用户名: 密码: 验证码:
介孔含氮超电容炭材料和喷墨打印Ni(OH)_2膜电极的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔炭材料由于其独特的化学稳定性,良好的导电能力,高的比表面积以及相对廉价的优点,使它作为制备电化学电容器电极的极佳候选者而备受人们的关注。为了提高电容器的能量密度和功率密度,需要人们在保持炭材料具有高比表面积的同时,能够有效地扩大其孔径,从而促进双电层在其界面处的快速形成,提高其功率性能。同时,为了增加准电容以及增强电极材料对于电解质溶液的润湿性,充分地利用其孔道表面进行电荷存储,在材料表面引入氮基团是一个很好的选择。
     随着微电子机械系统(MEMS)和超大规模集成电路技术(VLSI)的发展,对能源的微型化、集成化提出了越来越高的要求。民用电子器件如传感器、智能卡、便携式电子设备等众多领域的迅猛发展,也对化学电源的小型化、微型化和薄膜化提出了更高的要求。薄膜电池因其良好的集成兼容性和电化学性能成为MEMS、VLSI、智能卡等能源微型化、集成化的最佳选择。近年来,人们一直在寻求制备薄膜电池的最佳制备技术。
     本论文分为两大部分。第一部分,制备出大孔径含氮骨架介孔炭,并对其物理性质和作为超电容电极材料的电化学性能进行详细的表征和深入的研究。第二部分,利用新颖的喷墨打印方法制备氢氧化镍薄膜电极并详细考察其电化学性能。本论文的主要研究结果如下:
     (1)利用三聚氰胺与甲醛之间的缩聚诱导二氧化硅胶体聚集的方法首先制得了三聚氰胺甲醛树脂/二氧化硅复合微球,然后将所得树脂/二氧化硅复合微球固化,在惰性气体保护下经过800℃炭化处理,并用HF酸溶除二氧化硅模板后成功制得了具有高比表面积和较大孔径的介孔炭微球材料。所得材料保持了高分子前驱体的部分氮原子,有利于提高其对电解质溶液的润湿性能。该制备过程简单,周期短,充分利用了现已商品化的廉价化学原料,适合该类材料的批量制备。实验中我们发现,三聚氰胺、甲醛和模板剂二氧化硅的比例关系对所制得的炭材料的比表面积有很大的影响,通过多次优化三者比例,制备出了孔径为~30nm,最大比表面积为1480m~2/g的介孔炭微球,在5M硫酸电解液中,1 A/g的恒电流充放电密度下的容量为226 F/g,在5 A/g电流密度下的质量比容量可达到214 F/g,能够在很宽的电流密度区间(0.1~5 A/g)内保持住很好的电容性能。
     该材料具有优异的电化学性能可归因于以下几个方面:比较大的比表面积可以储存更多的电荷,合适的氮含量不仅可以增加电极表面的润湿性而且可以提供准电容增加比容量,30纳米左右的孔径能够使离子在快速迁移和扩散。
     (2)超级电容器的最大特点是能够快速充放电,为了达到其高功率密度的要求,急需人们在保持炭材料具有高比表面积,有效地扩大其孔径的同时,提高炭材料的导电率。因此,要求所得材料应具有一定的石墨化程度,从而降低材料的电阻。文章中采用提高炭化温度的方法来改善介孔炭材料的微观结构,使其具有一定的石墨化结构,从而提高材料的电导性,降低阻抗,提高电容器的极限功率。经过1000度高温炭化所制得的介孔炭微球材料阻抗明显降低,能够在更宽的电流密度区间(1~50 A/g,在5M硫酸中)内保持住很好的双电层电容性能。
     超级电容器常用的水溶液电解液有H_2SO_4和KOH水溶液两种。由于水溶液分解电压太低,大大降低了电容器的能量密度。有机电解液的分解电压大大高于水溶液,可以大大提高其能量密度。由于本文制备的介孔材料孔径在30 nm左右,可以很好的适应较大半径的有机电解液溶剂化离子,即使在大电流充放电条件下,溶液中的离子也可以在大孔径中迅速迁移,从而在提供高能量密度的同时满足高功率的需要。电化学测试表明,在有机电解液中经1000度炭化所得材料在0.5A/g电流密度下的质量比容量可达到159 F/g,在20A/g高充放电电流密度下的质量比容量仍可保持在130 F/g。在其工作区间1.8V-3.8V(vs Li)之间,经过1000圈充放电循环前后的交流阻抗显示,高频区半径基本没有变化,并推算出比电容法拉值变化不大,说明氮基团非常稳定。
     作为双电层电容器的电极材料,它具有比一般商业化活性炭材料更高的质量比容量和大电流充放电性能,尤其是在大电流和含有较大离子半径的有机体系中的表现比商业化活性炭材料更加优越。
     (3)氮基团对介孔炭材料的电化学性能影响明显。炭化温度不同将导致氮含量的差别,炭化温度从800℃上升到1000℃,含氮量从14.9%降低到8.9%,低温炭化样品的比容量高于高温炭化样品,但是功率性能却差于高温样品。我们发现:a.即使在快速的充放电速度下,氮基团仍然能够很快地提供准电容:b.炭化温度的高低是影响电极阻抗的首要因素。
     在还原铁粉保护下炭化得到的介孔炭材料表面氮含量明显增加。随着炭化温度的升高,氮基团中的氮的存在状态发生明显的变化。炭化温度越高,N-6向N-5,N-Q,N-X转化的比例越大,相应提供的电化学准电容降低,导致比电容整体下降。在比表面积类似的情况下,得出了含氮大孔径介孔炭比电容与氮基团的含量成线性关系的结论(在5M硫酸中)。
     在KOH体系中,氮基团也能够产生准电容,对比电容做出贡献。在小电流密度充放电条件下(小于1A/g),在硫酸溶液和氢氧化钾溶液中的质量比容量相差不大,在大电流充放电密度下,含氮介孔炭材料在KOH中的质量比电容远小于在硫酸中的比电容。这是因为氮基团与H_3O~+的反应远远比与K~+的反应容易,导致在快速充放电条件下,氮基团在KOH中不能够很快地提供准电容。
     对该制备过程及所得材料性能的系统研究有望加深人们对于高功率双电层电容器所需炭电极材料微观结构的理解,并最终根据实际需求实现对材料的设计合成。该材料在酸性、碱性和有机体系中均表现出良好的电化学特性。
     (4)利用喷墨打印技术制备薄膜电极需要使用纳米尺寸的电极材料。本文利用水热法合成得到了用作镍电池正极材料的纳米氢氧化镍颗粒。采用喷墨打印方法的关键是纳米粒子在分散体系中的稳定性。怎样使具有电化学活性的氢氧化镍钠米材料在水体系中十分均匀地稳定分散,是工艺成功的关键步骤。本文通过联合采用空间位阻型聚合物分散剂和湿法球磨工艺成功地解决了喷墨打印技术中的墨水制备问题,成功地制备出了氢氧化镍薄膜电极,建立了方便快速的喷墨打印制备薄膜电极的方法,并对薄膜电极的形貌和电化学性能进行了深入的研究。用喷墨打印方法在金箔上制备了厚度仅为700 nm的薄膜氢氧化镍电极,在电位区间为0.2~0.65 V vs Hg/HgO、电流密度约为4.16 A/g时的可逆放电容量约为260mAh/g,氢氧化镍薄膜电极具有高倍率放电的主要原因是:在纳米氢氧化镍颗粒中尤其是经过球磨之后的纳米氢氧化镍颗粒中,质子扩散比较容易,只有700nm厚的薄膜和较大的氢氧化镍颗粒的比表面积也是重要因素。这种直接喷墨打印出的氢氧化镍薄膜电极的充放电稳定性非常好,循坏重放100圈后基本没有容量衰减。
Recently, many efforts have been made to search supercapacitor electrode materials that can be used practically as high power sources to supply large pulsed current. Among various available candidates, microporous activated carbons are mostly investigated due to their large surface areas, good electric conductivity, excellent chemical stability and relatively low cost. The key factors that dictate the selection of carbon materials for supercapacitor electrodes are the following: high specific surface areas for charge storage, suitable surface functional groups to enhance the capacitance by additional faradaic redox reaction and improve the wettability of carbon surface, and large pore size to facilitate the ions diffusion with a high speed.
