用户名: 密码: 验证码:
低温共烧玻璃陶瓷材料的制备及性能、机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据最近国内外低温共烧陶瓷材料的研究进展及存在的主要问题,采用差热分析仪、X-射线衍射仪、扫描电子显微镜、能谱分析仪、阻抗分析仪、热学性能和力学性能测试仪等系统研究了添加剂及氧化物取代对堇青石基玻璃的结构、烧结性能、相组成、介电性能、热膨胀性能和力学性能等的影响规律;新型系列玻璃/陶瓷复合材料中陶瓷引入量和烧结(热压)工艺与烧结、相组成、介电性能、热学特性、显微组织与力学性能的影响规律;提出了微晶玻璃的烧结、晶化机理、相变机理和烧结过程中石英和方石英的析出机理以及AlN/堇青石玻璃陶瓷复合材料的补强增韧机制。主要结果如下:
     系统地探讨了氧化铋和烧结工艺与堇青石基微晶玻璃的相转变、烧结特性、物理性能和界面特性的关系:氧化铋的加入降低了堇青石的μ相向α相转变的温度,有效促进了烧结致密化。介电常数和抗折强度均随氧化铋的增加而增加,且与密度变化曲线相似;介电损耗随氧化铋的增加呈“V”字变化。热膨胀系数随氧化铋的变化基本呈线性增加。氧化铋的合理添加量为3~5wt%。900~950℃烧结致密样品的介电常数约为5.3,介电损耗为10~(-3),抗折强度大于130MPa,热膨胀系数约为3.5×10~(-6)K~(-1),极化普适关系指数n为0.5~0.9,具有良好的温度和频率稳定性。材料与银电极的界面结合良好,银元素的扩散深度约5μm,材料具有高的可靠性。
     首次提出了氧化铈在玻璃中的作用机制。添加少量氧化铈起到网络修饰体的作用,有利于降低玻璃的粘度,促进堇青石的μ相向α相的转变和烧结致密化。添加过多氧化铈不利于烧结。样品的介电性能取决于氧化铈含量和烧结温度、晶体相的组成及致密程度。热膨胀系数随氧化铈的增加呈“倒Z字”变化。热膨胀系数随温度的增加基本上呈线性减小的趋势,这与析出堇青石晶体的数量有关。抗折强度随氧化铈的增加呈先增后减的趋势,且与气孔率的变化曲线相似。添加氧化铈为4wt%的样品能够低温烧结(≤950℃)。样品具有良好的温度和频率稳定性,其介电常数为5.3,介电损耗为2×10~(-3),热膨胀系数为2.5~2.8×10~(-6)K~(-1),抗折强度为115MPa,能够满足低温共烧陶瓷的要求。
     首次系统地研究了添加氧化锌和氧化锌取代氧化铝对微晶玻璃结构、烧结、相转变、显微组织和物理性能的影响规律。添加1.5~3wt%氧化锌有利于降低玻璃的粘度,促进玻璃粉体的烧结。添加过多的氧化锌将使玻璃容易析晶而不利于烧结。随氧化锌的增加,有利于锌铝尖晶石和石英晶体相的析出。添加3wt%氧化锌样品的晶体析出顺序与红外光谱强吸收峰的位置变化相吻合。随氧化锌的增加,介电常数大体上呈增加趋势,介电损耗在氧化锌为1~3wt%时有最小值。膨胀系数随氧化锌的增加呈线性增加。随氧化锌的增加,抗折强度先升后降,在氧化锌为1.5wt%达到最大值。添加1.5~3.0wt%氧化锌样品低温(≤950℃)烧结后具有低的介电常数(5.0~5.3),低的介电损耗(2×10~(-3)),低的热膨胀系数(3.0~4.8×10~(-6)K~(-1)),较高的抗折强度(≥120MPa)。样品的温度和频率稳定性良好。
     随氧化锌替代量的增加,玻璃的熔化温度和晶化温度明显降低,玻璃转变温度呈先降后升的趋势。当氧化锌为5wt%和8wt%时,主晶相为α—堇青石;11wt%时,主晶相变为锌铝尖晶石和石英。氧化锌的合理取代量为8wt%。900~925℃烧结的样品具有97%的相对密度,低的介电常数(5.0~5.2),低的介电损耗(<10~(-3)),低的热膨胀系数(4.0-4.2×10~(-6)K~(-1))和高的抗折强度(≥125MPa),是一种优质的低温共烧陶瓷材料。
     提出了添加氧化铈微晶玻璃的烧结机制和晶化机理:玻璃粉体的烧结机制属于粘性流动占主导地位的液相烧结过程。推导出气孔率随时间的变化和烧结动力学常数K与烧结温度的关系分别为:—ln p=kt+B和ln k=C-E/R T。据此可算出添加0wt%,2wt%、4wt%和7wt%氧化铈样品的烧结活化能分别为221kJ/mol,203.1kJ/mol、196.0kJ/mol和232.0kJ/mol。该烧结数学模型适用于烧结初、中期。随氧化铈的增加,玻璃的析晶活化能逐渐增加,添加氧化铈不利于玻璃的析晶。所有玻璃样品均为表面晶化机理。
     基于晶体结构和玻璃“分相”的理论,首次提出了硼玻璃/钙(锶)长石复合材料烧结过程中石英和方石英的析出机理。长石独特的晶体结构使得M~(2+)(M=Ca,Sr)填充在四面体组成的通道空隙中来平衡电价保持电中性。在适当的条件下,组成中的M~(2+)(M=Ca,Sr)和玻璃中的组分容易发生相互扩散,使得陶瓷颗粒周围的玻璃组成发生了改变。由玻璃“分相”理论可知,Ca~(2+)、Sr~(2+)和Zn~(2+)的共同作用导致了玻璃的分相。α-石英从富SiO_2中析出。温度增加加剧了“分相”,方石英越容易从富硅玻璃相中直接析出,同时石英也能转变为方石英。这与添加氧化铝抑制方石英的机理有所不同。
     系统研究了玻璃/陶瓷复合材料的组成和物理性能的关系。介电常数、热膨胀系数和显微硬度随陶瓷含量的增加而增加,而介电损耗随之减小。烧结中α-石英和方石英的析出增加了材料的热膨胀系数,但对材料的介电性能影响不大。硼酸铝的生成对玻璃/尖晶石复合材料的介电和热膨胀性能有益。添加10wt%硼酸铝能完全抑制高硅玻璃/硼酸铝复合材料中石英和方石英的析出。750~1000℃制备的复合材料具有优良的综合性能,能够用于微电子封装领域。
     首次提出了AlN/堇青石玻璃复合材料的强化机制主要是载荷传递,增韧机制主要是裂纹的绕道偏转、分叉和钉扎与增强颗粒相的拔出。
     系统研究了AlN及热压工艺和复合材料烧结特性、介电性能、热学性能和力学性能的内在关系。随AlN的增加,致密度略有下降,介电常数和介电损耗逐渐增加。随热压温度提高,相对密度明显增加,介电常数和介电损耗都降低。增加保温时间可提高致密度。热膨胀系数和热导率随AlN的增加而增加。AlN引入量不同的样品表现出不同的导热特性。抗折强度和断裂韧性随AlN的增加逐渐增加。当AlN引入量为40%时,抗折强度和断裂韧性都达到最大值,分别从基体的117MPa和1.27MPa.m~(1/2)提高到212MPa和3.04MPa.m~(1/2)。AlN与堇青石玻璃不发生化学反应,化学相容性好。
     采用真空热压法低温(≤1000℃)制备的样品具有低介电常数(5.6~6.6)、低介电损耗(<0.18%)、与Si匹配的热膨胀系数、较高的热导率(6.5Wm~(-1)K~(-1))、高的力学性能、良好的温度和频率稳定性,能够满足高密度电子封装的要求。
