多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与自由空间的燃烧相比,预混气体在多孔介质中的燃烧是一项先进并具有广阔应用前景的燃烧技术,它不仅能够显著地拓展贫富燃极限,而且在污染物排放方面具有显著的优越性。研究超绝热燃烧机理和火焰特性,包括多孔介质中的热回流效应、燃烧波传播特性、反应区域的最高燃烧温度、燃烧器的贫可燃极限和最大半周期等,将有助于发展超绝热火焰理论,设计和开发多孔介质燃烧—换热器、反应器和多种目标的新型燃烧技术。本文通过实验测量、理论分析和数值模拟研究预混气体在多孔介质中的超绝热燃烧。
     首先,自行设计和制作了可以研究多孔介质中燃烧波和热波传播规律的实验台,该实验台包括燃烧器(石英玻璃管)、气体供给系统和测量系统等。在燃烧波的传播过程中,对火焰的形状和发展进行了观测。在不同的工况参数下,利用热电偶系统地测量了燃烧器内的温度分布。基于这些实验结果,对超绝热燃烧、燃烧波的传播、反应区域的最高燃烧温度和火焰特性进行了分析。
     其次,对单向和往复流动下稀薄预混气体在多孔介质中的低速过滤燃烧进行了理论分析。
     (1)对稀薄预混气体多孔介质中的低速过滤燃烧进行分析。首先假设燃烧区域为无限薄的区域,建立燃烧波波速与燃烧区域最高温度的第一个关系式。然后利用层流预混火焰理论,将整个区域分为预热区域和反应区域,建立燃烧波波速与燃烧区域最高温度的另一个关系式。从而得到燃烧波波速和燃烧区域最高温度的封闭解。在宽广的工况范围内,理论解与实验取得了相同的趋势,解析地证实了超绝热燃烧是燃烧波和热波在特定条件下相互叠加的结果。
     (2)通过与稳态的逆流燃烧器类比,得到了往复流动下绝热惰性多孔介质内的超绝热燃烧的简化理论解。该解包括两个常微分方程,其中包括了所有的主要控制参数,因此有助于深入理解这些控制参数对燃烧器特性的影响。与数值模拟的结果相比,多孔介质固体的温度曲线可以用简化解的分段线性函数很好地估算。利用简化的理论解求得的燃烧器内温度的最大值与实验值取得了相同的趋势,但是通常比实验值大,二者的误差小于20%。
     (3)通过与实验和数值模拟结果的类比,对文中推导出的简化理论解进行进一步的研究。利用分段线性函数,构建出燃烧器内的温度分布曲线、贫可燃极限和最大半周期。该解适用于绝热条件下往复式惰性多孔介质燃烧器。结果表明,当流速小于0.12m/s时,理论解预测的可燃极限与实验取得了相同的趋势,增大流速可以获得较小的贫可燃极限。而流速大于0.17m/s时,增大流速对扩展贫可燃极限的影响很小。同时研究表明,小孔径的多孔介质材料更有利于扩展贫可燃极限。预测的最大半周期与流速的乘积与固体和气体热容的比值成线性关系;燃烧器的长度对最大半周期有显著的影响。燃烧器的长度越大,允许有较大的半周期。预测的贫可燃极限和推导出的最大半周期为燃烧器的设计和进一步改善提供了指导。
     最后,建立了单向和往复流动下的预混气体多孔介质中燃烧的数学模型,用以深入探索和理解超绝热燃烧的机理和火焰特性。
     (1)首先对稀薄预混气体的低速过滤燃烧波的传播特性进行了系统的数值研究,并与实验结果进行对比。通过一维数值模型研究多孔介质引起的热回流效应。结果表明,导热和辐射在热回流的过程中都起着重要的作用。研究了多孔固体的属性,例如热容和导热系数、系统的热损失、混合气当量比对燃烧波波速和反应区最高温度的影响。计算结果表明,多孔介质热容的大小是影响燃烧波传播速度的最重要的参数,但它对燃烧区域最高温度几乎没有影响。在宽广的工况范围内,数值预测的燃烧波波速和燃烧区最高温度与文献和本文中的实验结果取得了定性的一致。
     (2)研究多孔介质内往复流动下预混气体的超绝热燃烧。在该系统中,通过周期性换向,燃烧波稳定在一个瞬态多孔介质燃烧器中。应用的一维双温模型包括气体输运、多孔介质固体的辐射、导热和气固两相间的对流换热。通过数值计算研究了弥散效应、主要工况参数,如半周期、流速、当量比、多孔介质材料对预混气体超绝热燃烧主要特性的影响。数值模拟结果通过实验进行了验证,并取得了相同的趋势。结果表明,组分弥散效应对气体温度分布和反应热影响很小;同一工况下,不考虑气体混合物的热弥散效应,会导致过高的气体温度计算值。同时,计算结果表明小孔径的多孔介质更有利于贫可燃极限的扩展,对30ppi的多孔介质燃烧器,得到了当量比为0.092的可燃极限。
     (3)对往复式惰性多孔介质燃烧器进行了二维数值模拟和结构改进。在燃烧器中分别填充10ppi泡沫陶瓷或小球,研究其内部的燃烧温度和压力损失。结果表明,由相同材料制成但结构不同的多孔介质对燃烧器内的高温区的分布和压力损失有显著的影响。孔隙率较大的泡沫陶瓷适合于布置在燃烧区域,而孔隙率较小的小球适合于布置在热交换区域。根据此指导思想,提出一种改进的燃烧器,即在燃烧器的中间布置泡沫陶瓷,而在二端布置小球。对于当量比为0.1的极稀薄的甲烷与空气的混合气,得到了更为宽广的高温区域和适度的压力降。
Superadiabatic combustion of premixed gases in porous media is a promising and advanced combustion technology, providing both low and high flammable limits and good performance regarding emission characteristics in comparison with open flame. Investigation of superadiabatic combustion mechanism and flame characteristics, including the heat recuperation effect, combustion wave propagation characteristics, the maximum combustion temperature in porous media, the lean flammable limit and the maximum half cycle in the porous burner and so on, benefits not only the development of the superadiabatic flame theory but also the design and development of porous media combustor-heator, reactors and new combustion technologies for various purposes. The thesis presents an intensive investigation on superadiabatic combustion in prous media by experimental measurements, theoretical analysis and numerical simulation.
     Firstly, the experimental facility is designed and set up to measure and characterize thermal wave and combustion wave in a packed bed, which consists of a combustor (quartz glass tube), a gas flow system, a measurement system and so on. Flame shapes and development is observed and recorded during the combustion wave propagating through the combustor. The temperature distributions in the packed bed are measured by thermocouples at various working parameters. Based on the experimental results, the superadiabatic combustion effect, combustion wave speed and the maximum combustion temperature and flame characteristics in the reaction zone are discussed.
     Secondly, theoretical analysis of low-velocity filtration combustion of lean mixture in porous media with uni-directional and reciprocating flow has been performed.
     (1). Combustion wave characteristics of low-velocity filtration combustion in a porous medium burner are analyzed. Based on the flame sheet assumption, a relationship between the combustion wave speed and the maximum combustion temperature is given at first. Then an approach from the laminar premixed flame theory is applied and the entire flame zone is divided into a pre-heating region and a reaction region, and treated separately. In this way, the second relationship between the two parameters is deduced. Thus a closed analytical solution for the combustion wave speed and the maximum combustion temperature is obtained. Over a wide range of working conditions, theoretical predictions show qualitative agreements with experimental data available from the literature. In addition, the results reveal that the mechanism of superadiabatic combustion is attributed to the overlapping of the thermal wave and combustion wave under certain conditions.
     (2). Based on the analogy with the steady countercurrent reactor, a simplified theoretical solution is presented, which is applicable to adiabatic inert porous media combustors with reciprocating flow. The model consists of two ordinary differential equations that link all major controlling parameters, which allow for a good physical understand of the process. Compared to the numerical study, the temperature profile in the reactor can be approximated very well by a piecewise linear function, in terms of the simplified model. The maximum temperatures in the porous media burner predicted by the simplified model show the same trends as those of experimental results, but are generally higher, and the deviation between the experimental data and predications is less than 20%.
