TH-GDNF基因修饰的胚胎干细胞治疗帕金森病模型大鼠的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是一种常见于中老年人的中枢神经系统变性疾病,其主要病理学改变是黑质多巴胺(dopamine,DA)能神经元变性坏死,纹状体内DA能神经递质匮乏。PD的发病机制目前仍不清楚,因此至今尚无满意的治疗方法。理想的PD治疗方法应该不仅能纠正脑内DA含量的不足,还要保护残存的DA能神经元。目前认为,干细胞移植结合基因治疗可能是实现这一目标的最佳途径之一。胚胎干(embryonic stem,ES)细胞因具有在体外无限或较长期增殖和多向分化潜能而成为早期胚胎发育研究和细胞治疗的良好来源。传统的PD基因治疗主要有两条途径:通过将促进DA合成的相应酶基因如酪氨酸羟化酶(tyrosine hydroxylase,TH)引入纹状体,以提高纹状体内DA含量;或者通过将神经营养因子基因如胶质细胞源性神经营养因子(glial cell line derived neurotrophic factor,GDNF)引入黑质-纹状体系统,阻止DA能神经元凋亡,维持其存活和促进其功能修复,使受损的DA能神经元有可能重建和恢复功能。若同时给予GDNF基因和TH基因,可能达到防治兼备的目的,应该是目前PD基因治疗的理想策略。
     本研究采用了分子克隆、细胞培养和基因转染等研究方法,分别将小鼠GDNF基因和人源性TH基因克隆到真核表达质粒载体pIRES的上下游,构建出pIRES-TH-GDNF。将此功能载体转染分化的大鼠肾上腺嗜铬细胞瘤细胞(differentiated PC12,dPC12),检测了转染该基因的dPC12拮抗MPP~+损伤的作用。然后将此功能载体pIRES-TH-GDNF转染小鼠ES细胞,并将携带TH和GDNF基因的ES(TH-GDNF-ES)细胞和ES细胞分别植入6-羟基多巴胺(6-hydoxydopamine,6-OHDA)损伤的PD模型大鼠纹状体、黑质和同时植入黑质及纹状体(双移植)。通过观察大鼠行为学改变和移植细胞分化成TH阳性神经元的情况,以了解ES细胞或TH-GDNF-ES细胞对PD大鼠的治疗作用。并将逆行追踪剂荧光金(Fluo-Gold,FG)注射入损毁侧纹状体,观察DA神经通路的重建,以寻找PD细胞移植及基因治疗的最佳途径。实验结果如下:
     1、构建了双基因表达的pIRES-TH-GDNF载体,酶切鉴定及测序结果证实其是正确的。
     2、将pIRES-TH-GDNF转染dPC12和ES细胞,经G418筛选后,得到了稳定表达TH和GDNF的dPC12和ES细胞。用RT-PCR和细胞免疫荧光等方法能检测出TH和GDNF在细胞中转录和表达。
     3、MTT法检测细胞存活率显示:未转染pIRES-TH-GDNF的dPC12细胞在25μM的MPP~+作用下,细胞存活率明显下降;而转染TH-GDNF基因的细胞在100μM浓度的MPP~+作用下,细胞存活率才出现明显下降(P<0.05),表明转染后的dPC12能很好的对抗MPP~+毒性作用。
     4、免疫组织化学结果显示:ES细胞及TH-GDNF-ES细胞植入6-OHDA损伤侧的纹状体及黑质后细胞存活状态较好,部分细胞分化为TH阳性神经元。与ES细胞移植组相比,TH-GDNF-ES细胞移植组生成的TH阳性神经元数目明显增多(P<0.05)。
     5、行为检测结果显示:移植后4~8w,ES细胞移植(纹状体、黑质、纹状体+黑质)组及TH-GDNF-ES细胞移植(黑质)组PD大鼠的旋转行为与对照组相比无明显改善(P>0.05)。而TH-GDNF-ES细胞移植(纹状体、纹状体+黑质)组PD大鼠的旋转行为与对照组相比明显改善(P<0.05),但TH-GDNF-ES细胞移植(纹状体)组与TH-GDNF-ES细胞移植(纹状体+黑质)组相比差别无统计学意义(P>0.05)。
     6、HPLC检测结果显示,移植后8w,与对照组相比,ES细胞移植(纹状体、黑质、纹状体+黑质)组及TH-GDNF-ES细胞移植(黑质)组PD大鼠纹状体内DA及其代谢产物3,4二羟基苯乙酸(3,4-dihydroxyphenylacetic acid,DOPAC)含量无明显增高(P>0.05)。而TH-GDNF-ES细胞移植(纹状体、纹状体+黑质)组PD大鼠纹状体内DA及DOPAC含量明显增高(P<0.05)。但TH-GDNF-ES细胞移植(纹状体)组与TH-GDNF-ES细胞移植(纹状体+黑质)组相差别无统计学意义(P>0.05)。
     7、FG注射纹状体2w后,在TH-GDNF-ES细胞移植(纹状体+黑质)组PD大鼠同侧的黑质中观察到有FG逆行标记的TH阳性神经元。
     上述结果表明,我们成功构建了双基因表达的pIRES-TH-GDNF载体,其携带的功能基因(TH和GDNF)导入到dPC12和ES细胞内,随细胞分裂而进入子代细胞并能高效表达,且在dPC12细胞内起到对抗MPP~+毒性的作用;ES细胞及TH-GDNF-ES细胞移植到6-OHDA制备的PD大鼠纹状体及黑质后细胞存活状态较好,并分化成TH阳性神经元;TH-GDNF-ES细胞移植(纹状体、纹状体+黑质)可增加PD大鼠纹状体的DA及DOPAC含量,有效改善PD大鼠旋转行为;TH-GDNF-ES细胞移植(纹状体+黑质)有助于脑内黑质-纹状体通路的重建。本实验证实TH-GDNF基因修饰的ES细胞在对PD模型大鼠的治疗中发挥了积极的作用,为PD细胞移植及基因治疗提供了相应的实验依据。
