肝细胞中结合丙型肝炎病毒C区RNA的特异性蛋白分子筛选、鉴定和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义
     丙型肝炎病毒(HCV)是慢性肝炎和肝癌的主要病原体之一,但对于HCV的复制和致病机制目前还是不甚清楚。宿主细胞中的许多蛋白分子可以通过与HCV RNA基因组的相互作用,调节HCV的翻译、复制和病毒的组装。现有研究发现的HCV RNA结合蛋白,其结合区域主要位于HCV RNA的5’-UTR、3’-UTR和RNA的副链。但是与HCV CORE区(核心区)RNA结合的细胞蛋白却很少有研究报导。本研究拟采用凝胶迁移和紫外交联的实验方法,从人肝癌细胞系HepG2细胞中初步筛选与HCV CORE区RNA结合的细胞蛋白分子,确定其与HCV RNA结合的具体区域,并对RNA结合蛋白进行分离、鉴定。通过研究宿主细胞蛋白与HCV C区RNA的相互作用,将有助于我们对宿主和病毒相互作用的更好理解,从而在细胞蛋白质水平对病毒RNA的翻译、复制和病毒蛋白表达进行调控;并有利于在丙型肝炎的预防和治疗方面提出针对性的措施。
     方法
     ①采用RT-PCR扩增HCV C区cDNA序列,并构建重组质粒pGEM-HCV;以pGEM-HCV为模板,采用体外转录的方法制备DIG标记和未标记的HCV C-RNA分子;将DIG标记的HCV C-RNA与HepG2细胞蛋白结合,进行凝胶迁移实验;将DIG标记的HCV C-RNA与HepG2细胞蛋白结合,进行紫外交联筛选实验,并采用未标记的HCV C-RNA分子进行竞争性实验;电泳后将RNA/蛋白转移至NC膜,以DIG抗体检测NC膜上的DIG信号,判断是否有细胞蛋白与HCV C-RNA结合。
     ②采用PCR、克隆和体外转录的方法,制备不同长度的HCV C-RNA分子;分别将不同长度的HCV C-RNA分子与细胞蛋白进行结合反应和紫外交联实验,确定HCV C-RNA与细胞蛋白的结合区域;采用抗-DIG和免疫沉淀方法,从RNA和蛋白混合物中,分离与DIG标记的HCV C-RNA分子结合的细胞蛋白;通过SDS-PAGE和NC膜的检测结果的比对,切取目的蛋白条带,进行肽指纹图谱分析鉴定。
     ③提取HepG2细胞总RNA,以RT-PCR方法扩增PGAM-B的全基因片断,与载体pcDNA~(TM)3.1/V5-HisA连接,构建真核表达质粒pcDNA-PGAM;以PCR方法扩增pGEM-HCV中HCV核心蛋白基因片断,与载体pcDNA3.0连接,构建真核表达质粒pcDNA-HCV;经酶切和测序鉴定后,将真核表达质粒分别转染HepG2细胞;以免疫细胞化学的方法,在细胞爬片上分别检测细胞中PGAM-His蛋白和HCV核心蛋白的瞬时表达情况。结果
     ①从1例HCV感染者血清中扩增得到的503bp HCV cDNA序列,构建了重组质粒pGEM-HCV,并进行了PCR、酶切鉴定和测序鉴定。②所得HCV cDNA序列与已知HCV序列(AB092962.1)比较,属于HCV 1型基因C区,仅有两个核苷酸不同,nt 67(23aaK→E)和nt 177(沉默突变),其余序列均一致。③通过凝胶迁移实验初步检测到,有HepG2细胞蛋白与HCV C-RNA分子结合。④通过紫外交联实验检测到,有多个HepG2细胞蛋白与HCVC-RNA分子在体外发生了结合;随着结合反应体系中细胞蛋白浓度的增加,HCV C-RNA和蛋白的结合量随之增多;未标记HCV C-RNA对DIG标记的HCV C-RNA与HepG2细胞蛋白的结合有竞争性抑制作用。⑤3个不同长度的HCV C-RNA分子(198nt、306nt和503nt)都可与HepG2细胞蛋白在体外发生结合;其中C-RNA 5’端的C198 RNA与细胞蛋白的结合条带,最为清晰和锐利。⑥经免疫沉淀后的蛋白,在NC膜上可以检测到4条明显的兰紫色RNA结合蛋白带;其中以P30蛋白条带最为清晰,蛋白量最多。⑦从SDS-PAGE胶上切取了P30蛋白条带,经肽指纹图谱分析鉴定,P30蛋白为磷酸甘油酸变位酶1(PGAM-B)。⑧从HepG2细胞中,扩增得到了约为760bp的PGAM-B的cDNA全基因片断;所得PGAM-B基因序列与已知PGAM-B基因序列(J04173)进行比较,完全一致。⑨基因序列和蛋白读码框均正确的真核表达质粒pcDNA-PGAM和pcDNA-HCV,分别转染HepG2细胞后,可在细胞爬片上检测到PGAM-His和HCV核心蛋白的瞬时表达。
     结论
     ①在HepG2细胞中,有多个细胞蛋白分子可以与HCV核心区RNA在体外发生特异性的结合。②HCV C-RNA与HepG2细胞蛋白的结合区域可能位于HCV C区RNA的5’端。③PGAM-B可以与HCV C-RNA在体外发生特异结合,提示PGAM-B可能通过与HCV核心区RNA的相互作用,参与HCV RNA的翻译和复制。④PGAM-B和HCV核心蛋白可以在HepG2细胞中瞬时表达。
Objective and significance
     Hepatitis C virus (HCV) is one of causative pathogens of chronic hepatitis and liver cancer. However the molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. A number of cellular factors from host cells may be involved in regulating HCV translation, replication and assembly by interacting with HCV RNA genome. These studies on HCV RNA-binding proteins were mainly focused on the 5’-UTR, 3’-UTR and negative strand of HCV RNA genome. But the studies on cellular proteins binding to core region of HCV RNA genome are still few. The objectives of this study were to screen, separate and identify cellular proteins, which could bind to core region of HCV RNA genome. It will help us to know about host cell-virus interactions, to regulate HCV translation and repulication at cellular level and to take measures in prevention and treatment of hepatitis C.