     (3). Based on the experimental and simulation resuluts a simplified theoretical solution is further developed. The temperature profiles in the burner, the lean flammable limit and maximum half cycle are predicted by a piecewise linear function, which is applied to inert porous medium combustors with reciprocating flow in the absence of heat loss to the surroundings. The predicted lean flammable limits show the same trends as experiments when the gas velocity is less than 0.12m/s, this means that the lean flammable limits are getting lower with increasing gas velocity. However, greater gas velocities have little effect on the lean flammable limits at gas velocites greater than 0.17m/s. At the same time, results show that the lean flammable limit can be extended by using porous media of smaller pore size. In addition, it is shown that the predicted maximum half cycle is proportional to the product of the gas velocity and the ratio of the specific heats between the solid and gas. The combustor length has significant influence on the maximum half cycle and the longer combustor length permits larger half cycle. The predicted lean flammable limit and maximum half cycle provide guidelines for the design of the combustor and some indications for further improving the combustor performances.
     Finally, mathematical models of premixed combustion in prous media with uni-directional and reciprocating flows have been developed to improve the understanding of the superadiabatic combustion mechanism and flame characteristics.
     (1). Wave propagation characteristics of low-velocity filtration combustion in a porous medium burner are systemically investigated. Heat recuperation originated by the porous medium is examined by a one-dimensional numerical model. Results show that both solid conduction and radiation play important roles in the heat recuperation process. Attention is focused on the influence of solid properties such as specific heat capacities and heat conductions, heat loss, equivalence ratio etc, on the combustion wave speed and the maximum combustion temperature attained in the wave. Results show that the heat capacity of the porous media has a significant effect on combustion wave speed. At the same time it is shown that the maximum combustion temperature is almost, independent of the heat capacity of the packed bed. Over a wide range of working conditions, the numerical predictions and theoretical results show qualitative agreements with experimental data from both this paper and the available literature.
     (2). Superadiabatic combustion with reciprocating flow in a porous medium has been investigated through numerical calculations. The combustion wave is confined to a transient porous burner by periodically changing the direction of the flow. The one-dimensional model takes into account gas-phase transport, radiation, interphase heat exchange, and solid conduction. Attention is focused on the formation of superadiabatic combustion, the influence of gas dispersion, equivalence ratio and the material and structure of the porous media, on the major characteristics of superadiabatic combustion in the porous body. Results are validated through comparisons with available experimental data and show the same trends as the experiments. It is indicated that species dispersion has little influence on the gas temperature and reaction heat for the lean mixture. However, the gas temperature is overpredicted at the reaction zone without the effect of mixture thermal dispersion at the same condition. In addition, it is shown that the combustible limit can be extended with smaller pore size porous media and a combustible limit with the equivalence ratio of 0.092 is achieved for 30ppi cerafoam.
     (3). Two-dimensional numerical investigations on the structure improvement of porous inert media bumer with reciprocating flow are presented. Attention is focused on the combustion temperature and pressure loss in the burner, which is respectively packed with 10ppi ceramic foams or alumina pellets with various sizes. Results show that material and structures of porous media have significant influence on the burner performance, and that ceramic foam with a high porosity is suitable for using in the combustion region whereas alumina pellets should be placed in the heat exchange zone. According to this principle, an improved burner design is proposed and this leads to a wider high temperature plateau and moderate pressure loss for extremely dilute CH4/air mixture with an equivalence ratio of 0.1. Numerical results are validated against experiment data.
引文
[1] Hoffmann J G, Echigom R, Yoshida H et al. Experimental study on combustion in porous media with a reciprocating flow system. Combustion and Flame, 1997, 111 (12): 32-46
    [2] Commercial report: A new method of destroying organic pollutants in exhaust air. ADTEC CO, Ltd. 1990
    [3] Slimane R B, Lau F S, Dihu R J et al. Production of hydrogen by superadiabatic Decomposition of Hydrogen Sulfide. Proceeding of the 2002 U.S.DOE hydrogen program review NREL/CP-610-32405