Parkinson's disease (PD) is a neurodegenerative disorder characterized by theprogressive loss of dopaminergic neurons in the substantia nigra (SN) and a severedecrease of dopamine (DA) content in the striatum. Up to now, there is still no way toprevent the progress of the disorder because of the unknown pathogenesis. The idealtherapeutic method for PD should not only replenish the DA content, but also protect theremaining dopaminergic neurons. The combination of the stem cell transplantation andgene therapy may be the optimal pathway. Embryonic stem (ES) cells are pluripotent cellsthat can differentiate into a wide variety of cell types. This has made them an attractivesource of donor cells for developmental studies and cell therapy. Current gene therapymodels for PD are described in two parts: genetic transfer of the biosynthetic enzymes fordopamine synthesis (i.e. tyrosine hydroxylase, the key enzyme of dopamine synthesisTH), and genetic transfer of the genes encodingseveral neurotrophic factors (such as glialcell line derived neurotrophic factor (GDNF)) for protection and restoration ofdopaminergic neurons. We suppose that the combination of these two strategies may bemore efficient than each of then alone.
     In this study we construct a pIRES vector carrying glial cell line-derivedneurotrophic factor (GDNF) and tyrosine hydroxylase (TH). First, differentiated PC12(dPC12) cells were transfected with pIRES-TH-GDNF, and the transfected dPC12 cellsagainst neurotoxicity of MPP~+ were investigated. Then ES cells were transfected withpIRES-TH-GDNF and the transfected ES cells or ES cells were then collected andimplanted into the striatum, substantia nigra and substantia nigra plus striatumrespectively. The rotational behavior of rats, the differentiation of transplanted cells wereinvestigated to evaluate the therapeutic effect of the transplanted genes. Further,Fluo-Gold (FG), a fluorescent dye, was microinjected into the ipsilateral striatum to observe the reconstruction of the nigrostriatal pathway after transplantation. The resultswere as follows:
     1. A vector pIRES-TH-GDNF carrying TH and GDNF were constructed, restrictionanalysis and nucleotide sequencing showed that the two target gene fragments wereinserted into pIRES correctly and the size of recombinant plasmid is correct.
     2. After transfecting dPC12 and ES cell lines with pIRES-TH-GDNF, the co-expressionof TH and GDNF was detected by RT-PCR and immunocytochemisty under G418selection.
     3. MTT assay showed that the viability of naive differentiated PC12 (dPC12) cellsdecreased significantly with 25μM N-methyl-4-phenylpridinium iron (MPP~+)treatment. While the viability of these cells transfected by pIRES-TH-GDNFdecreased when treated with 100μM MPP~+.