     With the development of microelectromechanical systems (MEMS) and very large-scale integration (VLSI), there is an increasing requirement in the miniaturization and integration of power sources. The reduction in size and power requirement of electronic devices is the major driving force behind the development of thin-film batteries. Applications focus on the improvement of existing consumer and medical products, such as smart cards, sensors, portable electronic devices, as well as on the integration with electronic chips and microelectromechanical systems. With better integration compatibility and electrochemical performance, thin-film battery becomes the optimal choice for miniaturization and integration of MEMS and VLSI power.
     This thesis includes two major parts. Firstly, nitrogen-contained mesoporous carbon spheres were fabricated and used for supercapacitors. Their structure, morphology and electrochemical behaviors were investigated in great detail. Secondly, Ni(0H)2 thin-film electrodes were successfully fabricated by a novel and facile route of ink-jet printing technique. Their electrochemical performances were also investigated.
     The main results are as follows.
     (1) we demonstrate a facile polymerization-induced colloid aggregation method to synthesize a kind of mesoporous carbon spheres containing in-frame incorporated nitrogen using melamine-formaldehyde resin as a carbon precursor. The obtained MCS materials simultaneously possess the following characteristics: high specific surface areas contributed mainly by mesopores with uniform pore size, and suitable quantity of nitrogen on the surface of the materials. The precursors used in this simple process are commercially available and very cheap, which will be favorable in the preparation of MCS on a large scale. Their surface areas can be varied from 765 to 1480 m2/g with adjusting the ratio among melamine resin, formaldehyde and silica. As the electrode material for supercapacitor in 5 mol/L H_2SO_4, the MCS products present excellent specific capacitance as 226 F/g. Its specific capacitance can still remain 214 F/g at 5 A/g. The superior electrochemical performance of MCS is associated with the following characteristics: high specific surface area (~1480 m2/g) contributed mainly by the mesopores, uniform pore size as large as 29 nm and moderate content of nitrogen.
     (2) One of the most important characters of supercapacitor is high power density, which demand carbon materials used for supercapacitor possess good conductivity. Here we enhanced the carbonization temperature to 1000℃to obtain mesoporous carbon spheres with good graphitized nanostructures. The obtained carbons have good specific capacitance and rate capability as an EDLC electrode when constantly charged/discharged over a wide loading current range (1-50 A/g).
     Generally, the electrolyte can be classified as aqueous and organic medium. In the aqueous solutions, the operating voltage region is restricted to be ca. 1.23 V due to the thermodynamic electrochemical window of water. The electrical energy accumulated in supercapacitor can be significantly enhanced by the selection of organic medium where the decomposition potential window of the electrolyte can reach to 2 - 4.2 V. The carbon material product presents a high specific capacitance as 159 F/g at 0.5 A/g in organic electrolyte in the potential range of 1.8V to 3.8V (vs Li). The high specific capacitance of the carbon material is believed to be associated with its suitable nitrogen content that can afford pseudocapacitanc as well as the high specific surface area. From Nyquist we conclude that the double layer capacitance is 122 F/g before cycling and after 1000 cycles it still kept on 127 F/g. This phenomenon indicates that the MCS particles can be used for 1000 cycles without aggregation, and the nitrogen functional groups may be very stable.
     (3) Nitrogen groups can influence the electrochemical performance of carbon materials greatly. Variation in carbonization temperature can result in the MCS materials with different nitrogen content and graphitized nanostructures. Increasing the temperature from 700 to 1000℃, the nitrogen content decrease from 14.9 to 8.9 wt.%. The lower carbonization temperature, the higher the specific capacitance and the poorer the power performance. We conclude that: a. even at a high loading current density, the nitrogen can afford pseudocapacitanc at the same. And b. high-carbonized temperature will lead to the decrease of the equivalent series resistance.
     The amounts of nitrogen increase by the protection of Fe powder in the carbonization process. The results indicate that the N-6 has been chemically transformed into nitrogen species with higher binding energies through the condensation reaction during the carbonization process. The higher the nitrogen content, the higher the specific capacitance when the specific surface areas of carbon materials are similar.
     In KOH electrolyte, the significant presence of pseudocapacitive interactions is clear as well as in H_2SO_4. And we conclude form the experiments that the faradaic interactions between H_3O~+ and the nitrogen functionalities are stronger than those of K~+ and that they determine the overall capacitive performance.
     (4) The key procedure for the ink-jet printing process is to obtain the stability of nano-sized materials in the dispersion system. The stable Ni(OH)_2 "inks" containing binder were successfully prepared by employing both wet ball-milling technology and steric polymeric dispersant. The morphology, structure, and electrochemical performance of Ni(OH)_2 thin film electrodes were investigated by scanning electron microscopy (SEM), cyclic voltammograms (CV), galvanostatic charge-discharge and electrochemical impedance measurements. SEM images show uniform distribution of as-printed Ni(0H)2 thin film electrodes. The thickness of thin film electrodes were about 0.6μm by the cross-sectional profile of SEM observation. Galvanostatic charge-discharge shows that the capacity of Ni(OH)_2 film is about 260 mAh/g and stably retained after 100 cycles at a high current density of 4.16 A/g. The high charge/discharge rate capability can be attributed to the following reasons: easy proton diffusion in the nano-sized particles of Ni(OH)_2 especially followed by the ball-milling process, very thin film and high surface area of nano-Ni(OH)_2 particles. The ink-jet printing method shows the convenient, feasible, and inexpensive property for fabricating the Ni(OH)_2 thin films.