    [4] http://miedept.me.uic.edu/lab/kennedy/Filtration_changed_2.htm
    [5] Tian-Yu Xiong, Khinkis M J, Fish F F. Experimental study of a High-efficiency, low emission porous matrix combustor-heater. Fuel, 1995, 74(11 ): 1641-1647
    [6] Jugjai S, Wongveera S, Teawchaiitiporn T et al. The surface combustor-heater with cyclic flow reversal combustion. Experimental Thermal and Fluid Science. 2001, 25:183-192
    [7] Trimis D, Durst F. Combustion in a porous Media-Advances and Applications. Combustion Science and Technology, 1996, 121(1-6): 153-168
    [8] Delalic N, Mulahasanovic D, Ganic E N. Porous media compact heat exchanger unit-experiment and analysis. Experimental Thermal and Fluid Science. 2004, 28:185-192
    [9] Jugjai S, Sawananon A. The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel, 2004, 83:2369-2379
    [10] 褚金华,程乐鸣,骆仲泱等.渐变型多孔介质燃烧器的研究与开发:(博士学位论文).杭州:浙江大学,2005
    [11] Durst F, Weclas M. Direct injection IC engine with combustion in a porous medium: a new concept for a near-zero emission engine. International Congress on Engine Combustion Processes. HDT. Essen, 1999
    [12] Ferrenberg A. Progress in the development of the regenerated diesel engines. SAE Trans, SAE 961677, 1996
    [13] Hananmara K, Bohda K, Miyairi Y. A study of super-adiabatic combustion engine. Energy Conversion and Management, 1997, 38:1259-1266
    [14] 解茂昭.一种新概念内燃机—基于多孔介质燃烧技术的超绝热发动机.热科学与技术,2003,3(2):189-194
    [15] Trimis D, Durst F, Pickenacker O et al. Porous medium combustion versus combustion systems with free flames. 2nd International Symposium on Heat Transfer Ehancement and Energy Conservation, ISHHEEC97, 16-19
    [16] Mital R, Gore J P, Viskanta. A study of the structure of submerged reaction zone in porous ceramic radiant burners. Combustion and Flame, 1997, 111: 175-184
    [17] Pereira F A, Oiiveira A A. Analysis of the combustion with excess enthalpy in porous media. Proceeding of the European Combustion Meeting 2003
    [18] Barra A J, Diepvens G, Ellzey J Let al. Numerical study of the effects of material properties on flame stabilization in porous burner. Combustion and Flame, 2003, 134:369-379
    [19] Barra A J, Ellzey J L. heat recirculation and heat transfer in porous burners. Combustion and Flame, 2004, 137:230-241
    [20] http://www.me.berkeley.edu/gri_mech/
    [21] Hayashi T C, Malico I, Pereira J C F. Three-dimensional modeling of two-layer porous burner for household applications. Computers & Structures, 2004, 82:1543-1550
    [22] Hsu P F, Matthews R D. The necessity of using detailed kinetics in models for premixed combustion within porous media. Combustion and Flame, 1993, 93:457-466
    [23] Malico I, Zhou X Y, Pereira J C F. Two-dimensional numerical study of combustion and pollutants formation in porous burner. Combustion Science and Technology, 2000, 152(13): 57-79
    [24] Mcintosh A, Prothero A. A model of large heat transfer surface combustion with radiant heat emission. Combustion and Flame, 1991, 83:111-126
    [25] 王恩宇,骆仲泱,倪明江等.气体燃料在渐变型多孔介质中的预混合燃烧机理的研究:(博士学位论文).杭州:浙江大学,2004
    [26] Howell J R, Hall M J, Ellzey J L. Combustion of hydrocarbon fuels within porous inert media. Prog. Energy Combust. Sci. 1996, 22:121-145
    [27] Weinberg F J. Combustion temperature: the future? Nature, 1971, 233(5317): 239-241
    [28] Throng M W. The science of flames and furnaces. William Clowes and Sons Ltd., 1962, London
    [29] Jones A R, Lloyd S A, Weinberg F J. Combustion in heat exchangers. Proc. Roy. Soc., A, 360, 1978: 97-115
    [30] Reika M, Kobayashi N et al. The characteristics of a heat-recirculating ceramic burner. Chemical Engineering Journal, 1998, 71:207-212
    [31] Tanaka R, Shinoda M, Arai N. Combustion characteristics of a heat-recircluating ceramic burner using a low-calorific-fuel. Energy Conversion and Management, 2001, 42: 1897-1907
    [32] Hardesty D R, Weinberg F J. Converter efficiency in burner systems producing large excess enthalpies. Combustion Science and Technology, 1976, 12:153-168
    [33] Takeno T, Sato K. An excess enthalpy flame theory. Combustion Science and Technology, 1979, 20: 73-84
    [34] Takeno T, Sato K. A theoretical study on an excess enthalpy flame. Eighteen Symposium (International) on Combustion. The Combustion Institute, 1981: 1503-1509
    [35] Yoshizawa Y, Sasaki K, Echigo B. Analytical Study of the structure of radiation controlled flame. International Journal of Heat and Mass Transfer, 1998, 31(2): 311-319
    [36] Min D K, Shin H D. Laminar premixed flame stabilized inside a honeycomb ceramic. International Journal of Heat and Mass Transfer, 1991, 34(2): 341-356
    [37] Babkin V S. Pure Appl. Chem 1993, 65:335-344
    [38] Soete D. Stability and propagation of combustion waves in inert porous media. Eleventh Symposium (International) on Combustion, The Combustion Institute, 1966:959-966
    [39] Babkin V S, Korzhavin A A, Bunev V A. Propagation of premixed gaseous explosion flames in porous media. Combustion and Flame, 1991, 87(2): 182-190
    [40] Zhdanok S, Kennedy L A, Koester G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combustion and Flame, 1995, 100:221-231
    [41] Foutko S I, Stanislav. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed. Twenty-sixth symposium(international) on combustion/The combustion institute, 1996/pp. 3377-3382
    
