上海郊区不同作物及轮作农田氮磷流失风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田氮磷流失是造成农业面源污染的主要原因之一。只有了解农田氮磷流失风险才能有效地控制农田氮磷流失。由于农田氮磷流失风险既受降雨过程影响,又受点位特征(site-specific)的影响。而不同点位农田的作物类型、轮作类型不同,其施肥期、施肥量、施肥方式、土壤养分含量、农田植被覆地和农田排灌方式等特征也各不相同,由此导致的农田氮磷流失风险也不同。此外,降雨与农田氮磷流失过程在各个季节和不同年份变化很大,因此开展多点位、多种作物的连续监测对于研究不同作物及轮作农田的氮磷流失风险是非常必要的。
     为了解不同作物及轮作农田的氮磷流失风险,本研究从2002年底至2005年底,在上海郊区进行了43个农田定位试验(每定位农田监测2-11收获季),对总计50种作物216茬次的土壤养分含量、肥料投入情况、作物养分带出和农田管理等情况进行了监测。按照耕作方式定位试验共分为五种作物类型,分别代表大田作物类、旱作蔬菜类、水生蔬菜类、水果类和草皮类;按照轮作方式分为五种轮作类型,为:大田作物-大田作物轮作,蔬菜-蔬菜轮作,蔬菜-大田作物轮作,果树单作,草皮单作。同时从2005年4月到2005年12月对五类作物中的12块农田地下水和渗漏水的氮磷浓度进行了定期监测。主要结果如下:
     五类作物农田地下水、渗漏水的水溶性总磷的浓度变化范围为0.2-2.69 mg·kg~(-1),大小依次为果树>草皮>水生蔬菜>旱作蔬菜>大田作物。农田地下水和渗漏水的水溶性总磷浓度与当季农田磷养分表观盈亏量呈显著正相关,而农田磷养分表观盈亏量又与表层土壤(0-30 cm)Olsen-P的含量呈显著正相关。收获时农田土壤Olsen-P含量随土层的加深而逐渐降低,且表层土壤Olsen-P累积占0-90 cm总积累量的52.0%-76.6%。因此,多年农田磷养分盈余会导致表层土壤Olsen-P积累,引起地下水和渗漏水磷浓度升高,增大了磷流失的风险。
     五类作物农田地下水、渗漏水的硝态氮、铵态氮和水溶性总氮的浓度变化范围分别为0.4-119.8 mg·kg~(-1),0.2-5.4 mg·kg~(-1),2.4-138.5 mg·kg~(-1),其中果树农田各种氮浓度均最高。农田地下水和渗漏水的硝态氮浓度和水溶性总氮浓度与农田氮养分表观盈亏量基本无相关性,这可能与降雨条件、硝态氮的强移动性有关。收获时农田土壤铵态氮和硝态氮含量随土层的加深而逐渐降低,且表层土壤(0-30 cm)速效氮累积占0-90 cm累积的46.6%-78.6%,同时农田氮养分表观盈亏量与表层土壤铵态氮和硝态氮累积呈显著正相关。因此多年农田氮养分盈余会导致表层土壤铵态氮和硝态氮积累,但由于降水的偶然性,引起地下水和渗漏水硝态氮和铵态氮浓度变化的不确定。
     不同作物及轮作类型农田施肥差异引起农田养分表观平衡显著变化。对于五类作物而言,水生蔬菜氮、磷养分年盈余量最大,分别为1405.3 kg N·hm~(-2)·a~(-1)、744.6 kg P_2O_5·hm~(-2)·a~(-1),其次为果树、旱作蔬菜,草皮氮养分盈余量最少,为84.0 kg N·hm~(-1)·a~(-1),而大田作物磷养分却表现为亏缺,为-11.0 kg P_2O_5·hm~(-2)·a~(-1)。对于5种轮作类型而言,菜菜轮作农田氮磷养分盈余量分别为763.6 kgN·hm~(-2)·a~(-1),528.8 kg P_2O_5·hm~(-2)·a~(-1),果树单作农田氮磷养分盈余量分别为418.1 kg N·hm~(-2)·a~(-1),380.2kg P_2O_5·hm~(-2)·a~(-1),作物轮作农田氮磷养分亏缺量分别为-6.7 kg N·hm~(-2)·a~(-1),-84.2 kg P_2O_5·hm~(-2)·a~(-1)。
     对监测时间(2002-2005年)内43块定位农田216茬次作物的施肥次数、施肥量和降水过程的分析表明:大田作物生育期内月均施肥次数为0.42-0.75次,水生蔬菜和旱作蔬菜月均施肥次数分别是大田作物的1.6-1.7倍和1.2-2.2倍,水生蔬菜、旱作蔬菜的施肥量分别是大田作物的4.6-13.4
     倍和1.5-6.0倍;汛期次均降水量与非汛期相比差异较大,非汛期为19.6 mm,汛期却达到了31.4mm。综合以上三方面因素,故在该研究区域内,水生蔬菜、旱作蔬菜农田比大田作物的氮磷流失风险大,汛期比非汛期流失风险大。
     根据三年不同作物及轮作农田养分表观平衡结果,结合观测期间内的降雨、种植季节、作物覆盖等各种因素,对试区不同作物及轮作农田的氮磷流失风险进行了综合评价。不同作物农田氮磷流失风险评价结果表明:菜瓜、毛豆、莲藕、香葱等作物农田的氮磷流失风险比较小,而梨、芋头、葡萄、杭椒、秋茭白、韭菜等作物农田的氮磷流失风险大。不同轮作的氮磷流失风险评价结果表明:轮作茬次少和养分盈余量少的草皮单作等模式农田的氮磷流失风险较小,而施肥高且盈余量高的菜菜轮作和菜作轮作等模式农田的氮磷流失风险相对较大。
Nitrogen and phosphorous losses from farmland have been identified as one of important causative factors for agricultural non-point source pollution. Only if understanding the risk of nitrogen and phosphorus losses from agricultural land, we can effectively control the losses of nitrogen and phosphorus from farmland. Risk of nitrogen and phosphorus losses varies with not only precipitation processes but also site-specific characteristics. There are different crop and rotation types in different site-specific location, time of application, application rate, fertilization pattern, soil available nutrient, cultivation systems, irrigation and drainage conditions etc., can result in different risk of nitrogen and phosphorus losses from different farmlands. Rainfall variability in different seasonal and inter-annual is also very strong. So it is necessary that continuous monitoring for many site-specific farmlands and many crops to study the risk of nitrogen and phosphorus losses from the farmland of different crops types and rotation patterns.
