P. Bingue, A.V. Saveliev, et al. Chemical Structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. In: Proc. of 28th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1431-1438, 2000.
    [250] J.P. Bingue, A.V. Saveliev, A.A. Fridman, et al. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy, 27: 643-649, 2002.
    [251] J.P. Bingue. Filtration combustion of methane and hydrogen sulfide in inert porous media: theory and experiments. Univ. of Illinois at Chicago, PhD Thesis, 2003.
    [252] J.P. Bingue, A.V. Saveliev and L.A. Kennedy. Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion. Int. J. Hydrogen Energy, 29: 1365-1370, 2004.
    [253] Y. Sone. Theoretical and numerical analyses of Boltzmann equation-Theory and analysis of rarefied gas flows. In Lecture Notes, Dept. of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto Univ., 1998.
    [254] 潘文全等.流体力学基础.机械工业出版社,北京,1980.
    [255] J. C. Maxwell. On stresses in rarefied gases arising form inequalities of temperature. Phil. Trans. R. Soc., Part 1, 170: 231-256, 1879.
    [256] M. Von Smoluchowski. Ueber warmeleitung in verdunnten gasen. Annalen der Physik und chemie 64: 101-130, 1898.
    [257] B. T. Porodnov, P.E. Suetin, S.F. Borisov, et al. Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech., 64: 417-437.
    [258] L. B. Thomas and R.G. Lord. Comparative measurements of tangential momentum and thermal accommodations on polished and on roughened steel spheres. In: Rarefied Gas Dynamics, Vol.8, Academic Press, New York, 1974.
    [259] E. B. Arkilic. Measurement of the mass flow and tangential momentum accommodation coefficient in silicon micromachined channels. MIT, Cambridge, MA, PhD Thesis, 1997.
    [260] 沈青.稀薄气体动力学.国防工业出版社,北京,2003.
    [261] 吴其芬,陈伟芳.高温稀薄气体热化学非平衡流动的DSMC方法.国防科技大学出版社,长沙,1999.
    [262] G.A. Bird. Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids, 6: 1518-1519, 1963.
    [263] G.A. Bird. Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford, 1994.
    [264] G.A. Bird. Direct simulation of the Boltzmann equations. Physics of Fluids, 13: 2676-2681, 1970.
    [265] W. Wagner. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys., 66:1011, 1992.
    [266] 曾丹苓,等.工程热力学.高等教育出版社,第二版,北京,1985.
    [267] A.A.M. Oliveira and M. Kaviany. Nonequilibrium in the transport of heat and reactants in combustion in porous media. Progress in Energy and Combustion Sciences, 27: 523-545, 2001.
    [268] M. Kaviany. Principles of convective heat transfer. New York: Springer-Verlag, 2001.
    [269] R.J. Kee, J.A. Miller and T.H. Jefferson. CHEMKIN: a general-purpose problem independent transportable, Fortran chemical kinetics code package. Sandia National Laboratories Report, SAND80-8003, 1980.
    [270] M.O. Connaire, H.J. Curran, J.M. Simmie, et al. A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet., 36: 603-622, 2004.
    [271] G.P. Smith, D.M. Golden, M. Frenklach, et al. http://www.me.berkeley.edu/gri_mech/1999.
    [272] R.J. Kee, F.M. Rupley, J.A. Miller, et al. Chernkin Collection, Release 3.7, 2003.
    [273] R.J. Kee, G. Dixon-Lewis, J. Warnatz, et al. A Fortran computer code package for the evaluation of gas-phase multi-component transport proerties. Sandia National Laboratories Report SAND85-8240, 1986.
    [274] 林瑞泰.多孔介质传热传质引论.科学出版社,北京,1995.
    [275] N. Wakao and S. Kaguei. Heat and mass transfer in packed beds. Gordon and Breach Science Publishers, New York, 1982.
    [276] R.J. Kee, J.F. Grcar, M.D. Smooke, et al. A fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report, SAND85-8240, 1985.
    [277] I. Glassman. Combustion. 3rd edn. Academic Press, New York, 1996.
    [278] M. Kaviany. Principles of heat transfer in porous media. Springer-Verlag, New York, 1991.
    [279] D.A. Nield and A. Bejan. Convection in porous media. Springer-Verlag, New York, 1992.
    [280] 严镇军.数学物理方程.中国科学技术大学出版社,合肥,1996.
    [281] J.F.Grcar. The twopnt program for boundary value problems, version 3.10 of March 1992. Sandia National Laboratories Report, SAND91-8230, 1996.
  

青藏专题 | 天山专题 | 我国47个整装勘查区文献 | 95周年馆庆 | 中外文核心刊 | 期刊导航

© 2004-2012 中国地质图书馆版权所有 京ICP备05064691号 信息技术室维护

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700