    [42] Bubnovich V I, Zhdanok S A, Dobrego K V. Analytical study of the combustion waves propagation under filtration of methane-air mixture in a packed bed. International Journal of Heat and Mass Transfer, 2006, 49:2578-2586
    
    [43] Bubnovich V, Toledo M. Analytical Modeling of Filtration combustion in packed bed. Applied Thermal Engineering. 2006
    
    [44] Christo F C, Dally B B, Lanspeary P V et al. Prepared for the South Australian State energy reasearch advisory committee, 2002
    
    [45] Babkin V S, Vierzba I, Kairm G A. Energy-concentration phenomenon in combustion wave. Combustion Explosion and Shove Waves, 2002, 38(1): 1-8
    
    [46] Mare L D, Mihalik T A, Continillo G et al. Experimental and numerical study of flammability limits of gaseous mixtures in porous media. Experimental Thermal and Fluid Science 2000, 21: 117-123
    
    [47] Zhdanok S A, Dobrego K V, Futko S I. Flame localization inside axis-symmetric cylindrical and spherical porous media burners. International Journal of Heat and Mass Transfer, 1998, 41: 3647-3655
    
    [48] Bingue J P, Saveliev A V, Fridman A A. NOx and CO emissions of lean and ultra-lean filtration combustion of methane/air mixtures in an inert porous media. Clean Air, 2002, 3: 199-210
    
    [49] Kennedy L A, Saveliev A V, Bingue J P. Filtration combustion of a methane wave in air for Oxygen-enriched and Oxygen-depleted environments. Proc. of the Combustion Institute 29,2002, 835-841
    
    [50] Kennedy LA, Bingue JP, Saveliev A et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich Conditions. Proceeding of the combustion institute, 2000, 28: 1431-1438
    
    [51] Bingue J P, Saveliev A V, Fridman A A et al. Hydrogen sulfide filtration combustion: comparison of theory and experiment. Experimental Thermal and Fluid Science, 2002, 26: 409-415
    