According to the latest development and shortcoming of lowtemperature co-fired ceramic: substrate materials (LTCCs), the effects ofthe additives and oxide replacement on glass structure, sintering, phasecompositions, dielectric properties, thermal expansion characterizationand mechanical properties of cordierite-based glass-ceramics wereinvestigated by using the differential thermal analysis (DTA), X-raydiffraction (XRD), scanning electron microscope (SEM), energyspectrum analysis, a Hewlett-Packard (HP) AC impedance, a thermalproperty test apparatus and a mechanical property test apparatus. Theinfluences of the ceramic content and sintering or hot-pressingtemperature on firing, phase composition, thermal expansioncharacterization, dielectric property, heat exchange behavior, microstructure and mechanical properties of new glass/ ceramicsystems were studied. The mechanisms of sintering densificationkinetics, crystallization kinetics and phase transition of glass-ceramicsand those of the precipitation of cristobalite and quartz in sinteringprocess for the borosilicate/feldspar composites as well as ofstrengthening and toughening in the AlN/cordierite glass compositeswere put forward respectively in this paper and the results showed as thefollowing:
     The relationships betwe, en the content of bismuth oxide, sinteringtechnologic parameters and the phase transition, sinteringcharacterization, physical properties and interfacial characteristics ofcordierite-based glass-ceramics were investigated. The addition ofbismuth oxide can lower the phase transformation temperature fromμ-toα- cordierite and enhance the sintering densification. The dielectricconstant and the flexural strength of samples increase with the additionof bismuth oxide in a similar way as that of the density. The dielectricloss manifests "V" curve with bismuth oxide. The thermal expansion coefficients with increasing bismuth oxide exhibit the characteristic oflinear increase. The reasonable addition of bismuth oxide is 3~5wt%.The material fired at 900~950℃in air has a low dielectric constant(~5.3), low dielectric loss (~0.001), low thermal expansion coefficient(~3.5×10~(-6)K~(-1))and high flexural strength (≥130MPa). The polarizationuniversal relation index is in the range of 0.5~0.9. The dielectricproperties of the sample with temperature dependence and frequencydependence possess the excellent stability. The interfacial coalescentbetween the glass-ceramic substrate and Ag electrode is good and thethickness of Ag diffusion layer is about 5μm. The glass-ceramicsubstrate can meet the demand for a long-term reliability in LTCCs.
     The role of ceria in the cordierite-based glasses was put forward forthe first time. The results show that a small amount of ceria added act asthe network modifier, lower the viscosity of the glass, accelerate phasetransformation of cordierite fromμtoαand enhance sinteringdensification of cordierite-based glass powders. Over ceria added willinhibit the sintering densification. The dielectric properties ofglass-ceramics depend on not only the content of ceria and sinteringtemperature but also the crystalline phases and relative density. Thethermal expansion coefficient of glass-ceramics present the reciprocal "Z" curve with ceria content and it basically decrease according to thelinearity with increasing temperature, which depend upon the amount ofcordierite. The flexural strength of samples firstly increases and thendecreases with the content of ceria, which is similar to the curve of theporosity. The glass-ceramics with 4wt% ceria sintered at 900~950℃has a low dielectric constant(5.3), low dissipation factor (≤0.002), lowthermal expansion coefficient (2.5~2.8×10~(-6)K~(-1)) and high flexuralstrength (115MPa), suggesting that it would be a promising material inLTCCs.