     Methods
     ①The cDNA fragment of HCV core region was generated by the reverse-transcriptase-polymerase chain reaction (RT-PCR), and the plasmid pGEM-HCV was constructed to generate in vitro transcripts of core region of HCV RNA genome. Dig-labeled HCV C-RNA transcripts and unlabeled HCV C-RNA transcripts were obtained by in vitro transcription. After binding of HCV C-RNA and protein extracts from HepG2 cells, electrophoretic mobility shift assay (EMSA), Ultraviolet (UV) cross-linking experiment and competition analysis were performed to screen HepG2 cellular proteins, which interact with DIG-labeled transcripts of core region of HCV RNA genome. After electrophoresed on PAGE, proteins or RNA were transferred to NC membrane. DIG-labeled complexes were detected with anti-Digoxingenin-AP in order to find whether cellular proteins bound to HCV C-RNA or not.
     ②The different HCV C-RNA transcripts in length were preparated by PCR, cloning and in vitro transcription. After binding of the different HCV C-RNA transcripts and protein extracts from HepG2 cells, UV cross-linking experiment was performed to identify binding region of HCV C-RNA. DIG labeled RNA-binding proteins were separated by immunoprecipitation with anti-DIG. By comparing SDS-PAGE’s results with NC membrane’s resluts, the proteins bands were excised from SDS-PAGE and were analyzed by MALDI-TOF-MS.
     ③Total RNA was isolated from HepG2 cells, and the entire coding region of PGAB-B cDNA was obtained by RT-PCR. The cDNA fragment of PGAM-B was cloned into the pcDNA?3.1/V5-HisA, and the eukaryotic expression plasmid pcDNA-PGAM was constructed. The cDNA fragment of HCV core protein was obtained by PCR from plasmid pGEM-HCV and was cloned into pcDNA3.0 to construct the eukaryotic expression plasmid pcDNA-HCV. After identified by restriction endonuclease and sequencing,the eukaryotic expression plasmids were transfected into HepG2 cells respectively. The instantaneous expression of PGAM-His and HCV core protein were analyzed by immunocytochemical technique. Results
     ①503 bp cDNA fragment of HCV core gene was obtained from HCV carrier. The plasmid pGEM-HCV was constructed and identified by PCR, restriction endonuclease and sequencing.②HCV cDNA sequence of core gene was compared with the known HCV gene sequence (AB092962.1) in GenBank. There were only 2 nucleotide differences between the two sequences, which located in position nt 67 (23aa K→E) and nt 177 (silent mutation).③By primary screening of EMSA, there were cellular proteins of HepG2 cells bingding to HCV C-RNA.④By screening of UV cross-linking experiment, there were several cellular proteins of HepG2 cells bingding to HCV C-RNA in vitro. The intensity of RNA binding protein bands increased with increasing amounts of cell extracts. The binding of cellular proteins to Digoxin labeled HCV C-RNA was competed out in proportion to the increasing amount of unlabeled HCV C-RNA.⑤Three different HCV C-RNA transcripts (198nt, 306nt and 503nt) could bind to cellular proteins in vitro, but the binding band of HCV C198 RNA to cellular proteins was clearer and sharper than that of others.⑥After immunoprecipitated, four RNA binding proteins were detedted in NC membrane. The protein band of P30 was the clearest, and the protein amount was also the largest.⑦The P30 protein bands were excised from SDS-PAGE and analysed by MALDI-TOF-MS. The P30 protein was identified as PGAM-B (Phosphoglycerate mutase isozyme B).⑧760bp fragment of PGAM-B cDNA sequence was obtained by RT-PCR from HepG2 cells, and it was consistent with the known PGAM-B sequence (J04173) in GenBank.⑨After the eukaryotic expression plasmids pcDNA-PGAM and pcDNA-HCV were transfected into HepG2 cells, the fusion protein PGAM-His and HCV core protein were instantaneous expressed in some of cells.