    [52] Dobrego K V, Zhdanok S A, Khanevich E I. Analytical and experimental investigation of the transition from low-velocity to high-velocity regime of filtration combustion. Experimental Thermal and Fluid Science. 2000,21:9-16
    
    [53] Dobrego K V, Zhdanok S A.Thermo-hydrodynamic instability at filtration combustion of gases. Heat and Mass Transfer Insititue, Preprint6, Minsk, 1998
    
    [54] Kennedy L A, Fridman A A, Saveliev A V. Superadiabatic combustion in porous media: wave propagation, instabilities, new type of chemical reactor. International Journal of Fluid Mechanics Research, 1996,22: 1-27
    
    [55] Minaev S S, Potytnyakov S I, Babkin V A. Combustion wave instability in the filtration combustion of gases. Combustion Explosion and Shove Waves, 1994, 30: 306-310
    
    [56] Dobrego K V, Zhdanok S A. Physical of filtration combustion of gases. Heat and Mass Transfer Institute Publ, Minsk, 2002(in Russian)
    
    [57] Dobrego K V, Zhdanok S A, Krauklis et al. Investigation of the filtration combustion stability in cylinder porous body radiative burner. J. Eng. Phys. Thermophys, 1999(72): 599-605
    
    [58] Zhdanok S A, Dobrego K V. Theory of thermohydrodynamic instability of flitration combustion of gases. Combustion Explosion and Shove Waves, 1999, 35: 476-482
    [59] Dobrego K V, Zhdanok S A, Zaruba A I. Experimental and analytical investigation of the gas filtration combustion inclination instability. International journal of Heat and Mass transfer, 2001, 44:2127-2136
    [60] Dobrego K V, Kozlov I M, Bubnovich V Iet al. Dynamics of filtration combustion front perturbation in the tubular porous media burner. International Journal of Heat and Mass Transfer, 2003, 46, 3279-3289
    [61] Saveliev A V, Kennedy L A, Fridman A A et al. Structures of multiple combustion waves formed under filtration of lean hydrogen-air mixture in a packed bed. Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, 3369-3375
    [62] Xiong Tian-Yu. Experimental study of ultra-low emission radiant porous burner. Presented at AFRC 1991 Spring Members Only Meeting, Hartford: Connecticut, 1991, 18-19
    [63] Kendall R M, Desjardin S T, Sullivan J D. Basic research on radiant burners. Annual Report (Jan. 1989-March 1990) Report No. GRI-90 / 0325, Gas Research Institute, Chicago, IL, 1990
    [64] Khanna R, Goel R, EIIzey J L. Measurements of emissions and radiation for methane combustion within a porous medium burner. Combustion Science and Technology, 1994, 99:133-142
    [65] Goeckner B A, Helmich D R, McCarthy T A et al. Radiative heat transfer augmentation of natural gas flames in radiant tube burners with porous ceramic inserts. Experimental Thermal and Fluid Science, 1992, 5: 848-860
    [66] Peard T E, Peters J E, Brewster M Q et al. Radiative heat transfer augmentation in gas-fired radiant tube burners by porous inserts: effect of insert geometry. Experimental Heat Transfer, 1993, 6: 273-286
    [67] 吕兆华,王志武,孙思诚等.多孔陶瓷燃烧器内的温度测定.发电设备,1997, 89:35-44
    [68] 吕兆华,Matthews R D,Howell等.多孔陶瓷中的预混火焰.华东工学院学报,1989, (3):25-29
    [69] 吕兆华,孙思诚,裴锦华等.多孔泡沫陶瓷中预混合火焰燃烧速率的实验研究.燃烧科学与技术,1995, 1(2):129-134
    [70] 吕兆华,Matthews R D.分段多孔介质燃烧器二次进气燃烧排放研究.燃烧科学与技术,2000,6(2):124-128
    [71] 李艳红,程惠尔,胡国新等.多孔陶瓷板燃气预混燃烧的试验研究.上海交通大学学报,2001,35(8):1220-1223
    [72] 李艳红,程惠尔,胡国新等.多孔陶瓷板预混燃烧的NOx的排放特性.上海交通大学学报,2002,36(2):226-229
    [73] 刘宪秋,卢国楷,马志伟等.多孔介质对贫燃料燃烧极限的影响.北京化工学院学报,1994,21(2):54-57
    [74] 潘宏亮,Pickenacker O,Trimis D et al.多孔介质中甲烷预混气火焰传播特性的实验研究.工程热物理学报,2006,27(5):897-899
    [75] Zhang G, Cai X, Liu M. Characteristic analysis of low-velocity gas flitration combustion in an inert packed bed, Combustion Theory Modeling, 2006
    [76] 张根烜,陈义良,刘明侯等.堆积床内甲烷/空气预混燃烧的理论分析.工程热物理学报,2006,26(增刊):245-248
    [77] 张根烜,陈义良,张先锋等.惰性多孔介质内燃烧特性分析.工程热物理学报,2006
    [78] 张根烜,陈义良,刘明侯等.堆积床内非驻定过滤燃烧的一维模拟.计算物理,2006,23(2):217-223
    [79] 张根烜,刘明侯,陈义良等.堆积床内过滤燃烧的瞬态研究.燃烧科学与技术,2006,12(2):180-185
    [80] 吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示.燃烧与科学技术,1998,4(3):242-246