     The effects of ZnO added and the replacement of Al_2O_3 by ZnO onglass structure, crystallization behavior, phase transition, microstructure, sintering dynamics and physical properties were discussed for the firsttime. With increasing ZnO content, the melting temperature, glasstransition temperature and crystallization temperature all decreased.Addition of ZnO can greatly improve the sinterability of samples andalter the type of the crystalline phase. Too much ZnO addition (morethan 3wt%) seems to be needless for deteriorating the physicalproperties of the sample. The reasonable ZnO content is 3wt%. Thecrystallization sequence of crystalline phases in the sample with 3%ZnO corresponds to the position of IR absorption spectra. The dielectricconstants increase with ZnO content and the dielectric loss has thelowest value at 1.5wt%~3wt% ZnO. The thermal expansioncoefficients increase with ZnO content. The flexural strength firstlyincreases and then decreases with ZnO and get to the highest value at1.5wt% ZnO. The glass-ceramics with 1.5~3wt% ZnO sintered at900~950℃has a low dielectric constant(5.0~5.3), low dielectric loss(≤0.002), low thermal expansion coefficient (3.0~4.8×10~(-6)K~(-1)) andhigh flexural strength (≥120MPa). The dielectric properties of thesample with temperature dependence and frequency dependence possessthe excellent stability.
     With increasing replacement amount of Al_2O_3 by ZnO, the meltingtemperature and crystallization temperature of the glass-ceramics lower, and the glass transition temperature firstly decrease and then increase.With the replacement of 5wt% and 8wt%, the predominant crystallinephases in the glass-ceramics were found to beα-cordierite and thesecondary crystalline phase to be gahnite and quartz. When thereplacement was increased to 11wt%, the predominant crystalline phaseswere found to be gahnite and quartz and the secondary phase to beα-cordierite. Only the sample with 8wt% ZnO can be fully sinteredbefore 1000℃. Therefore, the sample fired at 900~925℃has 97.0%theoretical density, a fairly low dielectric constant (5.0~5.2), a lowdielectric loss (≤0.001) at 1MHz, a lower thermal expansion coefficient(4.0~4.2×10~(-6)K~(-1)) and a higher flexural strength (≥125MPa), suggesting that it would be a promising material in the electronicpackaging field.
     The sintering and crystallization mechanisms of the glass-ceramicscontaining ceria were put forward. The sintering mechanism is the liquidsintering process in which Newtonian viscosity flow predominates. Theporosity is determined by time and is given by—lnp=kt+B. Themethod of the sintering kinetic parameter used gives an equation of theform In k=C-E/RT. According to two equations, the sinteringactivation energy calculated of samples with 0wt%, 2wt%, 4wt%and7wt%ceria is 221 kJ/mol, 203.1kJ/mol, 196.0 kJ/mol and 232.0 kJ/molrespectively. However, the mathematic models mentioned above are thesame with the initial and medium-term phases. The results obtained byusing differential thermal analysis and JMA equation illuminate that thecrystallization activation energy of glass-ceramics increases with ceriacontent and adding ceria will inhibit the crystallization of glasses. Thecrystallization mechanism of all the glass is believed to crystallize fromthe surface.
     Based on the crystal structure and phase separation of glass, thedevitrification mechanisms of cristobalite and quartz in the borosilicateglass/feldspar (anorthite or Sr-celsian) composites in the sinteringprocess were put forward for the first time, which is different from thatof alumina. The unique crystal structure of feldspar makes M~(2+) ion(M=Ca, Sr) exist in the large channels. According to the above analysis, the Al~(3+)ion from feldspar is very difficult to diffuse into glass. Incontrast, the M~(2+) ion from feldspar and other ions (Ca~(2+), Zn~(2+))from theglass phase can easily reciprocally diffuse into that increasing thetendency of phase separation in borosilicate glass, which leads to theformation of rich SiO_2 glass phase and rich-R~(2+)(R=Ca, Sr, Zn) glassphase. The precipitation ofα-quartz crystal occurs in the compositesduring the firing and some amount ofα-quartz may synchronously transformed into cristobalite. Certainly, elevating temperature andincreasing ceramic content can accelerate the formation ofα-quartz andcristobalite directly from the composite, which leads to having badeffect on the thermal expansion coefficient of the composites.
     The relationships between the composition and physical propertywere investigated. The results show that the dielectric constant andthermal expansion coefficient as well as hardness increases butdielectric loss of samples decreases with ceramic content. The formationofα-quartz and cristobalite leads to having bad effect on the thermalexpansion coefficient but has little effect on the values of the dielectricconstant of the composites. The formation of aluminum borate ispropitious to the dielectric property and thermal expansion property inthe glass/spinel composites. Adding 10wt% aluminum borate (Al_(18)B_4O_(33))drastically inhibits the precipitation of quartz and cristobalite in the highSiO_2 glass/aluminum borate composites. The material sintered at lowtemperature between 750℃and 1000℃has good physical propertiesand would be applied to the electronic packaging field.
     The strengthening and toughening mechanisms of AlN/cordieriteglass composites were put forward. The strengthening mechanism isload transfer and the toughening mechanisms are deflexion, divaricationand transfixion as well as AlN particle pulling out.
     The relationships between AlN content, hot-pressing technology, sintering characterization and thermo-physical properties of theAlN/cordierite glass composites were systemically investigated. Therelative density of the composites slightly decreases with AlN contentand obviously increases with increasing hot-pressing temperature andholding time. The thermal expansion coefficient and the thermalconductivity increases with increasing AlN. The variety of the thermalconductivity for the samples containing different AlN content hasdifferent characteristic. The dielectric constant and dielectric lossincrease with AlN content and reduce with hot-pressing temperature.
     The flexural strength and fracture toughness gradually improve withincreasing AlN. The flexural strength and fracture toughness reach amaximum, i.e. from 117MPa and 1.27MPa.m~(1/2) of the glass matrix to212MPa and 3.04MPa.m~(1/2) of the composites at 40vol% AlN. XRDanalysis indicates that no chemical reaction occurs between cordieriteglass matrix and AlN particles suggesting that the glass matrix haveexcellent chemical compatibility with AlN particles.
     The composites sintered in vacuum by hot-pressing at lowtemperature (≤1000℃) have a fairly low dielectric constant (5.6~6.6), a low dielectric loss (0.001), a low thermal expansioncoefficient(≤3.8×10~(-6)K~(-1)), a high thermal conductivity (6.5Wm~(-1)K~(-1)), ahigh mechanical properties and is suitable for high density electronicpackaging.