     4. Immunohistochemistry results showed that after TH-GDNF-ES cells or ES cells wereimplanted into the striatum and the substantia nigra, the cells survived, and part ofthem differentiated into TH positive neurons. There were more TH positive neurons inTH-GDNF-ES transplanted groups compared with the ES transplanted groups(P<0.05).
     5. Rotational behavior recording showed that 4~8w after transplantation, the rotationalbehavior of PD rats in ES transplanted (striatum, substantia nigra, striatum plussubstantia nigra) groups and TH-GDNF-ES transplanted (substantia nigra) group didnot change compared with the control. While the rotational behavior of PD rats inTH-GDNF-ES transplanted (striatum, striatum plus substantia nigra) groupssignificantly decreased compared with the control (P<0.05), but there was nodifference between the two groups (P>0.05).
     6. High performance liquid chromatography -electrochemical detection (HPLC-ECD) results showed that: 8w after transplantation, DA and DOPAC contents in the striatumof ES transplanted (striatum, substantia nigra, striatum plus substantia nigra) groupsand TH-GDNF-ES transplanted (substantia nigra) group did not change comparedwith the control. While DA and DOPAC contents in the striatum of TH-GDNF-EStransplanted (striatum, striatum plus substantia nigra) groups significantly increasedcompared with the control (P<0.05), but there was no difference between the twogroups (P>0.05).
     7. 2w after the injection of the retrograde tracer FG into the ipsilateral striatum,fluorescent-labeled cells within the ipsilateral substantia nigra were detected inTH-GDNF-ES transplanted (striatum plus substantia nigra) group.
     The results suggest that a vector pIRES-TH-GDNF carrying TH and GDNF weresuccessfully constructed and the functional genes TH/GDNF transfected into dPC12 andES cells could be highly expressed; The viability of pIRES-TH-GDNF transfected dPC12cells increased when treated with MPP~+; The transplanted ES cells and TH-GDNF-EScells in the striatum and the substantia nigra survived, and part of them differentiated intoTH positive neurons; The rotational behavior and the contents of DA/DOPAC in thestriatum ameliorated significantly in TH-GDNF-ES transplanted (striatum, striatum plussubstantia nigra) groups; Nigrostriatal pathway was reconstructed in TH-GDNF-EStransplanted (striatum plus substantia nigra) group. This work verifies that TH-GDNF-EStransplantation is effective in the treatment of PD, and provides a useful framework toadvance our knowledge of cell transplantation and gene therapy.
引文
1. Chan DK, Mellick G, Cai H, et al. The alpha-synuclein gene and Parkinson disease in a Chinese population. Arch Neurol, 2000,57:501-503.
    2. Tickle-Degnen L, Lyons KD. Practitioners' impressions of patients with Parkinson's disease: the social ecology of the expressive mask. Soc Sci Med, 2004,58:603-614.
    3. Di Monte DA. The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol, 2003,2:531-538.
    4. Tsang F, Soong TW. Interactions between environmental and genetic factors in the pathophysiology of Parkinson's disease. IUBMB Life, 2003,55:323-327.
    5. Shastry BS. Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res, 2001,41:5-12.
    6. Wolff JA, Fisher LJ, Xu L, et al. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci U S A, 1989,86:9011-9014.
    7. Dunnett SB, Bjorklund A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999,399:32-39.
    8. Akerud P, Canals JM, Snyder EY, et al. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci, 2001,21:8108-8018.
    9. Vogel G2. Can adult stem cell suffice? Science, 2001,292:1820-1823.
    10. Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif, 2004,37:23-34.
    11. Solter D, Gearhart. Putting stem cells to work. Science, 1999,283:1468-1470.
    12. Rodriguez-Gomez JA, Lu JQ, Velasco I, et al. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem cells, 2007,25:918-928.
    1. Kang UJ, Lee WY, Chang JW. Gene therapy for Parkinson's disease: determining the genes necessary for optimal dopamine replacement in rat models. Hum Cell, 2001,14: 39-48.
    2. Mandir AS, Dawson VL, Dawson TM. Gene therapy to the rescue in Parkinson's disease. Trends Pharmacol Sci, 2001, 22: 103-105.
    3. Dunnett S, Bjirklund A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999,399:32-39.
    4. Hodaie M, Neimat JS, Lozano AM. The dopaminergic nigrostriatal systemand Parkinson's disease: molecular eventsin development, disease, and cell deat and new therapeutic strategies. Neurosurgery, 2007,60:17-30.