     Conclusions
     ①There are several cellular proteins could specifically bind to core region of HCV RNA genome in vitro.②The binding site of HCV C-RNA maybe located in 5’-terminal of core region of HCV RNA genome.③PGAM-B could specifically bind to the core region of HCV RNA genome in vitro. It suggested that PGAM-B maybe involved in translation and replication of HCV RNA by interacting with core region of HCV RNA genome.④PGAM-B and HCV core peotein couled instantaneous express in HepG2 cells.
引文
1. Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech, 2005;68:130-148.
    2. Lee CM, Hung CH, Lu SN, Wang JH, Tung HD, Huang WS, Chen CL, Chen WJ, Changchien CS. Viral etiology of hepatocellular carcinoma and HCV genotypes in Taiwan. Intervirology, 2006;49:76-81.
    3. 中华医学会肝病学分会,中华医学会传染病与寄生虫病学分会. 丙型肝炎防治指南. 中华肝脏病杂志, 2004;12(4):194-198.
    4. Diedrich G. How does hepatitis C virus enter cells? FEBS J, 2006;273:3871-3885.
    5. McHutchison JG, Bacon BR. Chronic hepatitis C:an age wave of disease burden. Am J Manag Care, 2005;11:S286-S295.
    6. Luo GX. Cellular proteins bind to the poly(U) tract of the 3' untranslated region of hepatitis C virus RNA genome. Virology, 1999;256:105-118.
    7. Pawlotsky JM. Virology of hepatitis B and C viruses and antiviral targets. J Hepatol, 2006;44:s10-s13.
    8. Kuang WF, Lin YC, Jean F, Huang YW, Tai CL, Chen DS, Chen PJ, Hwanga LH. Hepatitis C virus NS3 RNA helicase activity is modulated by the two domains of NS3 and NS4A. Biochem Biophys Res Comm, 2004;317:211-217.
    9. Gao L, Aizaki H, He JW, Lai MM. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J Virol, 2004;78(7):3480-3488.
    10. 陈广灿, 李威, 曾永明. HCV 的基因结构功能与肝细胞癌相关性研究进展. 中华肿瘤防治杂志, 2006;13(2):153-155.
    11. Lai M, Ware C. Hepatitis C virus core protein: possible roles in viral pathogenesis. Curt Top Microbiol Immunol, 2000;242:117-134.
    12. McLauchlan J. Properties of the hepatitis C virus core protein:a structuralprotein that modulates cellular processes. J Viral Hepat, 2000;7(1):2-14.
    13. Hahm B, Kim YK, Kim JH, Kim TY, Jang SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J Virol, 1998;72(11):8782-8788.
    14. Li D, Takyar ST, Lott WB, Gowans EJ. Amino acids 1-20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES- and cap-dependent translation in HuH7 and CV-1 cells. J Gen Virol, 2003;84(Pt 4):815-825.
    15. 翟友刚, 史朋. HCV 核心蛋白致细胞癌变机制的研究进展. 国外医学病毒学分册, 2005;12(1):17-20.
    16. Hall K. RNA-protein interactions. Current Opinion in Structural Biology, 2002;12:283-288.
    17. LSaunders, Barber G. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 2003;17:961-983.
    18. 杜光伟, 周严, 袁建刚, 强伯勤. RRM RNA 结合蛋白的结构与功能. 生物化学与生物物理进展, 1999;26(4):305-307.
    19. 成军, 李克, 陆荫英. 丙型肝炎病毒调节基因区结合蛋白的研究. 世界华人消化杂志, 2002;10(2):223-225.
    20. 成军. 丙型肝炎病毒3'-非翻译区RNA结合蛋白的研究进展. 国外医学病毒学分册, 2000;7(1):17-21.
    21. Wang W, Deng Q, Huang K, Duan Z, Shao J, Huang Z, Huang Z. A cellular protein specifically binds to the 3'-terminal sequences of hepatitis C virus intermediate negative-strand RNA. Chin Med J (Engl), 2003;116(6):932-936.
    22. Ito T LM. An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3'-untranslated sequence. Virology, 1999;254(2):288-96.
    23. 金由辛, 面向 21 世纪的 RNA 研究. 1999, 北京: 科学出版初. 86-101.
    24. Mata J, Marguerat S, Bahler J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci, 2005;30(9):506-514.
    25. Keene JD, Lager P. Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res, 2005;13(3):327-337.
    26. Musunuru K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc Med, 2003;13(5):188-195.
    27. Farina KL, Singer RH. The nuclear connection in RNA transport and localization. TRENDS in Cell Biology, 2002;12(10):466-472.
    28. Dreyfuss G, Kim VN, ataoka NK. Messenger-RNA-bingding proteins and the messages they carry. Nature Reviews/Molecular Cell Biology, 2002;3:195-205.