引文
[1] Rich E L, Martin A J, Lengel T M, et al. Low temperature co-fired glass ceramic high density interconnect substrate with improved thermal management[J]. IEEE Trans Comp Hybrids Manuf Technol, 1990, 13(4): 639-646
    [2] Shimada Y, Kobayashi Y, Kata K, et al. Large scale multiplayer glass ceramic substrate for supercomputer [J]. IEEE Trans Comp Hybrids Manuf Technol, 1990, 13(4): 751-758
    [3] Tummala R R. Ceramic and glass-ceramic packaging in the 1990s [J]. J Am Ceram Soc, 1991, 74 (5): 895-908
    [4] Markstein H W. A wide choice of materials for MCMs [J]. Electronic Packaging and Production, 1997, 37(3): 34-38
    [5] 程阜民.混合微电子用关键材料的新进展[J].电子工艺技术,1995,16(4):21-25
    [6] Pinckney L R. Transparent, high strain point spinel glass-ceramics [J], Journal of Non-Crystalline Solids, 1999, 255 (2-3): 171-177
    [7] 牧野丰.电子材料(日)[J],1993,32(5):22-27
    [8] 本多进.电子材料(日)[J]:1993,32(5):28-32
    [9] 高尚通,毕克允.现代电子封装技术[J].半导体情报,1998,35(2):9-13
    [10] 况沿香,马莒生.迈向新世纪的微电子封装技术[J].电子工艺技术,2000,21(1):1-6
    [11] Jay E. BGA vs. QFP: Optimal solutions for consumer application [J]. Advanced Packaging, 1997, 6 (5): 28-31
    [12] Richard R. Flux-free placement and attach of solder spheres [J]. Advanced Packaging, 1998, 7 (4) :38-39+36
    [13] Jeff B, Dan A, Jeannette P, et al. Packaging for space: Programmable MCM substrate technology to gather data on earth and near- earth radiation [J]. Advanced Packaging, 1998, 7 (3): 34
    [14] Rinne G A, Williams C K. Flip chip CMOS design: Considerations for area array interconnection [J]. Advanced Packaging, 1998, 7 (1): 28-31
    [15] Harsanyi G, Semmens J E, Martell S R, New application of acoustic micro imaging: screening MCM-C multilayer defects [J]. Microelectronics Reliability, 2000, 40(3):477-484
    [16] 张如明.对发展我国MCM技术的建议[J].世界产品与技术,2000,5:9-11
    [17] 成英.下世纪初LSI技术发展动向[J].半导体情报,1999,36(2):21-25
    [18] 张强,孙东立,武高辉.电子封装基片材料研究进展[J].材料科学与工艺,2000,8(4)66-72
    [19] Siliano R E, Rober L. Multilayer ceramics: a revitalization [J]. Electronic Packaging and Production, 1996, 36(9): 47-51
    [20] Ep P, Ceramics substrate materials [J]. Electronic Packaging and Production, 1999, 39(3): 23-26
    [21] Tummala R R, Kumar A H, McMillan P W. Glass-ceramics structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper [P]. U. S Patent: 4301324, 1981-11-7.
    [22] Miao W G, Wu Y, Zhou H P. Low temperature co-fired AIN multilayer substrates [J]. J. Mater.Sci Mater. Elect, 1997, 8 (4) : 233-238
    [23] Kobyakov V P, Sharivker S Yu, Borovinskaya I P. Thermal conductivity of ceramics based on Aluminum Nitride prepared by self—propagating high temperature synthesis [J]. Inorganic Materials, 2002, 38(3): 292—295
    [24] Fang Z Y, Liu Y C, Wu Y, et al. Microstructure and dielectric dispersion of low-temperature sintered AIN [J]. J Mater Sci Lett, 2000, 19:95-97
    [25] 石功奇,王健,丁培道.陶瓷基片材料的研究现状[J].功能材料,1994,24(2)176-180
    [26] 王零森.特种陶瓷[M].长沙:中南工业大学出版社,2000
    [27] Kobayashi Yuichi, Kato Etsuro. Low temperature fabrication of anorthite ceramics [J]. J Am Ceram Soc, 1994, 77(3):833-834
    [28] Kobayashi Yuichi, Inagaki Miki. Preparation of reaction Sr-celsian powders by solid-state reaction and their sintering [J]. J. Euro. Ceram.Soc, 2004, 24(2): 399-404
    [29] Knickerbocker S H, Kumar A H, Herron L W. Cordierite glass-ceramics for multiplayer ceramic packaging [J]. Am. Ceram. Soc. Bull, 1993, 72(1): 90-95
    [30] Knickerbocker J U. Overview of the glass-ceramics/copper substrate: a high performance multiplayer packaging for the 1990s [J]. Am. Ceram. Soc Bull, 1992, 71(9): 1393-1401
    [31] EI-Kheshen A A, Zawrah M F. Sinterability, microstructure and properties of glass/ceramic composites [J]. Ceram Int, 2003, 29 (3) : 251-257
    [32] 俞守耕.低温共烧陶瓷基板材料学上的进展[J].混合微电子技术,2000,13(3):1-7
    [33] Burger W G, Weigel C W. Multilayer ceramic manufacturing [J], IBM J Res.Develop, 1983, 27(1): 11-19
    [34] Master R N, Herron LW, Tummala R R. Co-sintering process for glass-ceramic/copper multiplayer ceramic substrate [J]. IEEE Trans Comp Hybrids Manuf Technol, 1991, 14(4): 780-783
    [35] Yang P, Rodriguez M A, Kotula P, et al. Processing, microstructure and electric properties of buffed resistors in low temperature co-fired ceramics [J], J Appl Phys, 2001, 89(7): 4175-4182