引文
[1] B. E. Conway, Electrochemical supercapacitors-scientific fundamentals and technological applications, 1999 Kluwer academic/Plenum publishers
    [2] H. I. Becher, Electrochemical double layer capacitor [P]. Us Patent: 2800616, 1957
    [3] D Boos, J Metcalfe. Electrolytic capacitor employing paste electrodes. US patent: US3634736, 1972
    [4] K. Kinoshita, Carbon: Electrochemical and physicochemical properties. New York: Koddansa Press, 1988
    [5] 查全性等,电极过程动力学导论(第三版).北京:科学技术出版社,2002,15-47.
    [6] A. Yoshida, Surface technology for electric double-layer capacitors[J]. Jpn Surf Technol, 1997, 48(12): 1163—1168.
    [7] 杨辉,卢文庆,应用电化学,北京:科学出版社,2001,31-51
    [8] K. Kinoshita, X. Chu. Carbon for supercapacitors[J]. The electrochemical society proceedings, 1996, 95(29): 171-180
    [9] M.SNISER,新华化工厂.活性炭[M].太原:新华化工厂设计研究所,1982,60-66.
    [10] 南京林产工业学院,木材热解工艺学[M],北京:中国林业出版社,1983
    [11] K. Sanada, M. Hosokawa, Electric double-layer capacitors[J]. NEC Res.Dev, 1979, 55: 21-28
    [12] 西野敦,吉田昭彦,高比表面积有活性炭[J],科学工业,1985,59(9):382.
    [13] A. Nishino. Capacitors: Operating principles, Current market and technical trends[J]. J. Power Source, 1996, 60: 137-147
    [14] 棚桥一郎,西野敦,吉田昭彦等.电气二重层[P],特开昭60-149115
    [15] T. Junji, S. Takashi, K. Yukayi, et al. Large capacitance and low resistance electric double layer capacitor using activated carbon/carbon composite[J], NEC Res&Develop, 1992, 33(2): 145-152
    [16] S. Takashi, K. Yukayi, K. Mitsuyoshi, et al. Development of high-power electric double-layer capacitors[J]. NEC Res&Develop, 1995, 36(1): 193-198
    [17] S. Hang, Activated carbons and double layer capacitance[J]. Electrochemica Acta 1996, 41: 1633-1639
    [18] Q. Deyang, S. Hang, Studies of activated carbons used in double-layer capacitor[J]s. J. Power Sources, 1998, 74: 99-107
    [19] S. Shi. In porous activated carbons and electric double layer capacitance. Ex tended abstracts, Carbon'97 PennState (USA), 1997, 826-827
    [20] S. Shiraishi, H. Kurihara and A. Oya. Electric double layer capacitance of mesoporous ACF in nonaqueous electrolytes. Carbon'2001, USA, 2001, 24: L5
    [21] S. Shiraishi, H. Kurihara, H. Tsubota, A. Oya, S. Soneda and Y. Yamada. Electric doublelayer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene[J]. Electrochem. Solid-State Lett.2001; 4: A5
    [22] S. T. Mayer, R. W. Pekala, J. L. Kaschmitter. The aerocapacitor: an electrochemical double layer energy-storage device[J]. J. Eleetrochem. Soc., 1993, 140(2): 446-451
    [23] R. W. Pekala, J. C. Farmer, C.T. Alviso et al. Carbon aerogels for electrochemical applications[J]. J Non-Cryst Solids 1998; 225: 74-80
    [24] S. Escribbano, S. Berthon, J. L. Ginoux. et al. In: Characterization of carbon aerogels. Extended abstracts, Eurocarbon'98, Strasbourg (France). 1998; pp: 841-842
    [25] R. Saliger, U. Fischer, C. Herta, J. Fricke. High surface area carbon aerogels for supereapacitors[J]. J Non-Cryst Solids 1998; 225(1): 81-85
    [26] P. Goueree, D. Miousse, F. Tran-Van, L. H. Dao. In: Characterization of PAN based xerogel material for an application as double layer supercapacitors. Extended abstracts, Third Intern Sympon New Materials for Electrochem Systems, Montreal (Canada), 1999; p.203-206
    [27] C. Lin, J. A. Ritter, B. N. Popow. Novel synthetic carbon materials as supercapacitors. Extended abstracts, 23rd Biennial Conf. On Carbon, Penn State (USA), American Carbon Society, 1997; H: 160161
    [28] J. A. Ritter, E. J. Zanto, C. E. Holland, B. N. Popov. Modification of the pore structure of carbon aerogels and xerogels for energy storage. Extended abstracts, 24rd Biennial Conf. On Carbon, Charleston (USA), American Carbon Society, 1999; 1: 10-11
    [29] 梁长海,郭树才,炭气凝胶研究进展[J]。化工进展,1997,(5):13-16
    [30] 张睿,詹亮,孟庆函,梁晓怿,吕春祥,李开喜,凌立成,超临界石油醚干燥和超临界二氧化碳干燥在制备有机和炭气凝胶中的比较研究.新型炭材料[J],2004,19(1):7-10
    [31] P. Gouerec, D. Miousse, F. Tranvan, et al, Characterization of pyrolized poly acrylonitrile aerogel thin films used in double layer supercapacitors[J]. J New Mater Electrochem Syst, 1999, 2(4): 221-226
    [32] 江奇,卢晓英,陈召勇,等.碳纳米管电化学超级电容器性能初探[A].第五届全国新型碳材料学术研讨会论文集[C].2001-10.371.
    [33] E. Frackowiak, F. Beguin. Electrochemical storage of energy in carbon nanotubes andnanostructured carbons[J]. Carbon, 2002, 40: 1775-1787.
    [34] E. Frackowiak, K. Jurewicz, S. Delpeux, et al. Nanotubular materials for supercapacitors[J]. J Power Sources, 2001, 97-98: 822-825.
    [35] E. Frackowiak, S. Delpeux, K. Jurewicz, et al. Enhanced capacitance of carbon nanotubes through chemical activation[J]. Chemical Physics Letters, 2002, 361: 35-41.
    [36] Q. Jiang, M. Z. Qu, GM. Zhou, B. L. Zhang, Z. L. Yu. A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials[J]. Materials letters, 2002, 57: 988-991.
    [37] 马仁志,魏秉庆,徐才录等.应用于超级电容器的碳纳米管的几个特点[J]。清华大学学报(自然科学版),2000,40(8):7-10.
    [38] C. Li, D. Wang, T. Liang, X. Wang, L. Ji. A study of activated carbon nanotubes as double-layer capacitors electrode materials[J]. Materials letters, 2004, 58: 3774-3777.
    [39] H. -Jin, Ahn, J. I. Sohn, Y-S. Kim, H. -S. Shim, W. B. Kim, T. -Y. Seong. Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodised aluminium oxide templates[J]. Electrochemistry Communications, 2006, 8: 513-516.
    [40] M. Jung, H. Kim, J. Lee, O. Joo, S. Mho. EDLC characteristics of CNTs grown on nanoporous alumina templates[J]. Electrochimica Acta, 2004, 50: 857-862.
    [41] B. -J. Yoon, S. -H. Jeong, K. -H. Lee, H. S. Kim, C. Cx Park, J. H. Han. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes[J]. Chemical Physics Letters, 2004, 388: 170-174.