     To study the risk of nitrogen and phosphorus losses from different crop and rotation farmlands, 43 representative farmlands including differential crop types, fertilization, soil, irrigation and drainage conditions etc., were selected as monitoring site-specific locations in Shanghai suburb area. Soil nutrient content, plant nutrient absorption, nutrient (N, P and K) input and field management by 50 varieties of crops including 216 harvest seasons were monitored from 2003 to 2005. These farmlands represent 5 main crop types: fruit type, greensward type, hydrophily vegetable type, dry vegetable type and field crop type according to cultivate patterns. These farmlands also represent 5 types of planting patterns: the fruit tree monoculture, the vegetable-vegetable rotation, the vegetable-crop rotation, the greensward only and the crop-crop rotation according to rotation patterns. The N, P and K concentrations of ground water and leaching water were also determined in 11 site-specific locations. The main results are as follows:
     The range of TDP concentrations of ground water and leaching water for 5 types crop farmland were 0.2-2.69 mg·kg~(-1). The tendency of TDP concentrations of ground water and leaching water is as follows, fruit type >greensward type > hydrophily vegetable type > dry vegetable type > field crop type. Phosphorus nutrient surpluses of the farmland soil of different crop farmland soil have significant positive correlation with the mean concentrations of TDP in the groundwater and leaching water. P nutrient surpluses of different crop farmland soil are positively correlated with corresponding contents of available Olsen-P in the surface soil (0-30 cm) after harvest. Contents of soil available Olsen-P after harvest are gradually decreased with the depth increasing of soil profile in the farmlands of different crop and different planting patterns, and the accumulations of soil surface (0-30 cm) available Olsen-P in different crop farmlands account for 52.0%-76.6% of those of soil profile (0-90 cm). So P surpluses of farmland will result in the non-balance of farmland soil, then Olsen-P is accumulated in the soil surface, and more Olsen-P in the soil surface can move into the groundwater and leaching water, accordingly increase the risk of phosphorus losses.
     The range of NO_3~--N, NH_4~+-N and TDN concentrations of ground water and leaching water for 5 types crop farmland were respectively 0.41-119.81 mg·kg~(-1), 0.21-5.40 mg·kg~(-1), 2.39-138.51 mg·kg~(-1). The concentration of various nitrogen in fruit fields are the highest. Nitrogen nutrient surface balance of the farmland soil are not well correlated with NO3-N and TDN concentration in the groundwater and leaching water, whereas nitrogen surface surpluses of farmland soil are positively correlated with NH_4~+-N concentration, which may be related to rainfall conditions and the strong mobile NO_3~--N. Contents of soil available NH_4~+-N, NO_3~--N after harvest are gradually decreased with the depth increasing of soil profile, and the accumulations of soil surface (0-30 cm) available NH_4~+-N and NO_3~- -N account for 46.6%-78.6% of those of soil profile (0-90 cm). N nutrient surpluses of farmlands of different crop farmlands are positively correlated with corresponding contents of available NH_4~+-N, NO_3~- -N in the surface soil (0-30 cm) after harvest. The more the N nutrient surpluses of farmland are, the more the concentrations of corresponding available NH_4~+-N and NO_3~- -N in the farmland are. But NO_3~- -N and NH_4~+ -N concentrations of ground water and leaching water change indefinitely for the chanciness of precipitation.
     Different fertilization of different crop and rotation farmlands results in significant differences of nutrient apparent balance. For different crops, N and P (P_2O_5) surplus of hydrophilic vegetables are the most, 1405.3 kg·hm~(-2)·a~(-1) and 744.6 kg·hm~(-2)·a~(-1) respectively, and the fruit and dry vegetables are the second, and grain crops and greensward are the least. N surplus of greensward is only 84.0 kg·hm~(-2)·a~(-1) and P (P_2O_5) deficit of grain crops is 11.0 kg·hm~(-2)·a~(-1). For different planting patterns, N and P (P_2O_5) surplus of the vegetable-vegetable rotation are respectively 763.6 kg·hm~(-2)·a~(-1) and 528.8 kg·hm~(-2)·a~(-1). N, P (P_2O_5) surplus of the fruit tree monoculture are respectively 418.1 kg·hm~(-2)·a~(-1), 380.2 kg·hm~(-2)·a~(-1). N, P (P_2O_5) deficit of the crop-crop rotation are respectively 6.7 kg·hm~(-2)·a~(-1), 84.2 kg·hm~(-2)·a~(-1).
     During monitoring time, frequency of application, the quantity of fertilizer and the precipitation process of 216 stubble crops in 43 GPS localization farmland were statistically analyzed. Monthly meanly frequency of application in crop farmlands is 0.24-0.75. Monthly meanly frequency of application in hydrophytic vegetable and dry vegetable farmland respectively are 1.6-1.7 times and 1.2-2.2 times than those of crop farmlands, and monthly application rate in hydrophytic vegetable and dry vegetable farmland growing period respectively are 4.6-13.4 times and 1.5-6.0 times those of crop farmlands whether all-year or flood and non-flood season. Each rainfall is one of the major different precipitation characteristic in the flood and Non-flood season. Each rainfall in flood season varies with that in non-flood season, each rainfall in non-flood season is 19.6mm, and that in flood season is 31.4mm. Therefore, in the study area, corresponding with that, N and P losses risk of hydrophytic vegetable and dry vegetable farmland are obviously higher than those of grain crop farmlands when precipitation occurs. The probability of nitrogen and phosphorus losses from farmlands is more in flood season than in non-flood season.