    5. Koike H, Ishida A, Shimamura M, et al. Prevention of onset of Parkinson's disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: a model of gene therapy for Parkinson's disease. Gene Ther, 2006,13:1639-1644.
    6. Chen S, Le W. Neuroprotective therapy in Parkinson disease. Am J Ther, 2006,13:445-457.
    7. Wider C, Burkhard PR, Sajadi A, et al. Neuronal death and growth factors: new therapeutic approaches in Parkinson's disease. Rev Med Suisse, 2006,2:1158-1162.
    8. Dass B, Olanow CW, Kordower JH. Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson's disease. Neurology, 2006,66:89-103.
    9. Bohn MC. Parkinson's disease: a neurodegenerative disease particularly amenable to gene therapy. Mol Ther, 2000,1:494-496.
    10. Jin BK, Belloni M, Conti B et al. Prolonged in vivo gene expression driven by a tyrosine hydroxylasr promoter in a defective herpes simplex virus amplicon vector. Hum Gene Ther, 1996,7:2015-2024.
    11. Horellou P. Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease. Neuroreport, 1994,6:49-53.
    12. Bohn M. A commentary on glial cell line-derived neurotrophic factor (GDNF). From a glial secreted molecule to gene therapy. Biochem Pharmacol, 1999,57:135-142.
    13. Galpem WR. Cell-mediated delicery of brain-derived neurotrophic factor enhances dopamine levels in an MPP~+ rat model of substantia nigra degeneration. Cell Transplant, 1996,5:225-232.
    14. Levivier M, Przedborski S, Bencsics C, et al. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J Neurosci, 1995,15:7810-7829.
    15. Miller CR et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res, 1998,58: 5738-5748.
    16. Michizuki H, Hayakawa H, Migita M, et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc Natl Acad Sci USA, 2001,98:10918-10923.
    17. During MJ, Kaplitt MG, Stern MB, et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther, 2001,12:1589-1591.
    18. Natstume A, Mata M, Goss J, et al. Bcl-2 and GDNF delivered by HSV-mediated gene transfer act additively to protect dopaminergic neurons from 6-OHDA-induced degeneration. Exp Neurol, 2001,169:231-238.
    19. Lindner M. Implantation of encapsulated catecholamine and GDNF producing cells in rats with unilateral dopamin depletions and Parkinsonian symptoms. Exp Neurol, 1995,132:62-76.
    20. Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson's disease. Gene Ther, 2003,10:1721-1727.
    21. Wolff JA, Fisher LJ, Xu L, et al. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson's disease. Proc Natl Acad Sci USA, 1989,86:9011-9014.
    22. Lin LF, Doherty DH, Lile JD, et al. GDNF-a glial cell line derived neurotrophic factor for midbraind dopaminergic neurons. Science, 1993,260:1130-1132.
    23. Lin FH, Zhang TJ, Collins F, et al. Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. Neurochemistry, 1994,63:758-761.
    24. Tomac A, Lindqvist E, Lin FH, et al. Protein and repair of the nigro strialtal dopaminergic sysem by GDNF in vivo. Nature, 1995,373:335-339.
    25.张文华,王晓民,吴承远,等。人胶质细胞源性神经营养因子基因工程细胞保护多巴胺能神经元的实验研究。中华医学杂志,2001,81:1384-1386。
    26. Kordower JH. In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson's disease. Ann Neurol, 2003,53:132-134.
    27. Wang ZH, Ji Y, Shan W, et al. Therapeutic effects of astrocytes expressing both tyrosine hydroxylase and brain-derived neurotrophic factor on a rat model of Parkinson's disease. Neuroscience, 2002,113:629-640.
    28. Qiao J, Roy V, Girard MH. High Translation Efficiency Is Mediated by the Encephalomyocardits Virus Internal Ribosomal Entry Sites if the Natural Sequence Surrounding the Eleventh AUG Is Retained. Hum Gene Ther, 2002,3:881-887.
    29. Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5' untranslated region important for IRES function. J Virol, 2002,76:5024-5033.
    30. Wong ET, Ngoi SM, Lee CG. Improved co-expression of multiple genes in vectors containing internal ribosome entry site (IRESes) from human gene. Gene Ther, 2002,9:337-344.
    31. Kleiman SE, Pastan I, Puck JM, et al. Characterization of an MDR1 retroviral bicistronic vector for correction of X2 linked severe combined immuno deficiency. GeneTher, 1998,5:671-676.