    29. 张庆硕, 王恩多. RNA 和蛋白质的相互作用. 生物化学与生物物理进展, 1999;26(2):121-123.
    30. Auweter SD, Oberstrass FC, Allain FH. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res, 2006;34(17):4943-4953.
    31. Chen Y, Varani G. Protein families and RNA recognition. FEBS J, 2005;272(9):2088-2097.
    32. Maris C, Dominguez C, Tallain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 2005;272:2118-2131.
    33. Perez-Canadillas JM, Varani G. Recent advances in RNA-protein recognition. Curr Opin Struct Biol, 2001;11(1):53-58.
    34. Messias AC, Sattler M. Structural basis of single-stranded RNA recognition. Acc Chem Res, 2004;37(5):279-287.
    35. Hall TM. Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol, 2005;15(3):367-373.
    36. Varani G. How proteins and RNA recognize each other. FEBS J, 2005;272:2087.
    37. Hiller M, Pudimat R, Busch A, Backofen R. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Research, 2006;34(17):114-123.
    38. Saunders LR, Barber GN. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 2003;17(9):961-983.
    39. Chang KY, Ramos A. The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J, 2005;272: 2109-2117.
    40. 刘青珍, 李凌云, 齐义鹏, 杨复华. RNA 病毒基因组和转录复制多样性的分子基础. 生物多样性, 2001;9(3):294-300.
    41. Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM. Structural biology of hepatitis C virus. Hepatology, 2004;39:5-19.
    42. Simmonds P, Bukh J, Combet C, Dele′age G, Enomoto N, Feinstone S. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005;42:962-973.
    43. 霍艳英, 徐德忠, 赵小宁, 李如琳, 刘蓬勃, 王全楚, 王歆. 西安和郑州地 区 丙 型 肝 炎 患 者 的 HCV 基 因 分 型 . 第 四 军 医 大 学 学 报 , 2002;23(8):749-751.
    44. Moradpour D, Blum HE. A primer on the molecular virology of hepatitis C. Liver International, 2004;24:519-525.
    45. Kang SM, Shin MJ, Kim JH, Oh JW. Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein. Proteomics, 2005;5:2227-2237.
    46. QLChoo, Kuo G, Weiner A, al e. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989;244:359-362.
    47. 吕丽萍, 贾帅争, 王全立. 丙型肝炎病毒感染细胞的相关分子研究进展. 国外医学流行病学传染病学分册, 2002;29(5):287-290.
    48. Fang XH, Zeisel MB, Wilpert J, Gissler B, Thimme R, Kreutz C. Host cell responses induced by hepatitis C virus binding. Hepatology, 2006;43:1326-1336.
    49. 吕欣, 薛小平, 徐志凯. 丙型肝炎病毒受体的研究进展. 国外医学病毒学分册, 2003;10(5):151-154.
    50. Bartosch B, Cosset FL. Cell entry of hepatitis C virus. Virology,2006;348:1-12.
    51. 刘秋平, 贾战生. HCV 感染的分子机制研究. 国外医学流行病学传染病学分册, 2003;30(4):218-220.
    52. Cocquerel L, Voisset C, Dubuisson J. Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol, 2006;87(Pt5):1075-1084.
    53. Guidotti LG, Chisari FV. Immunobiology and pathoenesis of viral hepatitis. Annual Review of Pathology: Mechanisms of Disease, 2006;1:23-61.
    54. 程勇前, 聂青和, 周永兴. 丙型肝炎病毒超微结构研究进展. 世界华人消化杂志, 2003;11(2):233-237.
    55. TL Tellinghuisen, Rice C. Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 2002;5:419-427.
    56. Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene, 2006;25(27):3834-3847.
    57. Ray RB, Lagging LM, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol, 1996;70(7):4438-4443.
    58. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 1998;4(9):1065-1067.
    59. Ishikawa T, Shibuya K, Yasui K, Mitamura K, Ueda S. Expression of hepatitis C virus core protein associated with malignant lymphoma in transgenic mice. Comp Immunol Microbiol Infect Dis, 2003;26(2):115-124.
    60. 陈娟,黄爱龙. HCV 核心蛋白影响细胞凋亡可能机制的研究进展. 国际病毒学杂志, 2006;13(2):33-37.
    61. Chen CM, You LR, Hwang LH, Lee YH. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J virol, 1997;71(12):9417-9426.
    62. 成军,陈菊梅. 丙型肝炎病毒核心蛋白结合蛋白的研究进展. 国外医学病毒学分册, 2000;7(4):123-127.
    63. Matumoto M, Hsieh TY, Zhu N, VanArsdale T, Hwang SB, Jeng KS, Gorbalenya AE, Lo SY, Ou JH, Ware CF, Lai MM. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor. J Virol, 1997;71(2):1301-1309.