     Combined with the coupling between fertilizer and rainfall, seasons when non-point pollution easily happens and vegetation mulching period, the environmental effects of different crop farmlands and planting pattern farmlands in Shanghai suburb are analyzed according to nutrient balance of different crop farmlands and planting pattern farmlands over the past three years. The results show that some crops have the small risk of nitrogen and phosphorus losses, for example, long crooked squash, green soy bean, lotus root, shallot et al., but other crops have the relatively high risk of nitrogen and phosphorus losses, for example, Zizaniz Latifolia, taro, pear, leek and so on. For different planting patterns, the vegetable-vegetable rotation, the fruit tree monoculture and the vegetable-crop rotation are easier to result in the losses of nitrogen and phosphorus than the greensward only and the crop-crop rotation.
引文
1.毕晓丽,洪伟.生态环境综合评价方法的研究进展.农业系统科学与综合.2001,17(2):122-124.
    2.曹凤进,王志进,朱建桦.农田肥料投入监测与养分平衡分析.土壤肥料,2002,(2):18-21.
    3.陈欣,王兆骞,杨伍德,叶旭君.红壤小流域坡地不同土地利用方式对土壤磷素流失的影响.生态学报,2000,20(3):374-377.
    4.陈振德,程炳嵩.蔬菜中的硝酸盐及其与人体健康.中国蔬菜.1988,(1):40-42.
    5.陈振德.不同收获期对蔬菜硝酸盐含量的影响.中国蔬菜.1989,(2):8-10.
    6.陈中江.土地生态经济系统分析与经济调整.华中农业大学经济系,1988.
    7.段咏新,付庭治.氮磷钾肥施用对蔬菜中硝酸盐积累的数学模型.生态学杂志.1993,12(6):34-36.
    8.段永惠,张乃明,洪波,陈建军.滇池流域农田土壤氮磷流失影响因素探析.中国生态农业学报,2005,13(2):116-118.
    9.冯锋,张福锁,杨新泉编著.植物营养研究-进展与展望.同延安,氮肥与环境.中国农业出版社,2000:207-215.
    10.高超,朱继业,朱建国等,极端降水事件对农业非点源污染物迁移的影响.地理学报,2005(60):991-997.
    11.龚元石,李保国.应用农田水量平衡模型估算土壤水渗漏量.水科学进展.1995,6(1):16-21.
    12.龚元石.冬小麦和夏玉米农田土壤分层水分平衡模型.北京农业大学学报.1995.21(1),61-67.
    13.顺永明,汪寅虎,陈春宏,柯福源,张明芝.上海郊区农田养分平衡状况的宏观分析.土壤通报,1994,25(7):41-44.
    14.何康,刘瑞龙.中国农业百科全书(农业化学卷),北京:农业出版社,1996
    15.何康,刘瑞龙.中国农业百科全书(农业化学卷),北京:农业出版社,1996.
    16.何天秀,何成辉,吴德意.蔬菜中硝酸盐含量及其与钾含量的关系.农业环境保护,1992,11(5):209-211.
    17.何园球,红壤农业生态系统水分循环、平衡及其调控,土壤,1998(1):20-26a
    18.何园球,黄小庆.红壤农业生态系统养分循环、平衡和调控研究.土壤学报.1998,35(4):501-509b.
    19.贺宝根,周乃晟等,农田降雨径流污染模型探讨—以上海郊区农田氮素污染模型为例,长江流域资源与环境,2001,10(2):160-165.
    20.胡雪峰,许世远等,上海市郊中小河流氮磷污染特征,环境科学,2001,22(6):66-71.
    21.黄建国,袁玲.重庆市蔬菜硝酸盐、亚硝酸盐含量及其与环境的关系.生态学报,1996,16(4):383-388.
    22.黄绍文,金继运,左余宝,杨俐苹,程明芳.农田土壤养分平衡状况及其评价的试点研究.土壤肥料,2000(6):14-19.
    23.黄沈发,陆贻通,沈根祥,唐浩.上海郊区旱作农田氮素流失研究.农村生态环境.2005,21 (2):50-53.
    24.黄沈发,沈根祥,唐浩,陆贻通.上海郊区稻田氮素流失研究.环境污染与防治.2005,27(9):651-654.
    25.冀宏杰.过量施用氮肥对北京市蔬菜硝酸盐含量影响的综合评价.[硕士学位论文]:河北农业大学,1999.
    26.江苏太湖地区农田生态协作研究组,江苏太湖地区几种种植制度的物质循环状况,土壤通报,1983(3):24-26.
    27.巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究.中国农业科学,2002,35(11):1361-1368.
    28.巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境.2003,12(1):24-28.
    29.康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究.干旱地区农业研究.1998,16(4):21-28.
    30.李宝珍,王正银,李会合,张浩.叶类蔬菜硝酸盐与矿质元素含量及其相关性研究.中国生态农业学报.2004,12(4):113-116.
    31.李翠萍,续勇波,李永梅,郑毅,张维理,刘宏斌.滇池湖滨带设施蔬菜、花卉的农田养分平衡.云南农业大学学报,2005,20(6):804-809.
    32.李家康,林葆,对我国化肥施用前景的剖析.第九届钾素讨论会论文集,2000.
    33.李俊然,陈利项,郭旭东,傅伯杰.土地利用结构对非点源污染的影响.中国环境科学,2000,20(6):506-510.
    34.李世清,李生秀.水肥配合对玉米产量和肥料效果的影响.干旱地区农业研究.1994,12(1):47-53.
