甜瓜细胞遗传学、单倍体创制及抗蔓枯病分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是一种重要的园艺作物,由于染色体小、染色能力弱等原因,甜瓜的细胞遗传学研究非常薄弱,这必将会影响甜瓜遗传育种的深入研究.本文以我国两种主要生态类型的甜瓜为试验材料,进行有丝分裂和减数分裂的细胞遗传学研究,为甜瓜的系统进化、基因染色体定位和物理图谱构建等研究提供必要的细胞遗传学依据.
     厚皮甜瓜生产面临的主要障碍是病害,尤其是蔓枯病的发生会导致毁灭性的减产.常规方法选育抗病品种的工作量大、周期长、效率低,而通过单倍体技术和分子标记辅助选择的方法,则可以增加选择的准确性、缩短育种年限、提高育种效率.本文建立了辐射花粉授粉诱导甜瓜单倍体技术体系,掌握单倍体甜瓜离体繁殖及其染色体加倍的方法.此外,在比较不同地区蔓枯病菌致病力的基础上,以抗/感联合世代群体为试材,筛选与甜瓜抗蔓枯病基因Gsb-2连锁的SSR和ISSR分子标记、与抗性基因Gsb-4连锁的AFLP标记。
     1甜瓜有丝分裂和减数分裂的细胞遗传学观察
     以萌发种子的根尖为试验材料,研究了不同预处理取样时间和不同预处理药剂对甜瓜染色体制片的影响。结果表明:上午8:00左右为最佳取样时间和预处理时间,该时间取样进行预处理后可以观察到近14%的中期分裂相;在4种药剂预处理活体根尖中,以添加对二氯苯(饱和)的放线菌酮(40 mg·L~(-1))水溶液的预处理效果最佳,可以观察到形态清晰、分散良好的中期染色体,便于进行核型分析.用此方法对厚皮和薄皮两种类型甜瓜进行核型分析,结果表明:两类甜瓜核型相似,都具有一对随体,核型均为2A型,核型公式均为2n=2x=24=14m+10st(2SAT)。但两类甜瓜的染色体总长、平均长度以及随体在染色体上的分布都不相同.
     研究了薄皮类型和厚皮类型甜瓜花粉母细胞的减数分裂行为和小孢子发育过程,发现甜瓜细胞核减数分裂的同步性较高,细胞质是同时型分裂.在细胞核分裂的过程中,核仁在前期Ⅰ到中期Ⅰ逐渐消失,在前期Ⅱ再次出现,随后消失;染色体在前期Ⅰ到中期Ⅰ逐渐收缩,变得清晰,至末期Ⅰ解螺旋,变得模糊,在前期Ⅱ再次清晰.两种生态类型甜瓜终变期的染色体构型均以环状二价体为主.在后期Ⅰ和后期Ⅱ,未出现染色体桥及落后染色体现象。四分体为十字交叉型。在前期Ⅰ和前期Ⅱ,伽师瓜能够形成多个核仁,在终变期偶尔出现了单价体,表现了伽师瓜甜瓜的特殊性。两种类型甜瓜小孢子发育过程包括单核期和双核期,成熟花粉粒具三个萌发孔。
     2甜瓜单倍体诱导技术体系
     为了掌握辐射花粉授粉诱导甜瓜单倍体技术,以14种基因型甜瓜为材料,连续两个栽培季节通过应用丫射线辐射的花粉进行授粉结合胚胎培养,从2种基因型中获得了单倍体植株,单倍体的平均诱导频率为0.3%。这2种基因型分别属于厚皮和薄皮甜瓜类型。花粉的辐射剂量为300 Gy和600 Gy时,供试材料的平均坐果率分别为50%和10%。辐射剂量为300 Gy时,诱导厚皮甜瓜‘4810’和薄皮甜瓜‘新富玉’形成了单倍体植株,单倍体植株的诱导频率分别为0.55%和0.63%;剂量为600 Gy时未能诱导供试材料形成单倍体。
     为了探讨甜瓜的进化途径对单倍体甜瓜花粉母细胞减数分裂进行了细胞遗传学研究,结果表明单倍体甜瓜细胞核减数分裂的同步性较差,细胞质分裂既有连续型也有同时型分裂。终变期的染色体构型均以单价体为主,仅发现一例具有二价体的细胞.中期Ⅰ单价体散落在细胞质中,少数细胞中的单价体排列在赤道板上。单价体在后期Ⅰ随机向两极或三极方向分离,两极方向主要以6Ⅰ+6Ⅰ和7Ⅰ+5Ⅰ的方式分离.后期Ⅰ部分染色体的着丝粒提前分裂,还观察到染色体桥和滞后染色体。前期Ⅱ,核仁再次出现。末期Ⅱ,可观察到二分体、三分体、四分体和多分体.形成了约10%的正常花粉粒。