    [42] H. Y. Liu, K. P. Wang, H. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation[J] Carbon 2005, 43: 559-566
    [43] A. N. Phillip and R. O. John, A high-performance supercapacitor / battery hybrid incorporating templated mesoporous electrodes[J]. Journal of the electrochemical society, 2003, 150(10): AI313-AI317
    [44] T. C. Weng and H. Teng Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors[J] Journal of The Electrochemical Society, 2001, 148 (4): A368-A373
    [45] H. S. Zhou, S. Zhu, M. Hibino, I. Honma Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources 2003, 122: 219-223
    [46] S. A. Ivarez, M. C. Blanco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J] Carbon2005, 43: 855-894
    [47] B. F. Antonio, P. Fernando, M. R. Jose, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J] Journal of Power Sources2004, 133: 329-336
    [48] Z. H. Hu, P. S. Madapusi, and Y. Ni. Preparation of mesoporous high surface area activated carbon[J]. Adv. Mater. 2000, 12(1): 62-65
    [49] J. Lee, Y. Songhun, H. Taeghwan, M. O. Seung, and K. K. Bum Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J] Chem. Commun, 1999, 2177-2178
    [50] A. B. Fuenes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application[J] Electrochimica Acta 2005, 50: 2799-2805
    [51] T. Kyotani, T. Nagai, S. moue, A. Tomita. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chem Mater, 1997, 9: 609-613.
    [52] T. Bandosz, J. Jagiello, K. Putyera, J. A. Schwarz. Pore structure of carbon-mineral nanocomposites and derived carbons obtained by template carbonization[J]. Chem Mater, 1996, 8: 2023-2029.
    [53] T. Kyotani, L. Tasi, A. Tomita. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film[J]. Chem. Mater, 1996, 8: 2109-2113.
    [54] M. Kaneda, T. Tsubakiyama, A. Carlsson et al. Structure study of mesoporous MCM-48 and carbon networks synthesized in the space of MCM-48 by electron crystallography[J]. J Phys Chem B. 2002, 106: 1256-1266.
    [55] R. Ryoo, S.H. Joo, M. Kruk, et al. Ordered mesoporous carbons[J], Adv. Mater, 2001, 13: 677-681.
    [56] S. Jun, S. H. Joo, R. Ryoo, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. [J] J Am Chem Soc, 2000, 122: 10712-10713.
    [57] M. Kruk, M. Jaroniec, T.W. Kim, et al. Synthesis and characterization of hexagonally ordered carbon nanopipes[J]. Chem Mater, 2003, 15: 2815-2823.
    [58] H. Tamai, M. Kouzu, H. Yasuda.Preparation of highly mesoporous and high surface area activated carbons from vinylidene chloride copolymer containing yttrium acetylacetonate[J]. Carbon, 2002, 411: 1678-1681.
    [59] G. Gryglewicz, E. Lorenc-Grabowska.Mesoporous activated carbons from Ca and Fe exchanged sub-bituminous and bituminous coals[J]. Carbon, 2004, 42: 688-691.
    [60] 刘植昌,凌立成,吕春祥.铁催化活化制备沥青基球状活性炭中孔形成机理的研究[J].燃料化学学报,2000.4:320-323.
    [61] W. Shen, J. Zheng, Z. Qin, J. Wang.preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide[J]. Journal of colloid and interface science, 2003, 264: 467-473.
    [62] E. Ruckenstein, Y H. Hu. Catalytic preparation of narrow pore size distribution mesoporous carbon[J]. Carbon, 1998, 36(3): 269-275.
    [63] 吴培熙,张留成.聚合物共混改性原理及工艺.第一版.北京:轻工业出版社,1982,124-126.
    [64] 杨骏兵,凌立成,刘朗,利用聚合物共混法对活性炭材料的孔径分布进行控制的原理和方法[J].材料导报,2000,14(4):48-50.
    [65] J. Ozaki, N. endo, W. ohizumi, K. igarashi, M. nakahara, A. oya.Novel preparation method for the production of mesoporous carbon fiber from a polymer blend[J]. Carbon, 35(7): 1031-1033.
    [66] C. Lin, J. A. Ritter, B. N. Popov. Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogles[J]. J. Electrochem. Soc., 1999, 146(10): 3639-3643.
    [67] H. Shi. Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41 (10): 1633-1639.
    [68] E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39: 937-950.
    [69] Wataru Sugimoto, Takeo Kizaki, Katsunori Yokoshima, Yasushi Murakami, Yoshio Takasu, Evalution of the pseudocapacitance in RuO_2 with a RuO_2/GC thin film electrode [J]. Electrochim. Acta, 2004, 49(2): 313-320.
    [707] J. P. Zheng and T. R. Jow, A new charge storage mechanism for electrochemical capacitaors [J]. J. Electrochem. Soc., 1995, 142(1): L6-L8.
    [71] T. R. Jow and J. P. Zheng, Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide [J]. J. Electrochem. Soc., 1998, 145(1): 49-52.
    [72] Chi-Chang Hu, Wei-Chun Chen,Effects of substrate on the capacitive performance of RuO_xnH_2O and activated carbon RuOx electrodes for supercapacitors [J]. Electrochim. Acta, 2004, 49(21): 3469-3477.
    [73] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide preparation an dcharacterization [J]. Electrochim. Acta, 2002, 47(15): 2381-2386.
    [74] M. Toupin, T. Brousse, and D. Belanger, Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide [J]. Chem. Mater., 2002, 14(9): 3946-3952.
    [75] T. Brousse, M. Toupin, and D. Belanger, A hybrid activated carbon manganese dioxide capacitor using a mild aqueous electrolyte [J]. J. Electrochem. Soc., 2004, 151(4): A 614-A 622.
    [76] M. Wu, G. A. Snook, G. Z. Chen, D. J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors [J]. Electrochem. Commu, 2004, 6(5): 499-504.
    [77] C. C. Hu, T. W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition [J]. Electrochem. Commu., 2002, 4(2): 105-109.
    [78] S. C. Pang, M. A. Anderson, and Thomas W. Chapman, Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J].J. Electrochem. Soc., 2000, 147 (2), 444-450.
    [79] H. Kim and Branko N.Popov, Synthesis and characterization of MnO_2-based mixed oxides as supercapacitors [J]. J. Electrochem. Soc., 2003, 150 (3) D56-D62.
    [80] S. F. Chin, S. C. Pang and M. A. Anderson, Material and electrochemical characterizationof tetrapropylammonium manganese oxide thin film as novel electrode materials for electrochemical capacitors [J]. J. Electrochem. Soc., 2002, 149 (4), A 379-A 384.
    [81] C. C. Hu, T. W. Tsou, The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies [J]. J. Power Sources, 2003, 115(1): 179-186.
    [82] Wang xingyan, Wang Xianyou, Huang Weiguo, Sebastian P.J., Gambo Sergio., Sol-gel template synthesis of highly ordered MnO_2 nanowire arrays [J]. J. Power Sources 2005,140 (1), 211-215.