    35.李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应.植物营养与肥料学报.2000,6(4):383-388.
    36.林青慧.黄浦江上游水源保护区不同农田种植模式的环境效应研究:硕士学位论文.北京:中国农业科学院,2004.
    37.刘方,何腾兵,钱晓钢,罗海波,舒英格.不同利用方式下黄壤旱坡地磷素状况及环境影响.土壤与环境,2002,11(3):232-236.
    38.刘宏斌,施肥对北京市农田土壤硝态氮累积与地下水污染的影响:[博士学位论文].北京:中国农业科学院,2002.
    39.刘可认,任建强,甄兰.蔬菜硝酸盐累积及其影响因素的研究.土壤通报.2003,34(4):356-361.
    40.刘世平,庄恒扬等,苏北轮作轮耕轮培优化模式研究,江苏农学院学报,1996,17(4):31-37.
    41.刘穗.蔬菜施肥与硝酸盐含量.长江蔬菜,1992,(6):45.
    42.刘晓宏,田梅霞等,黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与积累,土壤肥料,2001(1):9-12
    43.刘元昌,徐琪.江苏省太湖地区养分循环平衡状况的初步探讨,生态学杂志,1984(3):12-16.
    44.刘远金,卢瑛,陈俊林等.广州城郊菜地土壤磷素特征及流失风险分析.土壤与环境,2002, 11(3):237-240.
    45.卢善玲,周根娣等.施肥对蔬菜中硝酸盐含量的影响.上海环境科学,1988,7(9):19-21.
    46.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅰ.农田养分支出参数.土壤通报.1996,27(4):145-151.
    47.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅱ.农田养分收入参数.土壤通报.19962,27(4):151-154.
    48.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状.土壤通报.1996,27(5):193-196.
    49.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则.土壤通报.1996,27(5):197-199.
    50.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅴ.农田养分平衡和土壤有效磷、钾消长规律.土壤通报.1996,27(6):241-242.
    51.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33(2):63-67.
    52.鲁如坤.土壤磷素水平和水体环境保护.磷肥与复肥,2003,18(1):4-8.
    53.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.308-316.
    54.鲁如坤等著.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    55.陆敏,刘敏,黄明蔚,茅国芳.大田条件下稻麦轮作土壤氮素流失研究.农业环境科学学报.2006,25(5):1234-1239.
    56.骆伯胜,张秉刚,钟继洪等.南亚热带丘陵土壤水分循环及其有效性的研究Ⅲ降雨入渗与地表径流.热带亚热带土壤科学,1998,7(2):116-120.
    57.马朝红,方建坤.蔬菜土壤养分积累状况与环境风险.长江蔬菜.2000,12:43-45.
    58.马立珊,汪祖强等,苏南太湖水系农业非点源污染及其控制对策研究,环境科学学报,1997,17(1):39-47.
    59.孟庆华,傅伯杰,邱扬,黄土丘陵沟壑区不同土地利用方式的径流及磷流失研究.自然科学进展,2002,12(4):393-397.
    60.孟庆华,杨林章,三峡库区不同土地利用方式的养分流失研究,生态学报,2000,20(6):1028-1033.
    61.潘根兴等,低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响.环境科学.2003,24(3):91-95.
    62.秦祖平,徐琪,熊毅,太湖地区两种稻麦轮作制中营养元素的循环Ⅰ稻麦作物中养分的移出与残留.生态学报,1989,9(3):245-251.
    63.邱界娟.茭白生长过程中养分运移规律的研究.[硕士学位论文]:江苏扬州:扬州大学,2002.
    64.邱卫国,唐浩 王超.上海郊区水稻田氮素渗漏流失特性及控制对策.中国环境科学.2005,25(5):558-562.
    65.邱卫国,唐浩 王超.上海郊区水稻田氮素渗漏流失特性及控制对策.中国环境科学.2005,25(5):558-562.
    66.邱孝煊,黄东风,蔡顺香,陈锋,蔡元呈.施肥对蔬菜硝酸盐累积的影响研究.中国生态农 业学报.2004,12(2):111-114.
    67.上海年鉴编纂委员会.上海年鉴(2003),上海:上海年鉴社,2003.
    68.沈明珠,翟宝杰,东惠茹,李俊国.蔬菜硝酸盐累积的研究Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价.园艺学报,1982,9(4):41-48.
    69.宋春梅.农作系统养分平衡的研究.硕士学位论文.北京:中国农业大学,2004.
    70.汪德水.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,272-276.
    71.汪雅各.上海农业环境污染研究.上海:上海科学技术出版社.1991,645-647.
    72.王朝晖,李生秀.蔬菜不同器官的硝态氮与水分、全氮、全磷的关系.植物营养与肥料学报.1996,2(2):144-152.
    73.王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002,23(3):79-83.
    74.王翠红,黄启为,周卫军,冯跃华,张杨珠.叶菜类蔬菜硝酸盐含量及其与土壤肥力因素的关系.生态环境.2005,14(2):218-219.
    75.王方桃,上海郊区农田生态系统的养分循环和施肥,生态学杂志,1985(6):25-28.
    76.王建国,王德禄,王守宇等.黑龙江农田养分平衡和养分水平的动态变化.农业系统科学与综合研究,2000,16(2):124-127.
    77.王晓丽,李降,江荣风等,玉米/空心菜间作降低土壤及蔬菜中硝酸盐含量的研究.环境科学学报,2003,23(4):463-467.
    78.王晓燕,胡秋菊等,密云水库流域降雨径流土壤中氮磷流失规律—以石匣试验区为例,首都师范大学学报(自然科学版),2001,22(2):79-85.
    79.吴荣兰,浙北丘陵山地梨—旱稻复合生态系统氮、磷元素循环研究.硕士学位论文.杭州:浙江大学.2003.
    80.肖厚军,阎献芳,彭刚.贵阳市主要蔬菜硝酸盐含量状况与氮磷钾养分的关系.农业环境保护,2001,20(6):449-451.