    [36] Tosten Voss, Peter Grundler, Andreas Kirbs, et al. Temperature pulsse voltammetry: hot layer electrodes made by LTCC technology, Electrochemistry communications [J]. 1999, 1(9):383-388
    [37] Shimada Y, Utsumi K, Suzuki M, et al. Low firing temperature multiplayer glass-ceramic substrate [J]. IEEE Trans Comp, Hybrids Manuf Techno, 1983, CHMT-6(4): 382-388
    [38] Jean J H, Gupta T K. Design of low dielectric glass +ceramics for multiplayer ceramic substrate [J]. IEEE Trans Comp, Hybrids Manuf Technol B, 1994, 17(2): 228-233
    [39] Hsu J Y, Wu N C, Yu S H. Chacterization of material for low-temperature sintered multiplayer ceramic substrates [J]. J Am Ceram Soc, 1989, 72(10): 1861-1867
    [40] Gongora-Rubio M, Solalaguna L M, MolTeR P J, et al. The utilization of low-temperature cofired ceramics (LTCC-ML) technology for Meso-scale EMS, a simple thermistor based flow sensor [J]. Sensors and Actuators, A- Physical, 1999, 73(3): 215-221
    [41] Dernovsek, Naeini A, Wersing G Preu W, et al. LTCCc glass-ceramic composites for microwave application [J]. J. Euro. Ceram. Soc, 2001, 21(10-11): 1693-1697
    [42] Kata K, Shimada Y, Takamizawa H. Low dielectric constant new materials for multiplayer ceramic substrate[J]. IEEE Trans Comp Hybrids Manuf Technol B, 1990, 13(2): 448-451
    [43] Tummmala R R, Ahmed Shakil. Overview of packaging for the IBM enterprise systern/9000 based on the glass-ceramic copper/thin film thermalconduction module [J]. IEEE Trans Comp Hybrids Manu Tech, 1992, 15(4): 426-431
    [44] Kumar A H, McMillan P W, Tummala R R. Glass-ceramic structure and sintered multiplayer substrate thereof with circuit patterns of gold, silver or copper [P]. U.S. Patent, No.4301324, 1981
    [45] Bridged Holland D R, McMillan P W. Development of the Alpha-cordierite phase in glass-ceramics for use in electronic devices [J]. Glass Technology, 1985, 26(6): 286-292.
    [46] Shim K B, Taecho N, Lee S W. Silver diffusing and microstructure in LTCC multiplayer couplers for high frequency [J], J Mater Sci, 2000, 35(4): 813-820
    [47] Imanaka Y, Aoki S, Kamehara N.Crystobalite phase formation in glass/ceramic composites, J. Am. Ceram. Soc, 1995, 78(5): 1265-1271
    [48] Chiou B S, Tzeng J M, Duh J G. Fabrication and properties of alumino-boro-silicate glass-ceramic systems [J]. J Mater Sci Mater Elec, 1993, 4(4): 301-304
    [49] [英]P.W麦克米伦.微晶玻璃[M].王仞千译,李家治校.北京:中国建筑工业出版社,1988
    [50] 陈国华.磷矿尾砂微晶玻璃的研究[D].上海:华东理工大学,199l
    [51] Chang Chia-Ruey, Jean Jau-Ho. Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B_2O_3-SiO_2 glass-ceramics [J]. J Am Ceram Soc, 1999, 82(7):1725-1732
    [52] Luo Ling-hong, Zhou He-ping, Zha Zheng, et al. Low firing temperature ceramic material for high frequency multilayer chip inductors [J]. J Mater Sci MaterElec, 2001, 12 (7) : 371-375
    [53] Lo Chung-lun, Duh Jenq-gong, Chiou Bi-shiou, et al. Low temperature sintering and microwave dielectric properties of anothite-based glass-ceramics [J]. J Am Ceram Soc, 2002, 85(9): 2230-2235
    [54] Mistier R E. Tape casting: The basic process for meeting the needs of the electronics industry [J]. Am Ceram Soc Bull, 1990, 69(6): 1022-1026
    [55] Mei Sen, Yang Juan, Ferreira Jose M F. The fabrication and characterisation of low-k cordierite-based glass-ceramics by aqueous tape casting [J]. J Euro Ceram Soc, 2004, 24(2): 295-300
    [56] Palladino M, Pirini F, Beghi M, et al. Sol-gel formation of silica-zirconia glasses [J]. J Non-Cryst Solids, 1992, 147-48:335-339
    [57] Wang Jiang-ying, Yao Xi, Zhang Liang-ying. Preparation and dielectric properties of barium strontium titanate glass-ceramics sintered from sol-gel-derived powders [J]. Ceram Int, 2004, 30(7): 1749-1752
    [58] Wang Shao-hong, Zhou He-ping. Sintering characteristics and crystallization for sol-gel-derived powders for low-dielectric and low-temperature sintering ceramics [J].J Mater Sci Mater Elec, 2004, 15(1): 55-59
    [59] Mei Sen, Yang Juan, Ferreira Jose M F. Sol-gel derived P2Os-doped cordierite powder; characterization and phase transformation [J]. Mater Res Bull, 2001, 36 (5-6):799-810
    [60] Park J. H, Lee S J. Mechanism of preventing crystallization in low-firing glass/ceramic composites substrate [J]. J. Am. Ceram. Soc, 1995, 78(4): 1128-1130.