    [83] Venkat Srinivasan and John W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors [J]. J. Electrochem. Soc., 1997, 144(8): L210-L213.
    [84] Kyung-Wan Nam, Won-Sub Yoon, Kwang-Bum Kim,X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors [J]. Electrochim. Acta 2002, 47: 3201-3209.
    [85] Lin Cao, Ling-Bin Kong, Yan-YU Liang and Hu-Lin Li, Preparation of novel nanocomposite Ni(OH)_2/USYmaterial and its application for electrochemical capacitance storage [J]. Chem. Commun. 2004.
    [86] Kyung Wan Nam and Kwang-Bun Kim, Astudy of the preparation of NiOx electrode via electrochemical route for supercapacitor application and their charge storage mechanism [J]. J. Electrochem. Soc. 2002,149 (3): A346-A354.
    [87] Han-Ki Kim, Tae-Yeon Seong, Jae-Hong Lim, Won li Cho, Young Soo Yoon, Electrochemial and structural properties of radio frequency sputtered cobalt oxide electrodes for thin film supercapariots [J]. J. Power Sources 2001, 102:167-171.
    [88] Chuan Lin, James A. Ritter, and Branko N.Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors[J]. J. Electrochem. Soc,1998, 145(12): 4097-4103.
    [89] Adriana R. de Souza, Everaldo A rashiro, Helder Golveia, Tania A.F.Lassali, Pseudocapacitive behavior of Ti/RhOx+Co_3O_4 electrodes in acidic medium: application to supercapacitor development[J]. Electrochimica Acta 2004, 49, 2015-2023.
    [90] H H. Zhou, H. Chen, S L Luo, G Lu, W Z. Wei Y F. Kuang. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors[J], J. Solid State Electrochem. 2005, 9: 574-580.
    [91] C C. Hu, W Y. Li, J Y. Lin The capacitive characteristics of supercapacitors consisting of activated carbon fabric-polyaniline composites in NaNO_3[J]. J. Power Source. 2004, 137: 152-157
    [92] Jurewicz, K.; Babel, K.; Ziolkowski, A.; Wachowska, H. Electrochim. Acta 2003, 48, 1491.
    [93] K. Jurewicza, K. Babel, A. Ziolkowskic, H. Wachowska[J], J. Phys. Chem. Solids 2004, 65: 269.
    [94] K. Jurewicz, K. Babel, A. Ziolkowski, H. Wachowska, M. Kozlowski, Fuel Process. Technol[J]. 2002, 191: 77-78.
    [95] G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak[J], Chem. Phys. Lett. 2005, 404: 53.
    [96] Denisa Hulicova, Junya Yamashita, Yasushi Soneda, Hiroaki Hatori, and Masaya Kodama, Supercapacitors prepared from melamine-based carbon[J]. Chem. Mater. 2005, 17: 1241-1247
    [97] Denisa Hulicova, Masaya Kodama, and Hiroaki Hatori, Electrochemical Performance of Nitrogen-Enriched Carbons inAqueous and Non-Aqueous Supercapacitors[J]. Chem. Mater. 2006, 18: 2318.-2326
    [98] F. Beguin, K. Szostak, G. Lota, E. Frackowiak[J], Adv. Mater. 2005, 17: 2380.
    [99] 解晶莹,张全生,刘剑峰等.镍氢氧化物研究进展[J].电源技术,1999,23(4):238243
    [100] 吕鸣祥等.化学电源.天津大学出版社,1992年
    [101] 周根陶,刘双怀,郑永飞.一种新的制备超微粉末的方法—沉淀转化法[J].科学通报,1996,41(4):321-323.
    [102] 周根陶,刘双怀,郑永飞.沉淀转化法制备不同形状的氢氧化镍和氧化镍超微粉末研究.无机材料学报[J],1997,13(1):43—47.
    [103] 周霞,阎杰,周根陶,等.Ni(OH)2超微粉的制备及其电化学性能[J].应用化学,1998,15(2):40-43.
    [104] ZHANG Y, ZHOU Z, YAN J. Electrochemical behaviour of Ni(OH)_2 ultrafine powder[J]. J Power Source, 1998, 75: 281-283
    [105] 赵力,周德瑞,张翠芬.纳米氢氧化镍的研制及其电化学性能[J].化学通报,2001,64(8):513-515.
    [106] 刘长久,叶乃清,刁汉明.纳米氧化镍氢氧化镍复合电极材料的制备及其电化学性能[J].应用化学,2001,18(4):335-337.
    [107] 夏熙,魏莹.纳米级β2Ni(OH)2的制备和放电性能[J].无机材料学报,1998,13(5):674-678
    [108] MUTIT A, NATHAL IE J, JACQUES L, et al. Synthesis of nickel hydroxide powders by urea decomposition[J]. Journal of the European Ceramic Society, 1998, 18: 1559—1564.
    [109] 周根陶,周双生,刘双怀,等.配位2沉淀法制备Ni(OH)_2和NiO超微粉[J].无机化学学报,1996,12(1):96—99.
    [110] 孙克宁,曹莹,周德瑞.β2Ni(OH)2纳米粉末制备方法的改进[J].高技术通讯,2002,12(5):64—66.
    [111] 赵力,周德瑞,张翠芬.碱性电池用纳米氢氧化镍的研制.电池[J],2000,30(6):244-245.
    [112] 张红兵,浦坦,李道火.纳米复合氢氧化镍电极研究.电源技术[J],2001,25(5):246-247.
    [113] 严少平.纳米氢氧化镍粒子微乳液/反相胶团法制备与表征.物理[J],2002,31(4):246-248.
    [114] 彭成红,刘澧浦,李机鑫.纳米氢氧化镍材料的研制[J].电池,2001,31(4):175-177.
    [115] S. B. Fuller, E. J. Wilhelm, J. M. Jacobson. Ink-Jet Printed Nanoparticle Microelectromechanical Systems [J]. J. Microelectromech. Sys[J], 2002, 11(1): 54-59.
    [116] B. de Gans, P. C. Duineveld, U. S. Schubert. Inkjet Printing of Polymers: State of the Art and Future Developments [J]. Adv. mater., 2004, 16(3): 203-213.
    [117] P. Calvert. Inkjet Printing for Materials and Devices [J]. Chem. Mater. 2001, 13:3299-3305.
    [118] B. A. Ridley, B. Nivi, J. M. Jacobson. All-Inorganic Field Effect Transistors Fabricated by Printing [J]. Science, 1999, 286: 746-749.
    [119] H. Sirringhaus,T. Kawase, R. H. friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo. High-Resolution Inkjet Printing of All-polymer Transistor Circuits [J]. Sci., 2000, 290: 2123-2126.
    [120] R. F. Service. Printable Electronics That Stick Around [J]. Sci., 2004, 304: 675
    [121] J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. S. Huck, H. Sirringhaus. Dewetting of conducting polymer inkjet droplets on patterned surfaces [J]. Nature Mater., 2004, 3: 171-176.