    81.谢大海,殷新佑,戚昌潞等,双季稻农田生态系统经济效益与生态效率分析及模型研究.Ⅱ.不同种植模式的投入产出模拟模型的比较分析,江西农业大学学报,2001,23(1):29-35.
    82.谢海霞,全球红葡萄需肥规律及其高产、优质、高效施肥研究.硕士学位论文.乌鲁木齐:新疆农业大学,2005.
    83.许健民,闻大中等.我国主要类型农业地区农田生态系统多样性的研究.应用生态学报,1997,8(1):37-42.
    84.姚春霞,陈振楼,陆利民,许世远,范斌,侯晶.上海市郊菜地土壤和蔬菜硝酸盐含量状况.水土保持学报.2005,19(1):84-88.
    85.姚春霞,陈振楼,陆利民,侯晶,陈华,杨红霞.上海市郊蔬菜硝酸盐含量及评价.生态环境.2005,14(3):365-368.
    86.张大弟,张晓红,章家骐,沈根祥.上海郊区非点源污染综合调查评价.上海农业学报,1997,13(1):31-36.
    87.张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报.1998,4(4):331-338.
    88.张国祥,杨居荣.综合指数评价法的指标重叠性与独立性研究.农业环境保护.1996,15(5): 213-217.
    89.张漱茗,闫华,江丽华,刘兆辉.钾肥对蔬菜产量、品质和硝酸盐含量的影响.肥料与农业发展国际学术讨论会论文集.中国农业科技出版社.北京:1995,482-484.
    90.张维理,田哲旭等,我国北方农用氮肥造成地下水硝酸盐污染的调查,植物营养与肥料学报,1995,1(2):85-87.
    91.张维理,冀宏杰,Kolbe H.,徐爱国.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004,37(7):1018-1025.
    92.张维理,武淑霞,冀宏杰,Kolbe H..中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017.
    93.张锡洲,李廷轩,杨玉国,张仁绥.四川盆地丘陵区农田养分平衡研究.四川农业大学学报,2003,21(2):152-156.
    94.张志勇,规模化和农户葡萄园施肥与养分循环、平衡的研究.硕士学位论文.保定:河北农业大学.2004.
    95.赵静,白清云,帕尼古丽,戴晓华.钼对降低蔬菜硝酸盐积累的效应研究.农业环境保护,2001,20(4):238-239.
    96.赵琳,李世清,李生秀,张兴昌,吕丽红,邵明安.半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用.干旱地区农业研究.2004,22(4):14-20.
    97.赵强基,袁从祎等,江苏太湖地区几种作物和种植制度的农田生态功能,江苏农业科学,1982(2):1-6.
    98.中国农业科学院土壤肥料研究所,太湖农业非点源污染i岗查项目总结汇报,2003.
    99.中国统计局农村社会经济调查总队,中国农业统计年鉴,1998.
    100.周健民,农田养分平衡与管理,海南大学出版社,2000.
    101.周梅素,郭东龙,林培华.太原市市售蔬菜硝酸盐含量及其对健康影响评价.山西大学学报(自然科学版).2001,24(4):362-364.
    102.周顺利,土壤硝态氮时空变异与土壤氮素表观盈余Ⅱ.夏玉米.生态学报,2002,22(1):48-53.
    103.周永祥,袁玲.小白菜叶片硝酸盐与矿质元素含量的研究.西南农业大学学报.2000,22(3):253-256,260.
    104.朱兆良,农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    105.朱兆良,文启孝主编,中国土壤氮素.江苏科学技术出版社.南京:1990.
    106.Adolf Krauss,全球范围的养分循环与迁移,第九届钾素讨论会论文集,2000.
    107. Alvarez R, Steinbach H. S., Grigera S. M., Cartier E., Obregon G., Torri S., Garcia R. The Balance Sheet Method as a Conceptual Framework for Nitrogen Fertilization of Wheat in a Pampean Agroecosystem. Agronomy Journal, 2004, 96(4): 1050-1057.
    108. Anderson I.C., Karlen D.L., Cambardella C.A., Cropping system effects on nitrogen removal, soil nitrogen, aggregate stability, and subsequent corn grain yield, Agronomy Journal, 1997(89): 881-886.
    109. Andraski T.W., L.G. Bundy, K.R. Brye. Crop management and corn nitrogen rate effects on nitrate leaching. Journal of Environmental Quality, 2000, 29: 1005-1103.
    110. Askegaard M.J.Eriksen,J.E.Olesen,Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand.Soil Use and Mangement.2003,19:96-103.
    111. Beauchemin S.and R.R.Simard.Soil phosphorus saturation degree:Review of some indices and their suitability for P management in Québec,Canadian Journal of Soil Science(Canada),1999,79:615-625.
    112. Benjamin L.Turner,Mary A.Kay,Dale T.Westermann,Phosphorus in surface runoff from Calcareous arable soils of the semiarid western United States.Journal of Environmental Quality,2004,33:1814-1821.
    113. Bergstrom L.,Nitrate leaching and drainage from annual and perennial crops in tiledrained plots and lysimeters,Journal of Environmental Quality,1987,16:11-18.
    114. Berry P.M.,Stockdale E.A.,et al.,N,P and K budgets for crop rotations on nine organic farms in the UK,Soil Use and Management 2003(19) 112-118.
    115. Blake,L.,Mercik S.,Koerschens M,Moskal S.,Poulton P.R.,Goulding K.W.T.,Weigel A.,Powlson D.S.,Phosphorus concent in soil,uptake by plants and balance in three European long-term field experiments,Nutrient Cycling in Agroecosystems,2000,56:263-275.
    116. Bolinder M.A.,R.R.Simard,S.Beauchemin and K.B.Macdonald Indicator of risk of water contamination by P for soil landscape of Canada polygons using an indexing approach.Canadian Journal of Soil Science(Canada),2000,80:153-163.