    32. Hurwttz AA, Townsend SE, Yu TF, et al. Enhancement of the anti-tumor immune response using a combination of intyerferon- and B7 expression in an experimental mammary carcinoma. Cancer, 1998,77:107-113.
    33. Ramesh N, Kim ST, Wei MQ, et al. High-titer bicistronic retroviral vectors employing foot-and-mouth disease virus internal ribosome entry site. Nucleic Acid Res, 1996,24:2697-2700.
    1. Bischoff S, Scatton B, Korf J. Dopamine metabolism, spiperone binding and adenylate cyclase activity in the adult rat hippocampus after ingrowth of dopaminergic neurons from embryonic implants. Brain Res., 1979,179: 77-84.
    2. Redmond D E, Naftolin F, Collier T J et al. Cryopreservation, culture, and transplantation of human fetal mesencephalic tissue into monkeys. Science, 1988,242: 768-771.
    3. Kim DS, Kim JY, Kang M, et al. Derivation of functional dopamine neurons from embryonic stem cells. Cell Transplant, 2007,16:117-123.
    4. Nishimura F, Toriumi H, Ishizaka S, et al. Use of differentiating embryonic stem cells in the Parkinsonian mouse model. Methods Mol Biol, 2006,329:485-493.
    5. Gage F H, Coates P W, Pallmer T D, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA, 1995,92:11879-11883
    6. Studer L, Taber V, McKay, R D G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci, 1998,1:290-295.
    7. Hida H, Nakajima K, Hashitani T, et al. A stonger neurotrophic effects in dopamine-depleted striatum: analyses in neural transplantation in vivo and pheochromocytoma(PC12D) cell culture in vitro. Nagoya. Med. J, 1995,27:117-133.
    8. Hida H, Fukuda A, Fujimoto I, et al. Dopamine-denervation enhances the trophic activity in striatum: evaluation by morphological and eletrophysiological development in PC12D cells. Neurosci Res, 1997,28:299-221.
    9. Madrazo I, Tottes C. Transplantation of fetal substantia nigra and adrenal medulla to the caudate putamen in two patients with Parkinson's disease. New Engl. J. Med, 1988,318:51-55.
    10. Freed W J, Perlow M J, Karoum F, et al. Restoration of dopaminergic function by grafting of fetal substantia nigral to the caudate mucleus: Long term behavioral, biochemical, and histochemical studies. Ann. Neurol, 1980,8:510-519.
    11. Isacson O, Deacon T W, Pakzaban P, et al. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med, 1995,1:1189-1194.
    12. Dunnett S B, Rogers D C and Richards S J. Nigrostriatal reconstruction after 6-OHDA lesions in rats: Combination of dopamine-rich nigral grafts and nigrostriatal "bridge" grafts. Exp. Brain Res, 1989,75:523-535.
    13. Zhou F C, Chiang Y H, Wang Y. Constructing a new nigrostriatal pathway in the parkinsonian model with bridged neural transplantation in substantia nigra. J. Neurosci, 1996,16:6965-6974.
    14. Wang Y, Tien L T, Lapchak P A, et al. GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA lesioned rats. Cell Tissue Res, 1996,286:225-233.
    15. Mendez I, Sadi D, Hong M. Reconstruction of nigrostriatal pathway by simultaneous intrastriatal and intranigral DAergic transplants. J. Neurosci, 1996,16:7216-7227.
    16. Mendez I, Hong M. Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase. Brain Res. 1997,78:194-205.
    17. Cao L, Zhao YC, Jiang ZH. Long-term phenotypic correction of rodent hemiparkinsonism by gene therapy using genetically modified myoblasts. Gene Ther, 2000,7:445-449.
    18. Tang Z, Ying Q, Peng L. Intracerebral transplantation of genetically modified cells for Parkinson's disease. Zhong hua Wai Ke Za Zhi, 1997,35:10-12.
    19. Brustle O, Choudhary K, KarramK, et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol, 1998,16:1040-1044.
    20. Rubio F, Kokaia Z, Arco A, et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Ther, 1999, 6:1851-1866.
    21. Akerud P, Canals JM, Snyder EY, et al. Neuroprotection through delivery of glial cell line-derived neurotrophi factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci, 2001; 21(20):8108~8118.