    64. 刘锦锋, 刘敏, 赵英仁. 丙型肝炎病毒核心蛋白致肝炎慢性化机制. 国外医学内科学分册, 2006;33(8):362-365.
    65. 付秋霞. HCV 慢性感染的分子免疫学机制研究进展. 国际免疫学杂志, 2006;29(3):133-136.
    66. Zhu N, Khoshnan A, Schneider R, Matsumoto M, Dennert G, Ware C, Lai MM. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF)receptor 1 and enhances TNF-induced apoptosis. J Virol, 1998;72(5):3691-3697.
    67. Park KJ, Choi SH, Koh MS, Kim DJ, Yie SW, Lee SY, Hwang SB. Hepatitis C virus core protein potentiates c-J un N-terminal kinase activation through a signaling complex involving TRADD and TRAF2. Virus Res, 2001;74(1-2):89-98.
    68. 顾建友, 李琦涵. HCV 核心蛋白对胞内信号传导系统的调控. 国外医学病毒学分册, 2003;10(4):97-101.
    69. Ruggieri A, Harada T, Matsuura Y, Miyamura T. Sensitization to Fas-mediated apoptosis by hepatitis C virus core protein. Virology, 1997;229(1):68-76.
    70. Hahn CS, Cho YG, Kang BS, Lester IM, Hahn YS. The HCV core protein acts as a positive regulator of fas-mediated apoptosis in a human lymphoblastoid T cell line. Virology, 2000;276(1):127-137.
    71. Kittlesen DJ, Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest, 2000;106(10): 1239-1249.
    72. Yao ZQ, Mohamed TS, Tricoche N, Shan MM, Brotman B, Pfahler W, Hahn YS, Prince AM. gC1qR expression in chimpanzees with resolved and chronic infection: potential role of HCV core/gC1qR-mediated T cell suppression in the outcome of HCV infection. Virology, 2006;346(2):324-337.
    73. Yao ZQ, Eisen-Vandervelde A, Waggoner SN, Cale EM, Hahn YS. Direct binding of hepatitis C virus core to gC1qR on CD4+ and CD8+ T cells leads to impaired activation of Lck and Akt. J Virol, 2004;78(12): 6409-6419.
    74. 黄嘉, 陈献华, 徐平. 核内不均一核糖核蛋白在前体 mRNA 加工中的功能. 细胞生物学杂志, 2004;26:377-380.
    75. Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS, Lai MM. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. J Biol Chem, 1998;273(28):17651-17659.
    76. 邵清, 成军, 白雪帆. 丙型肝炎病毒核心蛋白结合蛋白. 世界华人消化杂志, 2003;11(12):1945-1947.
    77. Sabile A, Perlemuter G, Bono F. Hepatitis C virus core protein binds to apolipoprotein AII and its secretion is modulated by fibrates. Hepatology, 1999;30(4):1064-1076.
    78. 陈云茹, 刘敏, 陈天艳, 张树林. 丙型肝炎病毒核心蛋白引发肝脂肪变性及其分子学机制. 国际流行病学传染病学杂志, 2006;33(5): 327-329.
    79. Perlemuter G, Sabile A, Letteron P. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral- related steatosis. FASEB J, 2002;16(2):185-194.
    80. Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology, 2002;292(2):198-210.
    81. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YH. Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol, 1999;73(4):2841-2853.
    82. Owsianka AM, Patel AH. Hepatitis C virus core protein interacts with ahuman DEAD box protein DDX3. Virology, 1999;257(2):330-340.
    83. Mamiya N, Worman HJ. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem, 1999;274(22):15751-15756.
    84. Ohkawa K, Ishida H, Nakanishi F, Hosui A, Ueda K, Takehara T, Hori M, Hayashi N. Hepatitis C virus core functions as a suppressor of cyclin-dependent kinase-activating kinase and impairs cell cycle progression. J Biol Chem, 2004;279(12):11719-11726.
    85. Lu W, Lo SY, Chen M, Wu K, Fung YK, Ou JH. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology, 1999;264(1): 134-141.
    86. Li K, Wang L, Cheng J, Lu YY, Zhang LX, Mu JS, Hong Y, Liu Y, Duan HJ, Wang G, Li L, Chen JM. Interaction between hepatitis C virus core protein and translin protein-a possible molecular mechanism for hepatocellular carcinoma and lymphoma caused by hepatitis C virus. World J Gastroenterol, 2003;9(2):300-303.
    87. Melen K, Fagerlund R, Nyqvist M, Keskinen P, Julkunen I. Expression of hepatitis C virus core protein inhibits interferon-induced nuclear import of STATs. J Med Virol, 2004;73(4):536-547.
    88. Tsutsumi T, Suzuki T, Shimoike T, Suzuki R, Moriya K, Shintani Y, Fujie H, Matsuura Y, Koike K, Miyamura T. Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. Hepatology, 2002;35(4):937-946.
    89. 全俊, 胡国龄, 范学工, 李宁. 丙型肝炎病毒核心区蛋白对 Hep G2 细胞周期、细胞凋亡和细胞端粒酶活性的影响. 中华传染病杂志 , 2004;22(3):164-167.