    [81] 潘宏亮.孔隙率对Al_2O_3高孔隙率多孔介质EHC的影响.西北工业大学学报,2002,20(2):479-484
    [82] 潘宏亮.多孔介质有效导热系数的计算.航空计算学报,2002,3:12-14
    [83] 王恩宇,程乐鸣,吴晋湘等.多孔陶瓷在燃烧领域的应用及存在的问题.佛山陶瓷,2005,100:35-39
    [84] 施明恒,虞维平,王补宣.多孔介质传热传热的现状和展望.东南大学学报,1994,24:1-7
    [85] 陈代询.渗流气体滑流现象与渗透率变化的关系.力学学报,2002,34(1):96-100
    [86] 王补宣.多孔介质传热传质研究的意义与现状.中国科学基金,1991,1:30-32
    [87] Hardesty D R, Weinberg F J. Bumers producing large excess enthalpies. Combustion Science andTechnology, 1974, 8:201-214
    [88] Lloyd S A, Weinberg F J. A burner for mixtures of very low heat content. Nature, 1974, 251-274
    [89] Lloyd S A. Limits to energy release and utilization from chemical fuels. Nature, 1975, 257-367
    [90] Lloyd S A. A reticulating fluidized bed combustor for extended flow regimes. Combustion and Flame,1976, 27, 391-400
    [91] Echigo R. Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces//Proc 7th Int Heat Transfer Conf Munich, 1982(Ⅵ): 361-366
    [92] Henneke M R, Ellzey J L. Modeling of filtration combustion in a packed bed. Combustion and Flame,1999, 117: 832-840
    [93] Echigo R. Analytical and experimental studies on radiative propagation in porous media with internal heat generation. Proceedings of 8th international heat Transfer Conference, San Francisco, 1986, Vol. Ⅱ, pp.827-832.
    [94] Hsu P F, Evans W D, Howell J R. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combustion Science and Technology, 1993, 90:149-172
    [95] Hsu P F, Howell J R, Matthews R D. A numerical investigation ofpremixed combustion within porous inert media. ASME Journal of Heat Transfer, 1993, 115:744-750
    [96] Chen Y K, Matthews R D, Howell J R. The effect of radiation on the structure of premixed flow within highly porous inert media, ASME Winter ANNUAL Meeting, Boston: ASME, 1987
    [97] Kee R J, Miller A A, Jefferson T H. CHEMKIN: A general-purpose problem independent transportable, fortran chemical kinetics code package. Sandia National Laboratories Report, SAND80-8003, 1980
    [98] Kee R J, Dixon-Lewis G, Warnatz J et al. A fortran computer code package for the evaluation of gas-phase multi-component transport properties. Sandia National Laboratories Report, SAND86-8246, 1986
    [99] Sathe S B, Kulkari M R. An experimental and analytical study of porous radiant burner performance. Twenty-sixth symposium (International) on combustion, Pittsburgh, PA, 1990: 1011-1018
    [100] Sathe S B, Peck R E. A numerical analysis of heat transfer and combustion in radiant burners. International journal of Heat and Mass Transfer, 1990, 33:1331-1338
    [101] Singh S, Ziolkowski M, Sultzbaugh J et al. Mathematical model of a ceramic burner radiant heater. Fossil Fuel Combustion, 1991, 33:111-116
    [102] Tseng Chung-jen. Effects of hydrogen addition on methane combustion in a porous media burner. International Journal of Hydrogen Energy, 2002, 27:699-707
    [103] Bouma P H, Goey P H DE. Premixed combustion on ceramic foam burners. Combustion and Flame, 1999, 119:133-143
    [104] Brenner G, Pickenacker K, Pickenacker O et al. Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media. Combuation and Flame, 2000, 123: 201-213
    [105] Sahraoui M, Kaviany M. Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium. International Journal of Heat and Mass Transfer, 1994, 37:2817-2834
    [106] Diamantis D J, Mastorakos E, Goussis D A. Simulations of premixed combustion in porous meida. Combustion Theory and Modeling, 2002, 6:383-411
    [107] 赵平辉,陈义良,刘明侯等.多孔介质内层流预混燃烧的数值模拟.燃烧科学与技术,2006,12(1):46-50
    [108] 赵平辉,陈义良,姜海.多孔介质内火焰传播与稳定机理的研究.中国工程热物理学会燃烧学学术会议,武汉,2006:456—462
    [109] Mauss F, Peters N. Reduced kinetic mechanisms for premixed methane-air flames. Reduced kinetic mechanisms for application in combustion systems, Berlin: Springer, 1993
    [110] 姜海,赵甲辉,张根炬等.丙烷/空气预混气在堆积床内燃烧特性的实验研究和数值模拟.中国工程热物理学会燃烧学学术会议,武汉,2006:537-543
    [111] 张义玲,宋晓军,毛兴民.石油化工环境保护,2000,2:23-28
    [112] 杜礼明,王树东.超绝热燃烧技术在硫化氢分解制氢上的应用.化工进展,2005,24(3):231-235