    [122] A. Y. Natori, C. D. Canestraro, L. S. Roman, A. M. Ceschin. Modification of the sheet resistance of ink jet printed polymer conducting films by changing the plastic substrate [J]. Mater. Sci. Engi. B, 2005, 122: 231-235.
    [123] M. Heule, S. Vuillemin, L. J. Gauckler. Powder-Based Ceramic Meso- and Microscale Fabrication Processes [J]. Adv. Mater., 2003, 15: 1237-1245.
    [124] C. E. Slade, J. R. G. Evans. Freeforming ceramics using a thermal jet printer [J]. J. Mater. Sci. Lett., 1998, 17: 1669-1671.
    [125] N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Y. Lau, J. C. Walter, J. LaBaer. Self-Assembling Protein Microarrays [J]. Sci., 2004, 305: 86-90.
    [126] G. MacBeath, S. L. Schreiber. Printing Proteins as Microarrays for High-Throughput Function Determination [J]. Sci., 2000, 289: 1760-1763.
    [127] W. C. Wilson, J.R. Boland. Cell and Organ Printing 1: Protein and Cell Printers [J]. Anatom. Rec. Part A, 2003, 272A: 491-496.
    [128] T. Xu, S. Petridou, E. H. Lee, E. A. Roth, N. R. Vyavahare, J. J. Hickman, T. Boland. Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method [J]. Biotech. Bioengi., 2004, 85 (1): 29-33.
    [129] E. Tekin, B. de Gans, U. S. Schubert. Ink-jet printing of polymers - from single dots to thin film libraries [J]. J. Mater. Chem., 2004, 14, 2627-2632
    [1] B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors [J]. J. Power Sources, 1997, 66: 1-14. (E25)
    [2] J. M. Miller, B. Dunn, T. D. Tran, R. W. Pekala. Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes [J]. J. Electrochem. Soc., 1997, 144(12): L309-L311.
    [3] 张莉,邹积岩,薛洪发.大功率超级电容器的实验研究[J].电子元件与材料,2002,21(7):11-12
    [4] An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae D J, Lim SC, Lee YH. Supercapacitors using single-walled carbon nanotube electrodes[J]. Adv. Mater. 2001, 13: 497-500.
    [5] An KH, Kim WS, Park YS, Moon JM, Bae D J, Lira SC, Lee YS, Lee YH. Electrochemical properties of high-power supercapacitors[J]. Adv. Funct. Mater. 2001, 11: 387-92.
    [6] Probstle H, Wiener M, Fricke J. Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater[J]. 2003, 10: 213-22.
    [7] Beguin F, Szostak K, Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-Step pyrolysis of carbon nanotube/polyacrylonitrile blends[J]. Adv. Mater. 2005, 17: 2380-4.
    [8] Li WR, Chen DH, Li Z, Shi YF, Wan Y, Huang JJ, Zhao DY, Jiang ZY. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Accepted by Electrochem. Commu.
    [9] Jurewicz K, Babel K, Ziolkowski A, Wachowska H. Ammoxidation of active carbons for improvement of supercapacitor characteristics[J]. Electrochim. Acta. 2003, 48:1491-8.
    [10] Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance[J]. Chem Phys Lett 2005, 404:53-8.
    [11] Jurewicza K, Babel K, Ziolkowskic A, Wachowska H. Capacitance behaviour of the ammoxidised coal[J]. J Phys Chem Solids 2004, 65: 269-73.
    [12] Kodama M, Hulicova D, Yamashita J, Soneda Y, Hator H, Kamegawa K, Miyajima N. Structure and electric double layer capacitance of nitrogen-enriched mesoporous carbon. Extended Abstract of Carbon. Providence, USA. 2004; E047.
    [13] Kodamaa M, Yamashita J, Soneda Y, Hatori H, Nishimura S, Kamegawa K. Structural characterization and electric double layer capacitance of template carbons[J]. Mater Sci Eng B 2004, 108: 156-61.
    [14] Frackowiak E, Lota G, Machnikowski J, Vix-Guteri C, B'eguin F. Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content[J]. Electrochim Acta 2006, 51: 2209-14.
    [15] Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Supercapacitors Prepared from Melamine-Based Carbon[J] Chem Mater 2005,17:1241-7.
    [16] Hulicova D, Kodama M, Hatori H. Electrochemical performance of nitrogen enriched carbons in aqueous and non-aqueous supercapacitors[J]. Chem Mater 2006,18:2318-26.
    [17] R.Saliger, U.Fischer, C.Herta, J. Fricke, High surface area carbon aerogels for supercapacitors [J]. J. Non-Crystalline Solids, 1998, 225(1): 81-85.
    [18] Portet C.;Taberna P.L.; Simon P.; Flahaut E., Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte [J]. J. Power Sources, 2005, 139 (1-2): 371-378.
    [19] B. Krzysztof; J. Krzysztof, Electrical capacitance of fibrous carbon composites in supercapacitors [J]. Fuel Processing Technology, 2002, 77-78(0): 181-189.
    [20] Elzbieta Frackowiak, Francois Beguin, Carbon materials for the electrochemical storage of energy in capaciotors [J]. Carbon, 2001,39(6): 937-950.
    [21] J. H.Park, O O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J]. J. Power Sources, 2002, 111(1): 185-190.
    [22] Jinwoo Lee, Songhun Yoon, Seung M. Oh, Chae-Ho Shin, and Taeghwan Hyeon, Development of a new mesoporous carbon using and HMS aluminosilicate template [J]. Adv. Mater, 2000, 12(5): 359-362.
    [23] E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Electrochemical storage of lithium multiwaUed carbon nanotubes [J]. Carbon, 1999, 37(1): 61-69.
    [24] A. B. Fuertes, F. Pieo, J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J]. J. Power Sources,2004, 133(2): 329-336.
    [25] Kay Hyeok An, Won Seok Kim, Young Soo Park, Jeong Mi Moon, Dong Jae Bae, Seong Chu Lim, Young Seak Lee, and Young Hee Lee, Electrochemical preoperties of high power supercapacitors using single walled nanotubes electrodes [J]. Adv. Funct. Mater., 2001, 11(5): 387-392.
    [26] Joseph N. Barisci, Gordon G. Wallace, Ray H. Baughman, Electrochemical studies of single wall carbon nanotubes in aqueous solutions [J]. J. Electroana. Chem., 2000, 488(2): 92-98.
    [27] Ch. Emmenegger, Ph. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of elecchemical double-layer capacitors electrodes based on carbon nanotubes and activated carbon materials [J]. J. Power Sources, 2003, 124(1): 321-329.
    [28] E. Frackowiak, K. Jurewicz, K. Szostak, S. Deipeux, F. Beguin, Nanotublar materials electrodes for supercapacitors [J]. Fuel Processing Technology, 2002, 77-78(0): 213-219.