    90. Tai DI, Tsai SL, Chen YM, Chuang YL, Peng CY, Sheen IS, Yeh CT, Chang KS, Huang SN, Kuo GC, Liaw YF. Activation of nuclear factor kappa B in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology, 2000;31(3):656-664.
    91. Marusawa H, Hijikata M, Chiba T, Shimotohno K. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis viaNF-kappaB activation. J Virol, 1999;73(6):4713-4720.
    92. Ray RB, Meyer K, Ray R. Hepatitis C virus core protein promotes immortalization of primary human hepatocytes. Virology, 2000;271: 197-204.
    93. 成军,陈菊梅. 丙型肝炎病毒 5'-非编码区及其结合蛋白的研究进展. 国外医学微生物学分册,2000;24(3):7-9.
    94. 詹林盛,王全立. 丙型肝炎病毒与宿主蛋白相互作用研究进展. 国外医学流行病学传染病学分册, 2003;30(1):22-25.
    95. 贾战生, 周永兴, 冯志华, 连建奇, 李谨革, 焦成松, 李光玉, 张文彬. 抗丙型肝炎病毒 5'非编码区核酶在细胞内对病毒翻译启动的抑制作用. 中华传染病杂志, 2000;18(1):10-12.
    96. 梁雪松, 周永兴, 连建奇, 贾战生, 聂青和. 抑制性 RNA 对细胞内 HCV IRES 介导 HCV 核心蛋白表达抑制作用的定量分析. 中华传染病杂志, 2004;22(1):5-8.
    97. 梁雪松,连建奇. 针对丙型肝炎病毒核糖体内部进入位点基因治疗研究现状. 医学研究生学报, 2003;16(10):780-782.
    98. 李勇年, 于敏, 吴炜强, 高建兴, 王洪, 纪绍平, 王勤环, 斯崇文. 反义RNA 体外抑制丙型肝炎病毒基因表达的研究. 中华实验和临床病毒学杂志, 2004;18(4):341-343.
    99. He YP, Yan W, Coito C, Li Y, Gale M, Katze MG. The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J General Virology, 2003; 84:535-543.
    100. 党晓燕, 成军, 邓红. 多嘧啶序列结合蛋白与丙型肝炎病毒的关系. 世界华人消化杂志, 2003;11(12):1956-1959.
    101. Ali N,Siddiqui A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol, 1995;69(10):6367-6375.
    102. Chung RT, Kaplan LM. Heterogeneous nuclear ribonucleoprotein I (hnRNP-I/PTB) selectively binds the conserved 3' terminus of hepatitis Cviral RNA. Biochem Biophys Res Commun, 1999;254(2):351-362.
    103. 孙静慧, 刘皋林, 谭龙益, 张慧. La 蛋白与 HBV RNA 相互作用关系的研究进展. 第二军医大学学报, 2004;25(9):1020-1022.
    104. Ali N, Siddiqui A. The La antigen binds 5' noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci, 1997;94(6):2249-2254.
    105. Ali N, Pruijn GJ, Kenan DJ, Keene JD, Siddiqui A. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem, 2000;275(36):27531-27540.
    106. Pudi R, Abhiman S, Srinivasan N, Das S. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem, 2003;278(14):12231-12240.
    107. Pudi R, Srinivasan P, Das S. La protein binding at the GCAC site near the initiator AUG facilitates the ribosomal assembly on the hepatitis C virus RNA to influence internal ribosome entry site-mediated translation. J Biol Chem, 2004;279(29):29879-88.
    108. Costa-Mattioli M, Svitkin Y, Sonenberg N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol, 2004;24(15):6861-6870.
    109. Buratti E, Tisminetzky S, Zotti M, Baralle FE. Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res, 1998;26(13): 3179-3187.
    110. Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU. Specific interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol, 1998;72(6):4775-4782.
    111. Collier AJ, Gallego J, Klinck R, Cole PT, Harris SJ, Harrison GP, Aboul-ElaF, Varani G, Walker S. A conserved RNA structure within the HCV IRES eIF3-binding site. Nat Struct Biol, 2002;9(5):375-380.
    112. Kieft JS, Zhou K, Grech A, Jubin R, Doudna JA. Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol, 2002;9(5):370-374.
    113. Spangberg K, Schwartz S. Poly(C)-binding protein interacts with the hepatitis C virus 5' untranslated region. J Gen Virol,1999;80(Pt6):1371-1376.
    114. Fukushi S, Okada M, Kageyama T, Hoshino FB, Nagai K, Katayama K. Interaction of poly(rC)-binding protein 2 with the 5'-terminal stem loop of the hepatitis C-virus genome. Virus Res, 2001;73(1):67-79.
    115. Izumi RE, Valdez B, Banerjee R, Srivastava M, Dasgupta A. Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res, 2001;76(1):17-29.