     以单倍体甜瓜无菌苗的顶芽或腋芽为外植体,研究不同激素及其不同浓度配比对单倍体甜瓜外植体再生的影响,以建立单倍体甜瓜离体繁殖技术体系。结果表明,单倍体甜瓜最佳增殖培养基为MS+6-BA 0.5 mg·L~(-1),增殖系数为3.57。最适生根培养基为1/2MS+IBA 0.5 mg·L~(-1),生根率达100%,单倍体再生植株驯化后的成活率达80%。细胞学鉴定表明,单倍体再生植株的倍性稳定,未发生染色体数目的变异.单倍体植株生长势弱,叶片较小,雄花和雌花均败育。利用秋水仙碱溶液浸泡法诱导单倍体甜瓜染色体加倍,结果表明:浓度为250 mg·L~(-1)的秋水仙碱浸泡8 h,染色体加倍效果最佳,加倍率达29.4%。细胞学观察表明,加倍后的单倍体染色体数为2n=24。
     3甜瓜抗蔓枯病基因的分子标记
     从来源于不同种植区的甜瓜蔓枯病病株上分离得到蔓枯病病原菌,在26℃、16h/8h光周期、PDA培养基上培养,对它们的菌落、气生菌丝、基内菌丝、菌丝生长速度及产孢能力等生物学特性进行观察。结果表明:4种病原菌的菌落形态、菌丝颜色、菌丝生长速度以及分生孢子形态差异不明显;产孢能力略有差异,其中HN-1直接产生分生孢子;在紫外灯照射诱导下,除NJ-1不能产生有性的子囊孢子外,4种病原菌都形成大量的分生孢子和子囊孢子。致病力测定结果表明4种病原菌的致病力差异不显著。
     甜瓜蔓枯病(Didymella bryoniae)是为害我国甜瓜的一种主要病害.以抗蔓枯病PI 482398(Gsb-4)与感病甜瓜自交系‘白皮脆’为亲本,建立了抗感F_2代群体,对亲本、F_1及142个F_2代群体进行了苗期抗蔓枯病接种鉴定。利用集团分离分析法.(Bulked Segregant Analysis,BSA)在F_2代建立抗感基因池,以抗感基因池为模板,筛选了64对AFLP选择性引物EcoRI-NN+MseI-NNN组合,发现EcoRI-TA+MseI-CTT引物组合在抗感基因池间扩增出一条分子量为285bp的特异条带.经双亲、F_1和F_2代抗感单株验证,该特异条带与抗病基因Gsb-4不连锁.
     为了筛选抗性基因分子标记,以抗蔓枯病种质资源PI 157082(Gsb-2)与感病的甜瓜自交系‘白皮脆’为亲本,建立了抗感F_2代群体,对亲本、F_1及134个F_2代群体进行了苗期抗蔓枯病接种鉴定.利用集团分离分析法(Bulked segregant analysis,BSA)在F_2代建立抗感基因池,以抗感基因池为模板,用15对SSR引物和72条ISSR引物进行PCR扩增筛选.其中引物CMTC160a+b和ISSR-57在亲本和F_2代抗感基因池之间分别扩增出一条多态性片段,大小约为220bp和560bp.经F_2代群体单株验证后,这两条多态性条带与抗性基因Gsb-2表现连锁关系,遗传连锁距离分别为26.4cM和11.3cM,定名为CMTC160a+b_(220)和ISSR-57_(560).可以作为甜瓜抗蔓枯病辅助选择的分子标记。
Melon is one of the most important horticultural crops worldwide, but melon is a less studied species cytologically because of its small chromosome and poor staining ability, which would go against the studies of genetic and breeding of melon. In this paper, studies on mitotic and meiotic cytology of two main ecological melon in china will be presented, which would be usful for research work of evolution, genes location in chromosome and physical mapping of melon.