    [113] Binoist Manuel, Bernard Labegorre, Franck Monnet et al. Kinetic Study of the Pyrolysis of H_2S . Ind Eng Chem Res, 2003, 42(17): 3943-3951
    [114] Bingue J P, Saveliev A V, Fridman A A. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. International Journal of Hydrogen Energy, 27:643-649
    [115] Porshnev P I, Fridman A A, Saveliev A V et al. Hydrogen production by superadiabatic combustion of hydrogen sulfide: multi-step rxn model. 2nd International Conference on Computational Heat and Mass Transfer, RiO de Janeiro, Brazil, 2001
    [116] Slimane R B, Lau F S, Khinkis M. Conversion of hydrogen sulfide to hydrogen by superadiabatic partial oxidation: thermodynamic consideration. International Journal of Hydrogen Energy, 29:1471-1477
    [117] 钱欣平,凌忠钱,周吴等.硫化氢热分解制氢过程的化学动力学研究.燃料化学学报,2005,23(6):722-725
    [118] 凌忠钱,周昊,钱欣平等.多孔介质内H_2S贫氧燃烧制氢数值模拟.环境科学学报,2006,26(1):22-25
    [119] Frenklach M, Lee J H, Whtte J N. Oxidation of hydrogen sulfide. Combustion and Flame, 1981, 41:1-16
    [120] http://www.FLUENT.COM
    [121] Martin T. Regenerative ceramic burner technology and utilization. Industrial Heating, 1988, 55(4): 12-15
    [122] Boreskov G K, Matros Y S. Unsteady-state performance of heterogeneous catalytic reactions. Rev. Sci. Eng., 1983, 25(4): 551-590
    [123] Matros Y S. Performance of catalytic processes under unsteady conditions. Chemical Engineering Science, 1990, 45(8): 2097-2102
    [124] Matros Y S, Chem. Eng. Sci. Process, 1993, 32:89-98
    [125] Van De Beld L, Westerterp K R. Operation of a catalytic reverse flow reactor for the purification of air contaminated with volatile organic compounds. Can. J. Chem. Eng., 1997, 75:975-983
    [126] Eigenberger G, Nieken U. Catalytic combustion with periodic flow reversal. Chemical Engineering Science, 1988, 43(8): 2109-2115
    [127] Ruoyu Hong, Xin Li, Hongzhong Li et al. Modeling and simulation of SO_2 oxidation in a fixed-bed reactor with periodic flow reversal. Catalysis Today 38, 1997: 47-58
    [128] 王辉,肖博文,袁渭康.非稳态SO_2转化器稳定性研究.化学工程,1997,25(4):26-29
    [129] 袁渭康.工业反应过程大开发方法Ⅲ:工业废气催化燃烧反应器的开发.石油化工,1994,23(3):181-186
    [130] Jugjai S. Experimental study on cyclic flow reversal combustion in a porous media. Combustion Science and Technology, 2001, 163:245-263
    [131] Jeong Y S, Lee S M, Kim N K et al. A study on combustion characteristics of superadiabatic combustion in porous media. KSME International Journal, 1998, 12(4): 680-687
    [132] 越后亮三,张唯敏译.多孔介质内的超绝热燃烧.国外内燃机,1997,6:55-57
    [133] Hanamura K, Echigo R. Superadiabatic combustion in a porous medium. International Journal of Heat and Mass Transfer, 1993, 36(13): 3201-3209
    [134] Echigo R, Hanamura K, Yoshida H et al. Sophisticated thermoelectric conversion device of porous materials by super-adiabatic combustion of reciprocating flow and advanced power generation system. Ⅺ international conference on thermoelectrics, October 7-9, 1992, Ⅲ-2, 45-50
    [135] Hoffmann J G, Echigo R, Tada S et al. Analytical study on flame stabilization reciprocating combustion in porous media with high thermal conductivity. Twenty-sixth Symposium (International) on Combustion. The Combustion Institute, 1996:2709-2716
    [136] Contarin F, Saveliev A V, Fridman A A et al. A reciprocal flow filtration combustor with embedded heat exchangers: numerical study. International Journal of Heat and Mass Transfer, 2003, 46 949-961
    [137] Drayton M K, Saveliev A V, Kennedy L Aet al. Syngas production using superadiabatic combustion of ultra-rich methane air mixtures. Twenty-Seventh International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1998, 1361-1368
    [138] Konstandopoulos A G, Kostoglou M. Reciprocating flow regeneration of soot filters. Combustion and Flame, 2000, 121:488-500
    [139] Durst F, M Weclas. A new type of internal combustion engine based on the porous-medium combustion technique. Proceedings of the Institute Mechanical Engineers, Part D Journal of Automobile Engineering, 2001, 215:63-81