    [61] EI-Kheshen A A. Effect of alumina addition on properties of glass/ceramic composite [J]. Bri Ceram Trans, 2003, 102(5): 205-209
    [62] Kata K, Yasui I. The role of glass on alumina-composites [J]. J Ceram Soc Jpn, 1989, 97 (3):314—321
    [63] Bordia R K, Raj R. Analysis of sintering of a composite with a glass of ceramic matrix [J]. J Am Ceram Soc, 1986, 69(3): C55-C57
    [64] Imanaka Y, Kamehara N, Niwa K. The sintering process of glass/ceramic composites [J]. J Ceram Soc Jpn, 1990, 98(8): 817-822
    [65] Jean Jau-ho, Gupta Tapan K. Isothermal and nonisothermal sintering kinetics of glass-filled ceramics [J]. J Mater Res, 1992, 7(12): 3342-3347
    [66] Jean Jau-ho. Devitrification inhibitor in binary borosilicate glass composite [J]. J Mater Res, 1993, 8(2): 356-363
    [67] Jean Jau-ho, Gupta Tapan K. Alumina as a devitrification inhibitor during sintering of borosilicate glass powders [J].J Am Ceram Soc, 1993, 76(8): 2010-2016
    [68] Ewsuk K G, Harrison L W, Walczak F J.Sntering of glass-filled alumina composites: Effect of glass properties[C]. Ceramic powder Science Part B in Ceramic Transction Vol 1, ed Messing G L, Fuller E R, and Hausner H, The Am Ceram Soc Inc, Westerville, OH, 1988, 969-977
    [69] 果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998
    [70] Dunstan D, White L R.A capillary pressure method for measurement of contact angles in powders and porous media [J]. J Colloid Interface Sci, 1986, 11(1): 60-64
    [71] Smolej V, Pejovink S, Kaysser W A. Rearrangenment during liquid phase sintering of large particles[J]. Powder Metall Int, 1982, 14(1): 34-36
    [72] 黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,2004,272-275
    [73] Giess Edward A, Fletcher Joseph P, Herron L Wynn. Isothermal sintering of cordierite-type glass powders [J]. J Am Ceram Soc, 1984, 67(8): 449-552
    [74] 梁开明,段仁官,顾守仁.ZiO_2对CaO-Al_2O_3-SiO_2系玻璃晶化机理的影响[J],无机材料学报,1998,13(3):308-313
    [75] Hu Yi, Tsai H T. The effect of BaO on the crystallization behaviour of cordierite-type glass [J].Materials Chemistry and Physics, 1998, 52:184-188.
    [76] Oprea C, Stan C, Rotiu E, et al. Non-isothermal cystallization of cordierite glasses [J]. Journal of Thermal Analysis and Calormetry, 1999, 56(2): 611-615
    [77] Tian Jie-mo, Cao Xiao-gang, Zhang Yong, et al. Effect of fluorine content on the cystallization of fluorsilicic mica glass [J]. J Mater Sci, 2002, 37:1789-1792
    [78] Chang Chia-Ruey, Jean Jau-Ho. Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B_2O_3-SiO_2 glass-ceramics [J]. J Am Ceram Soc, 1999, 82(7) ; 1725-1732
    [79] 倪文,陈娜娜.堇青石矿物学研究进展-Ⅱ人工合成堇青石的物理性质.矿物岩石[J].1996.16(4):126-134
    [80] 史志铭.元素掺杂对堇青石晶体结构及热膨胀系数的作用[J].现代技术陶瓷,2000,2:18-23
    [81] Gibbs G V. The polymorphism of Cordierite Ⅰ: The crystal structure of low cordierite [J]. Amer. Mineral, 1966, 51:1068-1087
    [82] Meagher E P, Gibbs G V. The polymorphism of cordierite: The crystal structure of indialite [J]. Canadian Mineralogist, 1977, 15:43-49
    [83] Ikawa H, Otagiri T, Imai O, et al. Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions [J]. J Am Ceram Soc, 1986, 69(6): 492-498
    [84] Karkhanavala M D, Hummel F A. The polymorphism of cordierite [J]. J Am. Ceram. Soc, 1953, 36(12):389-392
    [85] Karkhanavala M D, Hummel F A. Reactions in the system Li_2O-MgO-Al_2O_3-SiO_2 Ⅰ [J]. J Am. Ceram. Soc, 1953, 36(12):393-397
    [86] Schreyer W, Schairer J F. Metastable solid solution with quartz-type structures on the join SiO_2-MgAl_2O_4 [J]. Z. Krist, 1961, 116:60-82
    [87] Beall G H, Karstetter B R, Rittler H L. Cystallization and chemical strengthening of stuffed β-quartz glass-ceramics [J]. J. Am. Ceram. Soc, 1967, 50(4): 181-190
    [88] Cappenter M A, Putnis A, Navrotsky A, et al. Enthalpy effects associated with Al/Si ordering in anhydrous Mg-cordierite [J]. Geochimi et Cosmochim Acta, 1983, 47:899-906
    [89] Wu Jenn-Ming, Huang Hong-lin. Effect of cystallization on microwave dielectric properties of stoichiometric cordierite glasses containing B_2O_3 and P205 [J]. J Mater Res, 2000, 15(1): 222-227
    [90] Hu Y, Tsai H-T. Composition effect on the crystallization of the cordierite-type glass [J]. J Mater Sci, 2001, 36(1): 123-129
    [91] Hwang Shiang-Po, Wu Jenn-Ming. Effect of composition on microstructural development in MgO-Al_2O_3-SiO_2 glass-ceramics [J]. J. Am. Ceram. Soc, 2001, 84(5): 1108-1112
    [92] Chaim R, Heuer A H. Cystallization in a barium-containing magnesium aluminosilicate glass-ceramic [J]. J. Am. Ceram. Soc, 1992, 75(6): 1512-1521
    [93] Amista P, Cesari M, Montenero A, Gnappi G., Luo L. Crystallization behaviour in the system MgO-Al_2O_3-SiO_2 [J]. J Non-Cryst Solids, 1995, 192-193:529-533