     The main obstacle inhibited thick rind melon production is fungi diseases, especially gummy stem blight (GSB) which is a severely destructive disease worldwide caused by Didymella bryoniae (Auersw.) Rehm. Resistance breeding is laborious, time consuming and low efficiency by the way of traditional approach, otherwise by means of haploid technology and molecular marker assisted selection the approach would be time saving, more accurate and high efficiency. In this paper, technological system of haploid melon induced through pollination with irradiated pollens was proposed, and haploid plants were obtained from two types of melon. Technology of propagation in vitro and chromosome doubling of haploid melon were presented in this paper. After comparison of different GSB, many populations derived from resistant and susceptible melon were developed, then SSR and ISSR marker linked to Gsb-2, AFLP marker linked to Gsb-4 were screened.
     1 Cytological observation of mitosis and meiosis in melon
     The effect of different sampling time and pre-treating chemicals on chromosome preparation of root tip cells of melon was studied. After sampling at 8:00 in morning, which is the only one of sampling time tested, there are up to 14% of cells observed in metaphase. Theefficiency of four pre-treating chemicals were compared, the best one was a mixture of two chemicals, cycloheximide (CHX, 40 mg·L~(-1)) and p-dichlorobenzene (pDB, saturated), after pretreatment with the mixture clearly morphological and well distributed chromosomes were observed in metaphase which indicated that would be good for karyotype analysis in melon. Metaphase chromosomes of two kinds of melon, thick and thin rind melon, were analyzed by the modified chromosome preparation. The results are as followed: the karyotype formula of two kinds are the same that is 2n=2x=24=14m+10st (2SAT), and the karyotype of them are 2A type, there are pare of satellite chromosomes in both. Otherwise, the total and average length of chromosome, the satellite chromosomes of the two kinds were different.
     Meiosis behaviors of pollen mother cells (PMC) and microspore development in thin and thick rind melon (Cucumis melo L.) were characterized herein. All melons observed have a simultaneous cytokinesis and a relative high synchronization in nuclear division. Nueleolus disappeared gradually from prophaseⅠto metaphaseⅠ, reappeared at prophaseⅡand then disappeared. With condensation of chromatins, chromosome became more and more identifiable from prophaseⅠto metaphaseⅠ, and illegible at telophaseⅠwith de-helixation. Chromosomes were prominent again at both poles in PMC at prophaseⅡ. At diakinesis, most chromosome configurations were ring bivalents for all melons. No chromosome bridge and lagging chromosomes were observed at anaphaseⅠandⅡ, and their trtrads were decussate types. In Jiashi melon, nucleolus number was more than the other ecotype melons both at prophaseⅠandⅡ, and a case of univalent and tetravalent occurred at diakinesis and at metaphaseⅠ, respectively, which both demonstrating the speciality of Jiashi melon. During the development of mierospore, unicleate central-located and bicleate stage were observed in both types melon.
     2 Technological system of haploid induction in melon
     In order to get the technique on induction of haploid melon, haploid melon (Cucumis melo L.) plants were obtained from two among fourteen genotypes tested through pollination with y-irradiated pollens and subsequent embryo culture in vitro in 2 seasons, with 0.3% average induction rate. These two genotypes represent thick (C. melo. ssp. melo) and thin (C. melo. ssp. conomon (Thunb) Greb) rind melon. Average fruit settings of donor plants were 50% and 10%, when theγ-ray doses were 300 Gy and 600 Gy respectively. Haploid were induced from thick and thin rind melon, line '4810' and cultivar 'Xinfuyu', to which the induction rate of haploid were 0.55% and 0.63% respectively, when the dose was 300 Gy. When the dose was 600 Gy, however, no haploid plant was produced from any tested material.