    [29] Girish Arabale, Deepali Wagh, Mahesh Kuikarni, I.S.Mulla, S.P.Vemekar, K.Vijayamohanan, A.M.Rao, Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide [J]. Chemical Physics Letters, 2003, 376(1-2):207-213.
    [30] Qiangfeng Xiao, Xiao Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor [J]. Electrochim. Acta, 2003, 48(5): 575-580.
    [31] Ying-ke Zhou, Ben-lin He, Wen-jia Zhou, Xiao-hong Li, Bin Wu, Hu-lin Li, Electrochemical capacitance of well coated single walled carbon nanotube with polyaniline composites [J]. Electrochim. Acta, 2004, 49(2): 257-262.
    [32] X. Qin, S. Durbach, G. T. Wu, Electrochemical characterization on RuO_2xH_2O/carbon nanotubes composite electrodes for high energy density supercapacitors [J]. Letters to the Editor/Carbon, 2004, 42(0): 423-460.
    [33] Q. Zhang, X. Zhou, H. Yang, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber [J]. J. Power Sources, 2004, 125(1): 141-147.
    [34] Jong Hyeok Park, Jang Myoun Ko, O.Ok Park, Dong-Wen Kim, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole [J]. J. Power Sources, 2002, 105(1):20-25.
    [35] Mark Hughes, Milo S. P. Shaffer, Annette C. Renouf, Charanjeey Singh, George Z. Cen, Derek J. Fray, and Alan H. Windle, Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole [J]. Adv. Mater, 2002, 14(5): 382-385.
    [36] C Vix-Guter, E Frackowiak, K Jurewicz, M Friebe, J Parmentier, F Beguin.Electrochemical energy storage in ordered porous carbon materials [J]. Carbon 2005,43:1293-1302.
    [37] H. Zhou, S. Zhu, M. Hibino, I. Honma. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J. Power Sources,2003, 122:219-223.
    [38] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, Capacitance properties of ordered porous carbon materials prepared by a templating procedure [J]. J. Phys. Chem. Solids,2004,65:287-293.
    [39] J.Lee,. J.Kim, Y. Lee, S.Yoon, S. M. Oh, T. Hyeon. Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites [J].Chem. Mater., 2004,16(17):3323-3329.
    [1] Conway BE. Electrochemical Supercapacitors, Kluwer Academic/Plenum, New York 1999.
    [2] Frackowiak E, Be'guin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon 2001, 39: 937-50
    [3] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev. 2004, 104: 4245-69.
    [4] Yang KL, Yiacoumi S, Tsouris C. Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry[J]. J. Eiectroanal. Chem. 2003, 540: 159-67.
    [5] Zhou HS, Zhu SM, Hibino M, Honma I. Electrochemical capacitance of self-ordered mesoporous carbon[J]. J Power Sources 2003, 122: 219-23.
    [6] Liu HY, Wang KP, Teng HS. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation[J]. Carbon 2005, 43: 559-66.
    [7] Fuertes AB, Pico F, Rojo JM. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J]. J. Power. Sources 2004, 133: 329-36.
    [8] H.T. Liu, P. He, Z.Y. Li , Y. Liu, J.H. Li A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte[J]. Electrochimica Acta 2006, 51:1925-1931
    [9] C. Portet, P.L. Taberna, P. Simon, E. Flahaut. Influence of carbon nanotubes addition on carbon-carbon supereapacitor performances in organic electrolyte[J]. Journal of Power Sources 2005,139:371-378
    [10] C. V. Guterl, E. Frackowiak, K.Jurewicz, M. Friebe, J.Parmentier, F. Beguin. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon.2005, 3:1293-1302
    [11] C. Portet, P.L. Tabema, P. Simon, E. Flahaut, C. Laberty-Robert. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta. 2005,50:4174-4181
    [12] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications[J]. Electrochimica Acta 2004,49:905-912
    [13] I. Bispo-Fonseca, J. Aggar, C. Sarrazin, P. Simon, J.F. Fauvarque. Possible improvements in making carbon electrodes for organic supercapacitors[J]. Journal of Power Sources 1999, 79:238-241
    [14] B.W. Ricketts, C. Ton-That Self-discharge of carbon-based supercapacitors with organic electrolytes[J]. Journal of Power Sources 2000,89;64-69
    [15] C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Beguin. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure[J]. Materials Science and Engineering B.2004,108:148-155
    [16] A.B. Fuertesb, G. Lotaa, T.A. Centenob, E. Frackowiak. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta. 2005,50:2799-2805
    [17] Y-R.Nian, H.Teng. Nitric acid modification of activated electrodes for improvement of electrochemical capacitance. [J] J. Electrochem. Soc, 2002, 149(8): A1008-A1014.
    [18] H. Yang, M. Yoshio, K. Isono, R. Kuramoto. Improvement of commercial activated carbon and its applications in electric double layer capacitors[J]. Electrochemical and solid-state letters, 2002, 5(6): A141-AI44.
    [1] Beguin F, Szostak K, Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-Step pyrolysis of carbon nanotube/polyacrylonitrile blends[J]. Adv. Mater. 2005, 17: 2380-4.
    [2] Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Supercapacitors Prepared from Melamine-Based Carbon[J] Chem Mater 2005, 17: 1241-7.
    [3] K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, Y. H. Lee[J], Adv. Mater. 2001, 13: 497.
    [4] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee[J], Adv. Funct. Mater. 2001, 11: 387.
    [5] Hulicova D, Kodama M, Hatori H. Electrochemical performance of nitrogen enriched carbons in aqueous and non-aqueous supercapacitors[J]. Chem Mater 2006; 18: 2318-26.
    [1] Heidi M. French, Mark J. Henderson, A. Robert Hillman, Eric Vieil, Temporal resolution of ion and solvent transfers at nickel hydroxide films exposed to LiOH [J], Solid State ionics 2002, 150: 27- 37
    [2] Heidi M. French, Mark J. Henderson, A. Robert Hillman , Eric Vieil, Ion and solvent transfer discrimination at a nickel hydroxide film exposed to LiOH by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) techniques[J], Journal of Electroanalytical Chemistry 2001,500:192-207
    [3] J.M. McBreen, The nickel oxide electrode, in: R.E. White, J.O'M. Bockris, B.O. Conway (Eds.), Modern Aspects of Electrochemistry, Plenum, New York, 1990, pp. 29-63.
    [4] Marylou Gonsalves, A. Robert Hillman, Effect of time scale on redox-driven ion and solvent transfers at nickel hydroxide films in aqueous lithium hydroxide solutions[J], Journal of Electroanalytical Chemistry 1998,454:183-202
    [5] E.E. Kalua, T.T. Nwogaa, V. Srinivasanb, J.W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide[J], J. Power Source. 2001,92:163-167
    [6] S.Megahed, W. Ebner, Lithium-ion battery for electronic applications[J], J. Power Source. 1995,54:155-162
    [7] P.W.T. Lu, S. Srinivasan, ElectrochemicaI-Ellipsometric Studies of Oxide Film Formed on Nickel during Oxygen Evolution[J], J. Electrochem. Soc. 1978,125:1416-1422.