    116. Tanaka Y, Shimoike T, Ishii K, Suzuki R, Suzuki T, Ushijima H, Matsuura Y, Miyamura T. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral genome. Virology, 2000;270(1):229-36.
    117. Zhang J, Yamada O, Yoshida H, Iwai T, Araki H. Autogenous Translational Inhibition of Core Protein: Implication for Switch from Translation to RNA Replication in Hepatitis C Virus. Virology, 2002;293:141-150.
    118. Yen JH, Chang SC, Hu CR, Chu SC, Lin SS, Hsieh YS, Chang MF. Cellular proteins specifically bind to the 5'-noncoding region of hepatitis C virus RNA. Virology, 1995;208(2):723-732.
    119. Hwang SB, Lo SY, Ou JH, Lai MM. Detection of Cellular Proteins and Viral Core Protein Interacting with the 5' Untranslated Region of Hepatitis C Virus RNA. J Biomed Sci, 1995;2(3):227-236.
    120. Lu H, Li W, Noble WS, Payan D, Anderson DC. Riboproteomics of the hepatitis C virus internal ribosomal entry site. J Proteome Res, 2004;3(5): 949-957.
    121. Dutkiewicz M, Swiqtkowska A, Ciesiolka J. Structure and function of thenon-coding regions of hepatitis C viral RNA. Postepy Biochem, 2006; 52(1):62-71.
    122. Harris D, Zhang Z, Chaubey B, Pandey VN. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics, 2006;5(6):1006-1008.
    123. Inoue Y, Miyazaki M, Ohashi R, Tsuji T, Fukaya K, Kouchi H, Uemura T, Mihara K, Namba M. Ubiquitous presence of cellular proteins that specifically bind to the 3' terminal region of hepatitis C virus. Biochem Biophys Res Commun, 1998;245(1):198-203.
    124. Tsuchihara K, Tanaka T, Hijikata M, Kuge S, Toyoda H, Nomoto A, Yamamoto N, Shimotohno K. Specific interaction of polypyrimidine tract-binding protein with the extreme 3'-terminal structure of the hepatitis C virus genome, the 3'X. J Virol, 1997;71(9):6720-6726.
    125. Ito T, Lai MM. Determination of the secondary structure of and cellular protein binding to the 3'-untranslated region of the hepatitis C virus RNA genome. J Virol, 1997;71(11):8698-8706.
    126. Spangberg K, Goobar-Larsson L, Wahren-Herlenius M, Schwartz S. The La protein from human liver cells interacts specifically with the U-rich region in the hepatitis C virus 3' untranslated region. J Hum Virol, 1999;2(5):296-307.
    127. Spangberg K, Wiklund L, Schwartz S. Binding of the La autoantigen to the hepatitis C virus 3' untranslated region protects the RNA from rapid degradation in vitro. J Gen Virol, 2001;82(Pt1):113-120.
    128. Gontarek RR, Gutshall LL, Herold KM, Tsai J, Sathe GM, Mao J, Prescott C, Vecchio AMD. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic Acids Res, 1999;27(6): 1453-1463.
    129. 刘慧玲,高雷芹. HuR RNA 结合蛋白的功能及其与肿瘤关系的研究进展. 山东医药, 2006;46(17):92-93.
    130. Spangberg K, Wiklund L, Schwartz S. HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3' ends of hepatitis C virusRNA of both polarities. Virology, 2000;274(2):378-390.
    131. Banerjee R, Dasgupta A. Specific interaction of hepatitis C virus protease/helicase NS3 with the 3'-terminal sequences of viral positive- and negative-strand RNA. J Virol, 2001;75(4):1708-1721.
    132.Huang L, Hwang J, Sharma SD, Hargittai MR, Chen Y, Arnold JJ, Raney KD, Cameron CE. Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. J Biol Chem, 2005;280(43):36417-36428.
    133. 黄开红, 邓庆丽, 王巍, 邵静, 黄志明. 形成丙型肝炎病毒负链复制体的相关蛋白的分析. 中山医科大学学报, 2002;23(5):348-350.
    134. 赵小宁, 惠宏襄. 中国人 HCV 5'非编码区部分基因片断的克隆及序列分析. 第四军医大学学报, 1998;19(2):181-183.
    135. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987;162:156-159.
    136. 张景霞, 苏海霞, 赵小宁, 闫永平, 门可, 李端, 卢娟. 体外转录法制备地高辛标记 HCV 核心区 RNA 探针及其初步应用. 疾病控制杂志, 2006;10(4):324-327.
    137. 苏海霞, 张景霞, 赵小宁, 卢娟, 闫永平. 紫外交联实验筛选结合于丙型肝炎病毒 RNA 核心区的细胞蛋白. 中华肝脏病杂志, 2005;13(9): 656-659.
    138. 萨姆布鲁克 J, 费里奇 EF, 曼尼阿蒂斯 T, 分子克隆实验指南. 1992, 北京: 科学出版社.