    [94] Azin N. J, Camerucci M. A, Cavalieri A. L. Crystallisation of non-stoichiometric cordierite glasses [J]. Ceram Int, 2005, 31: 189-195
    [95] Yang Cheng-fu. The sintering characteristics of MgO-CaO-Al_2O_3-SiO_2 composite powder made by sol-gel method [J]. Ceram Int, 1998, 1-24:243-247
    [96] Glendenning M D, Lee W E. Microstructural development on crystallizing hot-pressed pellets of cordiedte melt-derived glass containing B_2O_3 and P_2O_5 [J]. J Am Ceram Soc, 1996, 79(3): 705-713
    [97] 王艳丽,沈菊云,陈学贤,等.ZiO_2对堇青石基微晶玻璃的分相与晶化的影响[J].玻璃与搪瓷,2000 28(2):21-25
    [98] Zdaniewski W. DTA and X-ray analysis study of nucleation and cystallization of MgO-Al_2O_3-SiO_2 glasses containing ZrO_2, TiO_2 and CeO_2 [J]. J. Am. Ceram. Soc, 1975, 58(5-6): 163-169
    [99] Sohn Sung-Bum, Choi Se-Young. Crystallization behavior in the glass system MgO- Al_2O_3-SiO_2: influence of CeO_2 addition [J]. J. Non-Cryst. Solids, 2001, 282(2-3):221-227
    [100] Wu Jenn-Ming, Hwang Shiang-Po. Effects of (B_2O_3, P_2O_5) additives on microstructural development and phase transformation kinetics of stoichiometric cordierite glasses [J].J Am Ceram Soc, 2000, 83(5): 1259-1265
    [101] Luo Ling-hong, Zhou He-ping, Xu Chen. Synthesis, characterization, and sintering of sol-gel deprived cordierite ceramics for high-frequency MLCls [J]. J Mater Sci Mater Elec, 2002, 13(7):381-386
    [102] 迟玉山,沈菊云,陈学贤.SiO_2-Al_2O_3-MgO微晶玻璃的IR.DTA和XRD研究[J].无机材料学报,2002,17(1):45-50
    [103] Vogel W, Holant W. Advances in ceramics [C]. ed. by Simmons J H, Uhlman D R and Beall G H, Am. Ceram. Soc. Inc, 1982, 4(2): 125-145
    [104] 邹学禄,李家治,王承遇,等.含TiO_2的MgO-Al_2O_3-SiO_2系统玻璃分相的研究[J].无机材料学报,1991,6(3):269-277
    [105] 迟玉山,沈菊云,陈学贤,等.La_2O_3在MgO-Al_2O_3-SiO_2-TiO_2微晶玻璃中的作用[J].无机材料学报,2002,17(2):348-352
    [106] 宝志琴,李家治,沈崇德.堇青石微晶玻璃内裂纹的生成[J].硅酸盐学报,1981,9(1):1-9
    [107] 赵永红,李光新,马新沛.MgO-Al_2O_3-SiO_2系高强度微晶玻璃的晶化行为与力学性能[J].硅酸盐学报,2003,31(4):413-416
    [108] 陈益坤,罗澜,陈玮,张干城.MgO-Al_2O_3-SiO_2-TiO_2-CeO_2微晶玻璃的相转变[J].硅酸盐学报,2003,31(7):707-710+720
    [109] Hu A M, Li M, Mao D L, Ling K M. Crystallization and properties of a spodumene -willemite glass ceramic[J]. Thermochimica Acta, 2005, 437(1-2): 110-113.
    [110] Omar A A, El-Shennavi A W A, El-Ghannam A R. Thermal expansion of Li_2O-ZnO-Al_2O_3-SiO_2 glass and correspoanding glass-ceramics [J]. J. Mater. Sci, 1991, 269: 6049-6056.
    [111] Sei T, Eto K, Tsuchiya T, The role of boron in low-temperature synthesis of indialite (α-Mg2_Al_4Si_5O_(18)) by sol-gel process [J]. J Mater Sci, 1997, 32: 3013-3019
    [112] Shi Z M, Liang K M, Zhang Q, et al. Effect of cerium addition on phase transformation and microstructure of cordierite ceramics prepared by sol-gel method [J]. J Mater Sci, 2001, 36(21): 5227-5230
    [113] Chen Lih-shan, Fu Shen-li. Densification and dielectric properties of cordierite-lead borosilicate glasses [J]. Jpn J Appl Phys, 1992, 31:3917-3921
    [114] Jean Jau-Ho, Lin Shih-chang, Chang Chia-ruey. Low-temperature, low-dielectric, crystallizable glass composite [J]. IEEE Transactions on components, packaging, and manupacturing technology-part B, 1995, 18(4): 751-754
    [115] Hsu Jen-yan, Wu Nan-chung, Yu Shu-cheng. Characterization of material for low-temperature sintered multiplayer ceramic substrate [J]. J Am Ceram Soc, 1989, 72(10): 1861-1867
    [116] Kim B H, Lee K H. Crystallization and sinterability of cordierite-based glass powders containing CeO_2 [J]. J Mater Sci, 1994, 29:6592-6598
    [117] Shim Kwang-bo, Cho Nam-tae, Lee Seon-woo. Silver diffusion and microstructure in LTCC multiplayer couplers for high frequency applications [J]. J Mater Sci, 2000, 35:813-820
    [118] Shyu Jiin-jyh, Chang Huang-da. Elemental distribution near the interface between cordierite-spodumene glass-ceramic substrates and cofired Ag/Pd electrodes [J]. Ceram Int, 2000, 26:289-293
    [119] 岳振星,李龙土,周济,等.堇青石微晶玻璃与银电极的共烧兼容性,功能材料[J].2000,31(S):57-58+61
    [120] 王艳丽,沈菊云,缪之训.添加铅硅玻璃对烧结堇青石基微晶玻璃性能的影响[J].无机材料学报,2001,16(3):405-409
    [121] Lo Shi-hong, Yang Cheng-fu. The sintering characteristics of Bi_2O_3 added MgO-CaO-Al_2O_3-SiO_2 glass powder [J]. Ceram Int, 1997, 43:139-144
    [122] Ma J, Liao K, Hing P. Effect of aluminum nitride on the properties of eordierite [J]. J Mater Sci, 2000, 35(16):4137-4141
    [123] Oh J T, Hing P, Fong H S. Effect of sintering temperature mismatch on the thermal diffusivity of cordierite-AIN composite [J]. J Mater Pro Techno, 1999, 89-90:497-500
    [124] 张擎雪,李文兰,徐素英,等.AlN/玻璃复合材料的相分布对导热性能的影响[J].无机材料学报,2003,18(3):627-632
    [125] 张擎雪,李文兰,庄汉锐.AlN/玻璃复合材料的低温烧结与性能[J].材料研究学报,2003,17(1):79-82
    [126] 周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [127] 杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990.