    117. Borlaug N.E.,Dowswell C.R.et al.Feeding a human population that increasingly crowds a fragile planet.15th World Congress of Soil Science and Mexican Society of Soil Science,1994(10) :10-16.
    118. Bowman.R.A.,D.J.Savory.Phosphorus distribution in calcareous soil profiles of the central plains.Soil Science Society of America Journal,1992,56:423-426.
    119. Breimer T.et al.Environmenral factors and cultural measures affecting the nitrate in Spinach.Fertililzer Resrarch,1982,3:191-192.
    120. Brian A.Needelman,William J.Gburek,Andrew N.Sharpley,and Gary W.Petersen,Environmental Management of Soil Phosphorus:Modeling Spatial Variability in Small Fields.Soil Science Society of America Journal,2001,65:1516-1522.
    121. Bullock D.G.,Crop rotation.Crut.Rev.Plant Science,1992,11:309-326.
    122. Burkart,M.R.,J.D.Stoner.Nitrogen in groundwater associated with agricultural systems.In R.Follett,J.Hatfield.Nitroent in the environment:Sources,problems,and management.Elsevier Sci.,Amsterdam.2001:123-145.
    123. Carefoot,J.P.,Whalen,J.K.,Phosphorus concentrations in subsurface water as influenced by cropping systems and fertilizer sources.Canadian Journal of Soil Science(Canada),2003,83:203-212.
    124. Castillo M.M.,J.D.Allan,S.Brunzell.,Nutrient concentrations and discharges in a Midwestern agricultrural catchment.Journal of Environmental Quality,2000,29:1142-1151.
    125. Clarke R.A.,Stanley CD.,McNeal B.L.,Macleod B.W.,Impact of agricultural land use on nitrate levels in Lake Manatee,Florida.Journal of Soil and Water Conservation,2002,57(2) :106-111.
    126. Daniel T C,Sharply A N,Edwards D R,Wedepohl R,Lemunyon J L.Minimizing surface water eutrophication from agriculture by phosphorus management.Joural of Soil and Water Conservation,1994,49:30-38.
    127. Delgado J A and Mosier A R.Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux.Journal of Environmental Quality,1999,25(6) :1105-1111.
    128. Djodjic Faruk,Katarina Borling,Lars Bergstrom.Phosphorus leaching in relation to soil type and soil phosphorus content.Journal of Environmental Quality,2004,33:678-684.
    129. Djodjic Faruk,Lars Bergstrom.Phosphorus losses from arable fields in Sweden-Effects of field-specific factors and long-term trends.Environmental Monitoring and Assessment.2005,102:103-117.
    130. Djodjic Faruk,Ulen B.Bergstrom L.Temporal and spatial variations of phosphorus losses and drainage in a structured clay soil.Water Resource,2000,34:1687-1695.
    131. Dobermann A et al.Fertilizer inputs,nutrient balance and soil nutrient supplying power in intensive,irrigated rice systems I,Potassium uptake and K balance.Nutrient Cycling in Agroecosystems (Netherlands).1996,46(1) :1-10.
    132. Dverede.C,Krravchenko.A.N,G.Hoeft.R,et al.,Phosphorus Runoff Effect of Tillage and Soil Phosphorus Levels.Journal of Environmental Quality,2003,32(4) :1436-1444.
    133. Elcio L.Balota,Arnaldo Colozzi-Filho,Diva S.Andrade,Richard P.Dick.Microbial biomass in soils under different tillage and crop rotation systems.2003,38:15-20.
    134. Elia,Santamaria P,Serio F.Nitration Nutrition,Yield and Quality of spinach.Food Agriculture,1998,76:341-346.
    135. Elias E.,S.Morse,D.G.R.Belshaw.Nitrogen and phosphorus balances of Kindo Koisha farms in southern Ethiopia.Agriculture,Ecosystems and Environment 1998,71:93-113.
    136. Fortuna A,et al.,Seasonal changes in nitrification potential associated with application of N fertilizer and compost in maize systems of southwest Michigan,Agriculture,Ecosystems and Environment,2003,97:285-293.
    137. Fytianos K.,Zarogiannis P.,Nitrate and nitrite accumulation in fresh vegetables from Greece.Bull.Environ.Contam.Toxicol.1999,62:187-192.
    138. Gabriela R.M.et al.,Nitrogen budget and soil N dynamics after multiple applications of unlabeled or Nitrogen-Enriched dairy manure.Soil Science Society of America Journal,2003,67:817-825.
    139. Gami S.K.,Ladha J.K.,Pathak H.,Shah M.P.,Long-term changes in yield and soil fertility in a twenty-year experiment in Nepal.Biol Fertil Soil,2001,34:73-78.
    140. Gaynor J.D.,Findlay W.I,Soil and Phosphpours loss from conservation and conventional tillage in corn production.Journal of Environmental Quality,1995,27:267-277.
    141. Goodlass G,Rahn C,Shepherd M A et al.The nitrogen requirement of vegetables:comparisons of yield response models and recommendation systems.Journal of Horticultural Science,1997,72 (2) :239-254.
    142. Grant.R.,A.Laubel,B.Kronvang et al.Loss of soluble and Particulate phosphours from arable catchments by subsurface drainge,Water Resource,1996,30:2633-2642.
    143. Gutezeit B.Yield and nitrate content of carrots(Daucus carota L.) as affected by nitrogen supply.Acta Horticulture,1999,506:87-98.
    144. Haygarth,P.M.,Hepworth,and S.C.Jarvis.Forms of phosphours transfer in hydrological pathways from soil under garzed pasture.European Journal Soil Science,1998,49:65-72.
    145. He R X,Wu D Y,He C H et al.Nutrient Balance in Relation to High Yield and Good Quality of Potato on Acid Purple Soil in Chongqing,China.Pedosphere,2001,11(1) :82-92.