     In order to discuss the evolution of melon, meiosis behaviors of pollen mother cells (PMC) in haploid melon were studied. PMC of haploid melon had very low synchronization in nuclear division and had simultaneous or successive cytokinesis both. At diakinesis, most chromosome configurations were univalents for all haploid melons, except that only one bivalent occured. At metaphaseⅠ, univalents scattered in cytoplasm mostly, but aligned in metophase plate in a few PMC. At anaphaseⅠ, 12 univalents divided in two or three direction randomly, chromosomes distributed in form of 6+6 and 7+5 to two poles in most PMC. Centomere divided in advance, and chromosome bridge and lagging chromosomes were observed at anaphaseⅠ. Nucleolus reappeared at prophaseⅡ. At telohaseⅡ, diads, triads, tetrads and polyads were developed, and about 10% pollen grains were produced.
     Using shoot-tips as explants, in order to setup the propagation system of melon haploid in vitro effect of different plant growth regulation (PGR), its concentration and combination on regeneration of haploid were investigated. The results indicated that the optimal media for shoot was MS+6-BA 0.5mg·L~(-1), with multiplication coefficient of 3.57, the best media for root proliferation was 1/2MS+IBA 0.5mg·L~(-1), with rooting ratio of 100%. More than 80% regenerated haploid plantlets were transplanted in field after acclimatization. The ploidy level of acclimatized plantlets from melon haploid was stable after cytological identification, and no ploidy variation occurred among these plantlets. Morphological comparison between haploid and diploid donor plants showed that the haploid had smaller leaves and sterile male and female flower, grew less vigorously. Meanwhile, induction on chromosome doubling of melon haploid was conducted by the way of colchicines soaking, the results showed that the optimal concentration and treat time of colchicines was 250 mg·L-1 and 8 hours respectively, with doubling ratio of 29.4%. The chromosome of melon haploid treated by eolchicines was 2n=24 after cytological observation.
     3 Molecular markers linked to genes for resistance to GSB in melon
     Pure cultures of gummy stem blight were obtained from isolates collected from diseased plant in different production area of melon, under 26℃and 16h/8h photoperiod, colony, aerial and substrate mycelium, speed of colony, and sporulation of 4 isolates were observed after culture in PDA. The results showed that no differences were observed between the colony, color of mycelium, development speed of colony, and shape of pycnidia spore of 4 isolates, but the sporulation of its showed difference, a lot of pycnidias were found in HN-1 isolates. Except for NJ-1, abundant pycnldia and ascospores were found in 4 isolates after induction under UV light. After pathogenicity test, the results showed that no differentiate significance presented between 4 isolates.
     Gummy stem blight, caused by the fungal pathogen Didymella bryoniae (Auersw.) Rehm, is one of the most serious diseases of melon, molecular marker linked to gene resistance to GSB is important to breeding of melon. Parents, F_1 and 142 F_2 individuals derived from the cross of the resistant germplasm PI 482398 and the susceptible inbred line 'Baipicui' were identified for their resistance to GSB in seedling stage. Using bulked segregant analysis (BSA), amplified fragment length polymorphism (AFLP) technique with 64 primer combinations were employed to fred the polymorphism between resistant and susceptible bulks, and in resistant DNA pool a 285bp specific fragment was amplified in the primer combination of E-TA+M-CTT. This marker was testified with parents, F_1 and resistant and susceptible F_2 individuals and the specific band could be amplified in the resistant plants.
     In order to obtain molecular markers linked to gene resistance to GSB in melon, Parents, F_1 and 134 F_2 individuals derived from the cross of the resistant germplasm PI 157082 (Gsb-2) and the susceptible inbred line 'Baipicui' were identified for their resistance to GSB in seedling stage. Using bulked segregant analysis (BSA), 15 SSR and 72 ISSR primers were screened between resistant and susceptible bulks. 220bp and 560bp fragments specifically amplified by primer CMTC160a+b and ISSR-57 were present in PI 157082 and the resistant gene bulk but absent in 'Baipicui' and in the susceptible bulk. It was confirmed that markers CMTC160a+b_(220) and ISSR-57_(560) were linked to the resistant gene Gsb-2 in PI 157082 by screening 134 F_2 individuals, and the linkage distance was 26.4cM and 11.3cM, respectively. Two markers could be useful for marker-assisted selection in melon breeding for GSB resistance.