    139. 奥斯伯 F, 布伦特 R, 金斯顿 RE, 穆尔 DD, 塞德曼 JG, 史密斯 JA, 斯特拉尔 K, 精编分子生物学指南. 2001, 北京: 科学出版社. 120-477.
    140. Rodgers JT, Patel P, Hennes JL, Bolognia SL, Mascotti DP. Use of biotin-labeled nucleic acids for protein purification and agarose-based chemiluminescent electromobility shift assays. Analytical Biochemistry, 2000;277:254-259.
    141. Li Y, Jiang ZZ, Chen HX, Ma WJ. A modified quantitative EMSA and its application in the study of RNA-protein interactions. J Biochem BiophysMethods, 2004;60:85-96.
    142. 郑晓飞, RNA 实验技术手册. 2004, 北京: 科学出版社. 24-168.
    143. 严美娟,丁斐. 地高辛标记的大鼠 nNOS mRNA 探针的制备和应用. 解剖学研究, 2003;25(3):184-186.
    144. 秦丽华, 于思华, 徐群渊. 地高辛精标记大鼠代谢型谷氨酸受体 5 亚型RNA 探针的制备研究. 神经解剖学杂志, 2001;17(2):157-160.
    145. Peritz T, Zeng F, Kannanayakal TJ, Kilk K, Eiríksdóttir E, Langel U, Eberwine J. Immunoprecipitation of mRNA-protein complexes. Nature Protocols, 2006;1(2):577 - 580.
    146. Lasko P. Gene regulation at the RNA layer: RNA binding proteins in intercellular signaling networks. Sci STKE, 2003;179:RE6.
    147. 唐时幸. 丙型肝炎病毒翻译及调控机制. 中国病毒学, 1998;13(1):1-5.
    148. Fukushi S, Katayama K, Kurihara C, Ishiyama N, Hoshino FB, Ando T, Oya A. Complete 5' noncoding region is necessary for the efficient internal initiation of hepatitis C virus RNA. Biochem Biophys Res Commun, 1994;199(2):425-432.
    149. 焦成松, 凌世淦, 朱德生, 周永兴. HCV 核心蛋白诱导 HepG2 细胞凋亡作用的研究. 肝脏, 2001;6:S113.
    150. Lim SG, Tan YJ, Goh PY, Lim SP, Hong WJ. Use of an in vitro model and yeast two-hybrid system to Investigate the pathogenesis of hepatitis C. Intervirology, 2006;49:44-45.
    151. Shimoike T, Mimori S, Tani H, Matsuura Y, Miyamura T. Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol, 1999;73:9722-9728.
    152. Tto I, Lai MM. An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3'-untranslated sequence. Virology, 1999;254(2):288-96.
    153. Sakoda S, Shanske S, DiMauro S, Schon EA. Isolation of a cDNA encoding the B isozyme of human phosphoglycerate mutase (PGAM) and characterization of the PGAM gene family. J Biol Chem, 1988;263(32):16899-16905.
    154. Betra'n E, Wang W, Jin L, Long M. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol Biol Evol, 2002;19(5):654-663.
    155. Zhang J, Yu L, Fu Q, Gao J, Xie Y, Chen J, Zhang P, Liu Q, Zhao S. Mouse phosphoglycerate mutase M and B isozymes: cDNA cloning, enzyme activity assay and mapping. Gene, 2001;264(2):273-279.
    156. Repiso A, Ramirez MJ, Corrons JL, Carreras J, Climent F. Phosphoglycerate mutase BB isoenzyme deficiency in a patient with non-spherocytic anemia: familial and metabolic studies. Haematologica, 2005;90(2):257-259.
    157. Hadjigeorgiou GM, Kawashima N, Bruno C, Andreu AL, Sue CM, Rigden DJ, Kawashima A, Shanske S, DiMauro S. Manifesting heterozygotes in a Japanese family with a novel mutation in the muscle-specific phosphoglycerate mutase (PGAM-M) gene. Neuromuscul Disord, 1999;9(6-7):399-402.
    158. Engel M, Mazurek S, Eigenbrodt E, Welter C. Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J Biol Chem, 2004;279:35803-35812.
    159. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D. Glycolytic enzymes can modulate cellular life span. Cancer Res, 2005;65:177-185.
    160. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF. Target discovery in small-molecule cell-based screens by in situ proteome reectivity profiling. Nat Biotechnol, 2005;23:1303-1307.
    161. Tsukahara F, Yoshioka T, Muraki T. Molecular and Functional Characterization of HSC54, a Novel Variant of Human Heat-Shock Cognate Protein 70. Mol Pharmacol, 2000;58(6):1257-1263.
    162. 洪沙, 黄长形, 杨为松, 陈红梅, 李光玉, 王平忠, 陈伟红, 张岩, 李羽, 白雪帆. 第 60-80 位氨基酸多肽片段缺失的 HCV 核蛋白在真核细胞中的表达. 第四军医大学学报, 2005;26(12):1101-1104.