    [140] Ferrenberg A. The single cylinder regenerated ICE. SAE 900911,1990
    [141] 解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景.燃烧科学与技术,2002,8(6):520-524
    [142] 杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展.热能动力工程,2002,17(99):221-226
    [143] 杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨.能源工程,2003,5:6-11
    [144] 杜礼明,解茂昭.预混合燃烧系统中多孔介质作用数值研究.大连理工大学学报,2004,44(1):70-75
    [145] 杜礼明.稀薄混合气在多孔介质中超绝热燃烧的理论研究:(博士学位论文).大连:大连理工大学,2003
    [146] 马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的的一维数值模拟,热能动力工程,2004,19(4):384-388
    [147] 马世虎.往复流动下预混气体在多孔介质中超绝热燃烧的数值模拟:(硕士学位论文).大连:大连理工大学,2004
    [148] 邓洋波,解茂昭,刘宏升等.多孔介质内往复流动下超绝热燃烧的实验研究.燃烧科学与技术,2004,10(1):82-87
    [149] 邓洋波,解茂昭.多孔介质内预混合超绝热燃烧的排放特性.大连理工大学学报,2004,44(3):392-397
    [150] 邓洋波,解茂昭.RSCP系统温度分布理论分析解.能源工程,2005,6:1-6
    [151] 李昊,程乐鸣,王恩宇等.往复式多孔介质燃烧器温度分布的试验研究.浙江大学学报(工学版),2005,39(8):1184-1188
    [152] 李昊,程乐鸣,王恩宇等.往复式多孔介质燃烧器流动特性的试验研究.能源工程,2004,4:1-5
    [153] Cittadini M, Vanni M, Barresi A A et al. Simplified procedure for design of catalytic combustors with periodic flow reversal. Chemical Engineering and Processing, 2001, 40:255-262
    [154] Cittadini M, Vanni M, Barresi A A. Efficient design and scale-up reverse-flow catalytic combustors. AIDIC Conf.ser., 1999, 4:131-138
    [155] Cittadini M, Vanni M, Barresi A A. Development and design of a forced unsteady-state reactor through numerical simulation. European Symposium on Computer Aided Process Engineering-10, 2000, 8: 697-702
    [156] Matros Y S, Bunimovich G A, Noskov A S. The decontamination of gases by unsteady-state catalytic method. Theory and Practice. Catalysis Today, 1993, 17:261-274
    [157] Eigenberger G, Nieken U. Catalytic cleaning of polluted air: reaction engineering problems and new solution. Int. Chem. Eng., 1994, 34:4-16
    [158] Nieken U, Kolios G, Eigenberger G A. Fixed-bed reactors with periodic flow reversal: experimental results for catalytic combustion. Catalysis Today, 1994, 20:335-350
    [159] Nieken U, Kolios G, Eigenberger G A. Control of the ignited steady state in autothermal fixed-bed reactors for catalytic combustion. Chem. Eng. Sci., 1994, 49:5507-5518
    [160] Matros Y S, Bunimovich G A. Control of volatile organic compounds by the catalytic reverse process. Ind. Eng. Chem. Res., 1995, 34:1630-1640
    [161] Nieken U, Kolios G, Eigenberger G A. Limiting cases and approximate solution for fixed-bed reactors with periodic flow reversal. AIChE-Journal, 1995, 41 (8): 1915-1925
    [162] Haynes T N, Georgakis C, Caram H S. The design of reverse-flow reactors for catalytic combustion system, Chem. Eng. Sci., 1995, 50:401-416
    [163] Thullie J, Burghadt A. Simplified procedure for estimating maximum cycling time of flow-reverse reactors. Chem. Eng. Sci., 1995, 50:2299-2309
    [164] Futko S I. Mechansm of upper temperature limits in a wave of filtration combustion of gases, Combustion, Explosion and Shock Waves, Vol.39, No. 2,pp. 130-139, 2003
    [165] Irvin Glassman. Combustion, 3rd edition, Academic press, Inc, 1996
    [166] Koester GE. Propagation of wave-like unstabilized combustion front in inert porous media. [phD Thesis]. Ohio: Department of Mechanical Engineering, The Ohio State University, 1997
    [167] 邓洋波.多孔介质内往复流动下超绝热燃烧的实验和数值模拟研究:(博士学位论文).大连:大连理工大学,1998
    [168] Younis L B, Viskanta R. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam, Int. J. Heat Mass Transfer, 1993, 36 (6): 1425-1434
    [169] 吕兆华.泡沫型多孔介质等效导热系数的计算.南京理工大学学报,2001,25:257-261
    [170] Willem potze. Radiation heat transfer in axisymmetric quartz glass tubes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 84(4): 575-586
    [171] Mohamad A A, Ramadhyani S, Visknta R. Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes. International Journal of Heat and Mass Transfer, 1994, 37(8): 1181-1191
    [172] Dobrego K V, Kozlov I M, Zhdanok S A et al. Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer, 2001, 44(17): 3265-3272
    [173] 吕兆华,王志武,孙思诚等.石英玻璃窗对火焰温度测量影响的数值分析.南京理工大学学报,1997,21(5):449-452