    [8] C.G. Granquist, Crit. Rev. Solid State Mater. Sci. 16 (1990) 291.
    [9] M.V. Va'zquez, M.J. Avena, C.P. De Pauli, Dehydration process on nickel hydroxide: Its influence on the electrochemical behaviour of Pt/Ni(OH)2 electrodes[J], Electrochim. Acta 1995, 40:907-912.
    [10] K. Watanabe, T. Kikuoka, N. Kumagai[J], J. Appl. Electrochem. 1995,25:219.
    [11] A.N. Mansour, C.A. Melendres, M. Pankuch, R.A. Brizzolara, X-Ray Absorption Fine Structure Spectra and the Oxidation State of Nickel in Some of Its Oxycompounds[J], J. Electrochem. Soc. 1994,141:L69-L71.
    [12] M.-C. Yang, C.-K. Lin, C.-L. Su, Electrodeposition of Nickel Oxyhydroxide Films Through Polymer Masks[J], J. Electrochem. Soc. 1995,142:1189-1193.
    [13] R.Kostecki, F.Mclanrnon, Electrochemical and In Situ Raman Spectroscopic Characterization of Nickel Hydroxide Electrodes[J], J. Electrochem. Soc. 1997,144:485-493
    [14] J. Arakaki, R. Reyes, M. Horn, W. Estrada, Electrochromism in NiOx and WOx obtained by spray pyrolysis[J], Sol. Energy Mater. Sol. Cells 1995,37:33-41.
    [15] T. Maruyama, S. Arai, The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition[J], Sol. Energy Mater. Sol. Cells 1993,30:257-262.
    [16] A. Nemetz, A. Temmink, K. Bange, S. Cordoba de Torresi, C. Gabrielli, R. Torresi, A. Hugot-Le Goff, Investigations and modelling of e-beam evaporated NiO(OH)_x films[J], Sol. Energy Mater. Sol. Cells 1992,25:93-103.
    [17] D.A. Wruck, M. Rubin, Structure and Electronic Properties of Electrochromic NiO Films[J], J. Electrochem. Soc. 1993,140:1097-1104.
    [18] S. Passerini, B. Scrosati, Characterization of Nonstoichiometric Nickel Oxide Thin-Film Electrodes[J], J. Electrochem. Soc. 1994,141:889-895.
    [19] S. Passerini, B. Scrosati, V. Hermann, C. Holmblad, T. Bartlett, Laminated Electrochromic Windows Based on Nickel Oxide, Tungsten Oxide, and Gel Electrolytes[J], J. Electrochem. Soc. 1994,141:1025-1028.
    [20] N.E.Sanjana, S.B.Fuller, A fast flexible ink-jet printing method for patterning dissociated neurons in culture[J], Joumal of Neuroscience Methods 2004,136:151-163
    [21] P.Calvert, Inkjet Printing for Materials and Devices[J], Chem. Mater. 2001,13:3299-3305
    [22] Bao, Z. R.; John, A.; Katz, Howard E. Printable organic and polymeric semiconducting materials and devices[J], J. Mater. Chem. 1999, 9:1895-1904.
    [23] Bao, Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits[J], Adv. Mater. 2000, 12:227-230.
    [24] B.A. Ridley, B. Nivi, J.M. Jacobson, All-Inorganic Field Effect Transistors Fabricated by Printing[J], Science 1999,286: 746-749.
    [25] N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors[J] Science 2003,299:1881-1884.
    [26] Halloran, J. W. Br[J]. Ceram. Trans. 1999,98:299-303.
    [27] G. MacBeath, S.L. Schreiber, Printing Proteins as Microarrays for High-Throughput Function Determination[J], Science 2000,289:1760-1763.
    [28] H.O. Jacobs, G.M. Whitesides, Submicrometer Patterning of Charge in Thin-Film Electrets[J], Science 2001,291:1763-1766.
    [29] E. Tekin, B. de Gans, U.S. Schubert, Ink-jet printing of polymers-from single dots to thin film libraries[J], J. Mater. Chem. 2004,14:2627-2632.
    [30] F. Xu, T. Wang, W. Li, Z. Jiang, Preparing ultra-thin nano-MnO2 electrodes using computer jet-printing method[J], 2003,375:247-251.
    [31] Y.M. Zhao, Q. Zhou, L. Liu, J. Xu, M.M. Yan, Z.Y. Jiang, A novel and facile route of ink-jet printing to thin film SnO_2 anode for rechargeable lithium ion batteries[J], Electrochimica Acta 2006, 51:2639-2645
    [32] U.Kohler, C.Antonius, P.Bauerlein, Advances in alkaline batteries[J], J. Power Source 2004,127:45-52
    [33] X.J.Han, P.Xu, C.Q.Xu, L.Zhao, Z.B.Mo, T.Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes[J], Electrochimica Acta 2005,50:2763-2769
    [34] R.Barnard, C.L.Randell, F.L. Tye[J], J. Appl. Electrochem. 1980,10:109
    [35] S.Motupally, C.C.Streiz, W.J.Weidner, Proton Diffusion in Nickel Hydroxide[J],J. Electrochem. Soc. 1998,145:29-34
    [36] X.H.Liu, L.Yu, Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature[J], Materials Letters 2004,58: 1327-1330
    [37] Q.S.Song, C.H.Chiu, S.L.I.Chan, Performance improvement of pasted nickel electrodes with an addition of ball-milled nickel hydroxide powder[J], Electrochimica Acta 2006, 51:6548-6555
    [38] L.Demourgues-Guerlou, C.Delmas, Structure and properties of precipitated nickel-iron hydroxides[J], J. Power Source 1993,45:281-289
    [39] X.Y.Guan, J.C. Deng, Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes[J], Materials Letters 2006, 61:621-625
    [40] D.L.Chen, L.Gao, A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide[J], Chem.Phys.Lett. 2005,405:159-164
    [41] P.Jeevanandam, Y.Koltypin, A.Gedanken, Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method[J], Nano Lett. 2001,1:263-266
    [42] W.Xing, F.Li, Z.F.Yang, G.Q.Lu, Synthesis and electrochemical properties of mesoporous nickel oxide[J], J. Power Source 2004,134:324-330
    [43] M.S.Kim, T.S.Hwang, K.B.Kim, A Study of the Electrochemical Redox Behavior of Electrochemically Precipitated Nickel Hydroxides Using Electrochemical Quartz Crystal Microbalance[J], J. Electrochem. Soc. 1997,144:1537-1543
    [44] H.Chen, J.M.Wang, T.Pan, H.M.Xiao, J.Q.Zhang, C.N.Cao, Effects of high-energy ball milling (HEBM) on the structure and electrochemical performance of nickel hydroxide [J], International Joural of Hydrogen Energy 2003,28: 119-124
    [45] S.A.Chen, W.H.Leng, J.Q.Zhang, C.N.Cao, Electrochemical properties of the pasted nickel electrode using surface modified Ni(OH)_2 powder as active material[J], J. Power Source 2001,101:248-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700