    22. Vogel G. Can adult stem cells suffice? Science, 2001,292:1820-1822.
    23. Solter D, Gearhart J. Putting stem cells to work. Science, 1999,283:1468-1470.
    24. Dinsmore J. Ratliff J, Deacon T,et al. Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant, 1996,5:131-143.
    25. L.M. Bjorklund, R. Sanchez-Pernaute, S. Chung, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 2002, 1999:2344-2349.
    26. Ungerstedt U, Arbuthnott G W. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesion of the nigro-striatal dopamine system. Brain Res, 1970,24:485-493.
    27. R. Deumens, A. Blokland, J. Prickaerts. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol, 2002,175:303-317.
    28. R.K.W. Schwarting, J.P. Huston. The unilateral 6-hydroxydopamine lesion model in behavioral brain research: analysis of functional deficits, recovery and treatments. Prog. Neurobiol, 1996,50:275-331.
    29. U. Ungerstedt, G.W. Arbuthnott. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res, 1970,24:485-493.
    30. Forni C, Brundin P, Strecker RE, et al. Time-course of recovery of dopamine neuron activity during reinnervation of the denervated striatum by fetal mesencephalic grafts as assessed by in vivo voltammetry. Exp Brain Res, 1989,76:75-87.
    31. Madrazo I, Tottes C. Transplantation of fetal substantia nigra and adrenal medulla to the caudate putamen in two patients with Parkinson's disease. New Engl. J. Med, 1988,318:51.
    32. Freed W J, Perlow M J, Karoum F, et al. Restoration of dopaminergic function by grafting of fetal substantia nigral to the caudate mucleus: Long term behavioral, biochemical, and histochemical studies. Ann. Neurol, 1980,8:510-519.
    33. Isacson O, Deacon T W, Pakzaban P, et al. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med, 1995,1:1189-1194.
    34. Mendez I, Sadi D, Hong M. Reconstruction of nigrostriatal pathway by simultaneous intrastriatal and intranigral DAergic transplants. J Neurosci, 1996,16:7216-7227.
    35. Mendez I, Hong M. Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase. Brain Res, 1997,78:194-205.
    1. Price J, Williams B P. Neural stem cells. Curr Opin Neurobiol, 2001,11: 564-567.
    2. Temple S. The development of neural stem cells. Nature, 2001,414: 112-117.
    3. Svendsen C N, Rosser A E. Neurons from stem cells? Trends Neurosci, 1995,18: 24-34.
    4. Lindvall O. Parkinson disease. Stem cell transplantation. Lancet, 2001,358:48-51.
    5. Gage F H, Coates P W, Pallmer T D, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA, 1995,92:11879-11883.
    6. Studer L, Taber V, McKay, et al. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci, 1998,1:290-295.
    7. Carvey P M, Vu T Q, Ling Z D, et al. Dopamine progenitor cells can be clinically expanded and successfully grafted in lesioned rats. Program and Abstracts of the American Society for Neural Transplantation and Repair, 1999,6:28-31.
    8. Carvey P M, Ling Z D, Sortwell C E. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson's disease. Exp. Neurol, 2001,172: 98-108.
    9. Rina S S, Jauniaux E, Stern G M, et al. The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro. Brain Res Dev Brain Res, 2002,136:27-34.
    10. Tian DP, Su M, Wu XY, et al. Effects of selenium and B-27 supplements on viability and differentiation of neural stem cell in newborn rat. Zhonghua Yu Fang Yi Xue Za Zhi, 2005,39:324-327.
    11. Wachs FP, Couillard-Despres S, Engelhardt M, et al. High efficacy of clonal growth and expansion of adult neural stem cells. Lab Invest, 2003,83:949-962.
    1. Price J, Williams B P. Neural stem cells. Curr Opin Neurobiol, 2001,11: 564-567.
    2. Temple S. The development of neural stem cells. Nature, 2001, 414: 112-117.
    3. Terada Net al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002,416:542-549.
    4. Li Xuekun, Guo Anchen, Zuo Pingping, Survival and differentiationg of transplanted neural stem cells in mice brain with MF'TP-induced Parkinson disease. Acta Parmacol Sin, 2003, 24:1192-1198.
    5. Lindvall O. Parkinson disease. Stem cell transplantation. Lancet, 2001,358: 48-53.
    6. Studer L, Taber V, McKay R D G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci, 1998,1:290-295.
    7. Carvey P M, Vu T Q, Ling Z D, et al. Dopamine progenitor cells can be clinically expanded and successfully grafted in lesioned rats. Program and Abstracts of the American Society for Neural Transplantation and Repair, 1999,6:28-30.