    146. Heathwaite,L.,A.N.Sharpley,and W.Gburek.A conceptual approach for integrating phosphorus and nitrogen management at watershed scales.Journal of Environmental Quality,2000,29:158-166.
    147. Heckrath G,Brookes PC,Poulton PR,et al.Phosphors leaching from soils containing different phosphorus concentrations in the Broadbalk experiment.Journal of Environmental Quality,1995,24:904-910.
    148. Hellkamp A.S.,Assessment of the condition of agricultural lands in six Mid-Atlantic States.Journal of Environmental Quality,2000,29:795-804.
    149. Hesketh N.,Brookes,P.C.Development of an indicator for risk of phosphours leaching.Journal of Environmental Quality,2000,29:105-110.
    150. Honeycutt C.W,Crop rotation impacts on potato protein.Plant Foods for Human Nutrition (Formerly Qualitas Plantarum),1998,52:279-291.
    151. Jacques,J.Neeteson.Nitrogen Management for intensively Grown Arable Crops and Field vegetables [A].Nitrogen Fertilization in the Environment[C].New York:Marcel Dekker,Inc.,1995. 295-325.
    152. Jansons,V.,P.Busmanis,I.Dzalbe,D.Kirsteina,Catchment and drainage field nitrogen balances and nitrogen loss in three agriculturally influenced Latvian watersheds,European Journal Agronomy,2003,20:173-179.
    153. Ju X.T.,C.L.Kou,F S.Zhang,P.Christie.Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain.Environmental pollution,2006,143:117-125.
    154. Karlen D.L.,G.E.Varvel,D.G.Bullock,and R.M.Crue,Crop Rotation for the 21st century,1994(53) :1-45.
    155. Kelley,K.W.,J.H.Long Jr.,T.C.Todd.Long-term crop rotations affect soybean yield,seed weight,and soil chemical properties.Field Crops Research.2003,83:41-50.
    156. Kingery W L,Wood C W,Delancy D P,Williams J C,Mullins G L.,Impact of long-term land application of broiler litter on environmentally related soil properties.Journal of Environmental Quality,1994,23:139-147.
    157. Kobayashi,H.,Kubota,T.A study on the spatial distribution of nitrogen and phosphorus balance,and regional nitrogen flow through crop production.Environmental Geochemistry and Health.2004,26(2) :187-198.
    158. Lombin G.The effects of continuous fertilization on nutrient balance and crop yield in the northern Nigerian savannah:a preliminary assessment[using maize].Canadian Journal of Soil Science(Canada),1981,61(1) :55-65.
    159. Lumunyon J L,Gilbert R G.The concept and need for a phosphorus assessment tool.Journal of Production Agriculture,1993,6:483-496.
    160. Lyons D.J.,Rayment G.E.,Nobbs P.E.,McCallum L.E.,Nitrate and nitrite in fresh vegetables form Queensland.Journal of the Science of Food and Agriculture 1994,64(3) :279-281.
    161. Malhi S.S.,Brandt S.A.et al.,Alternative cropping systems in the Canadian Prairies:Influence of Input Level,cropping diversity and Crop Species on Distribution of Nitrate-N and Extractable P in the Soil Profile after 8 Years Under Various Croppping Systems (abstract).The Third Nitrogen international Meeting.2004.
    162. Nyborg,M.,Solberg,E.D.,Izaurral,R.C.,Malhi,S.S.,Molina-Ayala,M.,Influence of long term tillage,straw,and N fertilizer on barley yield,plant N uptake and soil-N balance.Soil Till.Res.1995,36,165-174.
    163. McCollum R.E.,Buildup and decline in soil phosphorus:30-year trends on a typic umprabuult.Agronomy Journal,1991,83:77-85.
    164. McDowell,R.W.,A.N.Sharpley,D.B.Beegle,and J.L.Weld.Comparing phosphorus management strategies at a watershed scale.Journal of Soil and Water Conservation,2001,56(4) :306-315.
    165. Myhr K.The Kvithamar field Isysimeter Ⅲ Barley yield and nutrient balance.Norwegian Journal of Agricultural Sciences (Norway),1996,10(4) :469-480.
    166. Neeteson J.J.Development of Nitrogen Fertilizer Recommendations for Arable Crops in the Netherlands in Relation to Nitrate Leaching.Fertilizer Resource,1990,26:291-298.
    167. Nevens F,Reheul D.Crop rotation versus monoculture;yield,N yield and ear fraction of silage maize at different levels of mineral N fertilization.Netherlands Journal of Agricultural Science,2001,49:405-425.
    168. OECD/EUROSTAT,2003. Gross Nitrogen Balances.Handbook.December 2003. http://webdomino 1. oecd.org/comnet/agr/aeiquest.nsf.
    169. Olness A E,Smith S J,Rhoades E D,Menzel R G.Nutrient and sediment discharge from agricultural watersheds in Oklahoma.Journal of Environmental Quality,1975,4:331-336.
    170. Owens L.B.,W.M.Edwards,M.J.Shipitalo.Nitrate leaching through lysimeters in a corn-soybean rotation.Soil Science Society of America Journal,1995,59:902-907.
    171. Owens,L.B,Edwards W.M,Van Keuren R.W.Nitrate leaching from grassedly some streated with ammonium nitrate or slow-release nitrogen fertilizer.Journal of Environmental Quality,1999,28:1810-1816.
    172. Parris,K.,Agricultural nutrient balances as agri-environmental indicators:an OECD perspective.Environmental Pollution,1998,102:219-225.
    173. Peterburgskii A.V.,Nikiforova I.P.,et al.Nutrient balance and soil productivity in the Severo-Osetia.Soviet Agricultural Sciences(USA),1981(6) :32-34.
    174. Pote D.H.,Daniel T.C.,Nichols D.J.,et al.,Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff.Journal of Environmental Quality,1999,28:170-175.