    [128] Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅰ. direct crack measurements [J]. J Am Ceram Soc, 1981, 64:533-539.
    [129] 奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    [130] Dupon R W, McConville R L, Musoif D J, et al, Preparation of cordierite below 1000℃ via bismuth oxide flux [J]. J Am Ceram Soc, 1990, 73(2):335-339
    [131] Mussier B H, Shafer M W. Thermal expansion of composites as affected by the matrix [J] Am. Ceram. Soc. Bull. 1984, 63(5): 705-710.
    [132] Cho Yong S, chulze Walter A, Amarakoon Vasantha R W. Crystallization kinetics and properties of nonstoichiometric corierite-based thick-film dielectrics [J]. J Am Ceram Soc, 1999, 2(11): 186-319
    [133] Mussier B H, Shafer M W. Preparation and properties of mullite-cordierite composites [J]. Am Ceram Soc Bull, 1984, 63(5): 705-710
    [134] 王艳丽,沈菊云,陈学贤,等.低介低损耗微晶玻璃中晶相与热膨胀性能关系的研究[J].无机材料学报,1999,14(4):543-547
    [135] [美]W.D金格瑞等著.清华大学无机非金属材料教研组译(庄炳群校),陶瓷导论[M].北京:中国建筑工业出版社,1982.
    [136] Penn S J, Alford N M, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina [J], J. Am. Ceram. Soc., 1997, 80(7): 1885-1888.
    [137] Camerucci M A, Urretavizcaya G, Castro M S, et al. Electrical properties and thermal expansion of cordierite and cordierite-mullite materials [J]. J. Euro. Ceram. Soc, 2001, 21: 2917-2923.
    [138] 王亚明,贾德昌,周玉.Ba_2TiO_(20)/PTFE微波介电复合材料的制备及性能[J].压电与声光,2002,24(3):225-239.
    [139] Mahantappa S. J, Madhumita G; Arjtm S, et al. Dielectric measurement on magnesium aluminum silicate glass-ceramics prepared by different routes [J]. Mater Lett, 2002, 57:619-627
    [140] Jonscher A K. Alternating current diagnostics of poorly conducting thin films [J]. Thin solid films, 1978, 36:1-20
    [141] 张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社,1991
    [142] Zhang Hou-an, Liu Xin-yu, Ning Ai-lin, et al. Rare earth actived sintering of MoSi_2 and its electric conductivity [J]. Trans. Nonferrous. Met Soc. China, 2001, 11:141-144
    [143] 苏盛彪,包亦望,王黎,等.Y_2O_3和CeO_2对氮化硅烧结性能的影响[J].中国稀土学报,2002,20(1):35-37
    [144] 赵运才,肖汉宁,谭伟.稀土氧化铈对玻璃陶瓷晶化及性能的影响,湘潭矿业学院学报[J].2003,18(2):38-40
    [145] Lin S. L, Hwang C. S. Structures of CeO_2-Al_2O_3-SiO_2 glasses [J]. J Non-Cryst. Solids, 1996, 202:61-67
    [146] 张培新,闫加强.赤泥黑色玻璃晶化过程的红外光谱研究[J].无机材料学报,2000,15(4):751-755
    [147] 程继健,张关林,毕昌华.R_2O(NaO_2O,K_2O)-Al_2O_3-SiO_2系统玻璃的结构与性质[J].硅酸盐学报,1979,7(3):244-253
    [148] 张丽娟,陈一鹏.K_2O-B_2O_3-SiO_2系统玻璃结构的光谱研究[J].哈尔滨建筑大学学报,1996,29(6):93-97.
    [149] Kim Y. H, Mercurio D, Mercurio J P, Frit B. Structural study of a K-substituted synthetic cordierite [J]. Mater Res Bull, 1984, 19(2): 209-217
    [150] 西北轻工业学院.玻璃工艺学[M].北京:中国轻工业出版社,1982.
    [151] Pascual M J, Dura'n A, Pascual L. Sintering behaviour of composite materials borosilicate glass-ZrO_2 fibre composite materials [J]. J Euro Ceram Soc, 2002, 22(9-10): 1513-1524.
    [152] Hamzawy E M, EI-Kheshen AA, Zawrah M F. Densification and properties of glass/cordierite composites [J]. Ceram Int, 2005, 31:383-389
    [153] 陈若愚,汪海东,夏树屏,等.硼酸铝晶须合成物料的热分析[J].盐湖研究,1997,5(3-4):79-83
    [154] 李武.硼酸铝晶须的性质、制备和开发前景[J].盐湖研究,2000,8(3):40-43
    [155] Liimm M M, Monteiro R. Characterisation and thermal behaviour of a borosilicate glass [J]. Thermochimica Acta, 2001, 373(1):69-74.
    [156] Mazufin O V, Porai-Koshits E A. Phase Separation in Glass [M]. B.V: North-Holland Physics Publishing, a division of Elsevier Science Publishers, 1984.
    [157] 顾建成,周玉,叶枫,等.SiCp1-BAS复合材料的显微组织与力学性能[J].上海交通大学学报,2002,36(1):9-12
    [158] Wu Jiehua, Li Baoshun, Guo Jingkun. The influence of addition of AlN particles on mechanical properties of SiO_2 matrix composites doped with AlN particles [J]. Mater Lett, 1999, 41(3): 145-148
    [159] 龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [160] Davidge R W. Mechanical behavior of Ceramics [M]. Cambridge: Cambridge University Press, 1979, 81-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700