    8. Mayer E, Dunnett S B, Fawcett J W. Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neuron precursors. Dev. Brain Res, 1993,72:253-258.
    9. Ptak L R, Hart K R, Lin D, et al. Isolation and manipulation of rostral mesencephalic tegmental progenitor cells from rat. Cell Transplant, 1995,4:335-342.
    10. Ling Z D, Potter E D, Lipton J W, et al. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol, 1998,149:411-413.
    11. Hemmati B A, Melton D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell, 1997,88:13-17.
    12. Bjorklund L M. Pernaute R S, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA, 2002,99:2344-2349.
    13. Wu P, Yevgeniya IT, Yanping G, et al. Region-specific generation of cholinergic neurons from fetal human stem cells grafted in adult rat. Nat Neurosci, 2002,5:1271-1278.
    14. Hornykiewica O. Metabolism of brain dopamine in human parkinsonism: Neurochemical and clinical aspects. In: Costa E, Cote L J and Yahr M D, eds. Biochemistry and Pharmacology of the Basal Ganglia. New York: Hewlett Press, 1966,171-181.
    15. Hirsch E C, Gryviell A M, Agrid Y A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature, 1988,334:345-348.
    16. Perlow M J, Freed W J, Hoffer J J, et al. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979,204:643-647.
    17. Leranth C, Sladek J R J, Roth R H, et al. Efferent synaptic connections of dopaminergic neurons grafted into the caudate nucleus of experimentally induced parkinsonian monkeys are different from those of control animals. Exp. Brain Res, 1998,123:323-333.
    18. Hyman C, Juhsz M, Jackson C, et al. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopminergic and GABAergic neurons of the ventral mesencephalon. Neurosci, 1994,14:335-347.
    19. Madrazo I, Tottes C. Transplantation of fetal substantia nigra and adrenal medulla to the caudate putamen in two patients with Parkinson's disease. New Engl. Med, 1988,318:51-55.
    20. Freed W J, Perlow M J, Karoum F, et al. Restoration of dopaminergic function by grafting of fetal substantia nigral to the caudate mucleus: Long term behavioral, biochemical, and histochemical studies. Ann. Neurol, 1980,8:510-519.
    21. Ungerstedt U, Arbuthnott G W. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesion of the nigro-striatal dopamine system. Brain Res, 1970,24:485-493.
    22. Bezard E, Boraud T, Imbert C, et al. Towards a dynamic approach of experimental parkinsonism. Prog. Neuro-Psychopharmacol. & Biol. Psychiat, 1998,22:1317-1329.
    23. Isacson O, Deacon T W, Pakzaban P, et al. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med, 1995,1:1189-1194.
    24. Lindvall O, Brundin P, Wiidner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science, 1990,247:574-577.
    25. Bjorklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res, 1979,177:555-560.
    26. Bjorklund A, Dunnett S B, Stenevi U, et al. Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res, 1980,199:307-333.
    27. Bischoff S, Scatton B, Korf J. Dopamine metabolism, spiperone binding and adenylate cyclase activity in the adult rat hippocampus after ingrowth of dopaminergic neurons from embryonic implants. Brain Res, 1979,179:77-84.
    28. Redmond D E, Naftolin F, Collier T J et al. Cryopreservation, culture, and transplantation of human fetal mesencephalic tissue into monkeys. Science, 1988,242:768-771.
    29. Apostolides C, Sanford E, Hong M et al. Glial cell-line derived neurotrophic factor improves intrastriatal graft survival of stored dopaminergic cells. Neuroscience, 1998, 83:363-372.
    30. Dunnett S B, Rogers D C, Richards S J. Nigrostriatal reconstruction after 6-OHDA lesions in rats: Combination of dopamine-rich nigral grafts and nigrostriatal "bridge" grafts. Exp. Brain Res, 1989, 75:523-535.
    31. Brecknell J E, Du J S, Muir E, et al. Bridge grafts of fibroblast growth factor-4-secreting schwannoma cells promote functional axonal regeneration in the nigrostriatal pathway of the adult rat. Neuroscience, 1996,74:775-884.