    175. Pote,D.H.,T.C.Daniel,A.N.Sharpley,P.A.Moore,Jr.,D.R.Edwards,and D.J.Nichols.Relating extractable soil phosphorus to phosphorus losses in runoff.Soil Science Society of America Journal,1996,60:855-859.
    176. Randall G.W.,D.R.Huggins,M.P.Russelle,et al.,Nitrate losses through subsurface tile drainage in CRP,alfalfa,and row crop systems.Journal of Environmental Quality,1997,26:1240-1247.
    177. Santamaria P,Elia A,Serio F et al.A survery of nitrate and oxalate content in fresh vegetables.Journal of the Science of Food and Agriculture,1999,97(13) :1882-1888.
    178. Sauer T.J.,R.B.Alexander,J.V.Brahana,R.A,Smith.The importance and role of watersheds in the transport of nitrogen.In R.Follett and J.Hatfield(ed) Nitrogen in the environment:Sources,problems,and management.Elsevier Sci.,Amsterdam.2001,147-181.
    179. Schilling K.E.,R.D.Libra.The relationship of nitrate concentrations in streams to row crop land use in Iowa.Journal of Environmental Quality,2000,29:1846-1851.
    180. Sharpley AN.Smith S J,Jones O R,Berg W A,Coleman G A.The transport of bioavailable phosphorus in agricultural runoff.Journal of Environmental Quality,1992,21:30-35.
    181. Sharpley A N,Smith S J.Prediction of soluble phosphorus transport in agricultural runoff.Journal of Environmental Quality,1989,18:313-316.
    182. Sharpley A.N.,Chapra S.C.Wedepohle R,et.al Managing agricultural phosphours for protection to surface water:issues and options.Journal of Environmental Quality,1994. 23:437-451.
    183. Sharpley A.N.,Identifying sites vulnerable to phosphorus loss in agricultural runoff.Journal of Environmental Quality,1995,24:947-951b.
    184. Sharpley A.N.,T.C.Daniel,J.T.Sims,and D.H.Pote.Determining environmentally sound soil phosphorus levels.Jounal of Soil and Water Conservation 1996,51(2) :160-166.
    185. Sharpley,A.N.,Soil phosphorus dynamics:agronomic and environmental impacts.Ecological Engineering 1995,5:261-279a.
    186. Sieling,K.,H.Kage,N balance as an indicator of N leaching in an oilseed rape-winter wheat-winter barley rotation.Agriculture,Ecosystems and Environment,2006,115:261-269.
    187. Sims J.T.,A.C.Edwards,O.F.Schoumans,R.R.Simard.Integrating soil phosphorus testing into environmentally based agricultural management practices.Journal of Environmental Quality,2000,29:97-105.
    188. Sims,J.T.,A.C.Edwards,O.F.Schoumans,and R.R.Simard.Integrating soil phosphorus testing into environmentally-based management practices.Journal of Environmental Quality,2000, 29:60-71.
    189. Siomos A S,Dogras C C.Nitrates in vegetables produced in Greece.Journal of Vegetable Crop Production,1999,5(2) :3-13.
    190. Smith V.H.,G.D.Tilman,J.C.Nekola.Eutrophication:impacts of excess nutrient imouts on freshwater,marine,and terrestrial ecosystems.Environmental Pollution,1999,100:179-196.
    191. Smith,K.A.,A.G.Chalmers,B.J.Chalmers,and P.Christie.Organic manure hosphorus accumulation,mobility and management.Soil Use Manage,1998,14:154-159.
    192. Sohn S.M.,Nitrate in Vegetables:Nitrate physiology and accumulation in crops,and human intake,Nogyo oyobi Engei,1996:1179-1182.
    193. Sorensen J.N.,Nitrogen effects on vegetable crop production and chemical composition.Acta Horticulturae,1999,(506) :41-50.
    194. Tapio Salo,Elia Turtola,Nitrogen balance as an indicator of nitrogen leaching in Finland.Agriculture,Ecosystems and Environment,2006,113:98-107.
    195. Tunney H.,Foy,R.H.,Carton O T.Soures and pathways of phosphorus loss from agriculture.In Phosphorus Loss from soil to Water.1997,205-223.
    196. Uebel E.中东欧转轨时期耕作体系中养分平衡展望.第九届钾素讨论会论文集,2000.
    197. Vladimir Novotny.Intersting diffuse/nonpoint pollution control and water body restoration into watershed management.Journal of the American Water Resources Association,1999,35(4) :717-722.
    198. Voroninal L P.,Nitrates in vegetable produce.Kartofel' 1 Ovoshchi,1997(5) :28-29.
    199. Wayan S.A.,Hon Ando,Makoto Kimura.Yield and soil erosion among cassava-based cropping patterns in south Sumatra.Soil Science Plant Nutrtion,2001,47(1) :101-112.
    200. White J.W.,Relative significance of dietary sources of nitrite and nitrite.Agricultural Horticulture.1988. 5(3) :215-222.
    201. William F.Ritter,Adel Shirmohammadi.Agricultural nonpoint source pollution:watershed management and hydrology.2001 by CRC Press LLC,Printed in the United States of America.
    202. Withers P.J.A,Davidson I.A.,Foy R.H.,Prospects for controlling nonpoint phosphors loss to water,a UK perspective.Environmental Quality,2000,29:167-175.
    203. Withers P.J.A,et al.,Phosphorus transfer in runoff following application of fertilizer,manure,and sewage sludge.Journal of Environmental Quality,2001,30:180-188.
    204. Zhang,W.L.,Tian,Z.X.,Zhang,N.,Li,X.Q.,Nitrate pollution of groundwater in Northern China.Agriculture,Ecosystems and Environment,1996,59:223-231.
    205. Zhu Y.,R.H.Fox.,Corn-soybean rotation effects on nitrate leaching.Agronomy Journal,2003,95:1028-1033.