    32. Zhou F C, Chiang Y H, Wang Y. Constructing a new nigrostriatal pathway in the parkinsonian model with bridged neural transplantation in substantia nigra. Neurosci, 1996,16: 6965-6974.
    33. Wang Y, Tien L T, Lapchak P A, et al. J. GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA lesioned rats. Cell Tissue Res, 1996,286:225-233.
    34. Mendez I, Sadi D, Hong M. Reconstruction of nigrostriatal pathway by simultaneous intrastriatal and intranigral DAergic transplants. Neurosci, 1996,16:7216-7227.
    35. Mendez I, Hong M. Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase. Brain Res, 1997,78:194-205.
    36. Freed C R, Breeze R E, Greene P E, et al. Double-blind controlled trial of human embryonic dopamine cell transplants in advanced Parkinson's disease. Program and Abstracts of the American Society for Neural Transplantation and Repair, 1999,6:20-24.
    37. Simonds G R, Freed W J. Effects of intraventricular substantia nigra allografts as a function of donor age. Brain Res, 1990,530:12-19.
    38. Finch C. Comments on review by Gash et al:Applications of recombinant DNA techniques. Neurobiol. Aging, 1985,6:156-158.
    39. Danthinne X, Werth E. New tools for the generation of El-and/or E3-substituted adenoviral vector. Gene Ther, 2000,7:80-87.
    40. Mizuguchi H, Kay MA, Hayakawa T. Approaches for generationg recombinant adenovirus vectors. Advanced Drug Reviews, 2001,52:165-176.
    41. Mandel R J, Rendahl K G, Spratt S K, et al. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase in a rat model of parkinson's disease. Neurosci, 1998,18:4271-4284.
    42. Fisher L J, Chalmers G R, Gage F H. Use of genetically modified cells to deliver neurotrophic factors and neurotransmitters to the brain. In: Flanagan T R, Emerich D F and Winn S R, eds. Providing Pharmacological Access to the Brain:Alternate Approaches. Methods in Neurosci, San Diego: Academic Press, 1994,21:329-333.
    43. Choi-Lundberg D L, Lin Q, Chang Y N, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science, 1998,275:838-841.
    44. Cepko C L. Immortalization of neural cells via retrovirus-mediated oncogene transduction. Ann. Rev. Neurosci, 1989,12:47-65.
    45. Kaplitt M G, Loewy A D. Viral vectors: gene therapy and neuroscience applications. San Diego:Academic Press, 1995.
    46. Gage F H, Wolff J A. Rosenberg M B et al. Grafting genetically modified cells to the brain:Possibilities for the future. Neuroscience,2001,23:795-807.
    47. Van D A, Vanden D T, Collen D, et al. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther, 2002,2:195-209.
    48. Whittemore S R, Neary J T Kleitman N, et al. Isolation and characterization of conditionally immortalized astrocyte cell lines from adult human spinal cord. Glia, 1994,10:211-226.
    49. Snyder E Y, Park K I, Flax J D, et al. Potential of neural " stem-like" cells for gene therapy and repair of the degenerating central nervous system. Adv. Neurol, 1997,72:121-132.
    50. Snyder E Y. Immortalized neural stem cells: Insights into development; prospects for gene therapy and repair. Proc. Assn. Am. Physicians, 1995,107:195-204.
    51. Yuen E C, Mobley W C. Therapeutic potential of neurotrophic factors for neurological disorders. Ann. Neurol, 1996,40:346-354.
    52. Frim D M, Simpson J, Uhler T A , et al. Striatal degeneration induced by mitochondrial bloclade is prevented by biologically delivered NGF. Neurosci. Res, 1993,35:452-458.
    53. Kordower J H, Emborg M E, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson' disease. Science, 2000,290:767-773.
    54. Matsuura N, Lie D C, Hoshimaru M, et al. Sonic hedgehog facilitates dopamine differentiation in the presence of a mesencephalic glial cell line. J Neurosci, 2001,21:4326-4335.
    55. Wagner J, Akerud P, Castro D, et al. Induction of a midbrain dopaminergic phenotype in Nurrl-overexpressing neural stem cells by type 1 astrocytes. Nat Biotech, 1999,17:653-659.
    56. Lindvall O. Engineering neurons for Parkinson's disease. Nat Biotech.2001,17:635-636.
    57. Capano CP, Pozzo PD and Porzio U. Epigenetic cues in midbrain dopaminergic neuron development. Neurosci. Biobeh. Rev, 2000,24:119-124.