引文
1.柴兴容,童莉,上欣.甜瓜四倍体育种及其生产利用研究[J].中国西瓜甜瓜,1998,(2):16-19
    2.陈凡国,陈秀玲,夏光敏.小麦与玉米杂交产生小麦单倍体的研究进展[J].生物学通报,1999,34:15-16
    3.陈劲枫,钱春桃.利用几种园艺作物卷须制片鉴定染色体数目的研究[J].园艺学报,2002,29(4):378-380
    4.陈熙,胡龙灯,鲍建荣,等.西瓜蔓枯病研究I症状及病原[J].浙江农业大学学报,1989,15(4):415-420
    5.陈秀蓉,魏永良,张建文.甜瓜蔓枯病(Mycospharella melon~)抗病性鉴定方法及品种抗病性鉴定[J].甘肃农业大学学报,1990,25(4):389—393
    6.陈秀蓉,魏永良,张建文.甜瓜蔓枯病菌及其生物学特性的研究[J].甘肃农业大学学报,1993,28(1):56—61
    7.程颖,宋伟,刘志勇,等.小麦品种贵农21抗条锈病基因的SSR标记[J1.作物学报,2006,32(12):1867-1872
    8.戴芳澜主编.中国真菌总汇[M].北京:科学出版社,1979
    9.戴富明,陆金萍,顾卫红,等.西瓜蔓枯病菌子实体的诱导及抗性鉴定[J].植物保护学报,2003.30(2):138-141
    10.邓椋爻,杨培忠,刘丕庆,等.SSR标记在水稻白叶枯病抗病研究中的应用[J].广西农业科学,2006,37(5):494-496
    11.方中达主编.植病研究方法[M].北京:中国农业出版社,1998
    12.顾卫红.西瓜细胞学的初步研究[J].北方园艺,1995,104(5):9-12
    13.郭军洋,陈劲枫,罗向东,等.Cuczun~属双二倍体种的小孢子发生和雄配子体发育的细胞学研究[J].西北植物学报,2005,25(1)22-26
    14.郭亦明,杨映根,郭仲琛.玉米花药培养和单倍体育种的研究新进展[J].植物学通报,2001,18:23-30
    15.胡道芬主编.植物花培育种进展[M].北京:中国农业出版社,1996
    16.黄慧君.水稻单倍体自然加倍因素的研究[J].广东农业科学,1992,(3):9-12
    17.贾菊生,马德英,张丽,等.新疆瓜类蔓枯病病原的有性阶段新发现[J].新疆农业科学,2003,40(5):303-304
    18.贾菊生.新疆哈密瓜蔓枯病及防治研究[J].植物病理学报,1993,23(1):85-89
    19.雷春,陈劲枫,钱春桃,等.辐射花粉授粉和胚胎培养诱导产生黄瓜单倍体植株[J].西北植物学报,2004,24(9):1739-1743
    20.雷春,陈劲枫.葫芦科蔬菜作物单倍体材料创制的研究进展[J].中国蔬菜,2006,(1):33-36
    21.李懋学,张赞平.作物染色体及其研究技术[M].北京:中国农业出版社,1996
    22.李懋学,陈瑞阳.关于植物核型分析的标准化问题[J].武汉植物学研究,1985,3(4):297-302
    23.李懋学.对二氯苯在植物染色体预处理中的应用[J].遗传,1980,2(6):30-32
    24.李仁敬,孙严,孟庆云,等.新疆甜瓜、西瓜原生质体融合及融合愈伤的获得[J].新疆农业科学,1994,(3):101-104
    25.李英,张永兵,Wolukau J N,等.甜瓜蔓枯病菌子实体法分离及A型菌株产孢条件研究[J].果树学报,2007,24(1):84-88
    26.林伯年.甜瓜、西瓜原生质体电融合及其杂种分子生物学鉴别[J].园艺学报,1994,21(3):302-304
    27.刘大均主编.细胞遗传学[M].北京:中国农业出版社,1999
    28.刘万勃,宋明,刘富忠,等.RAPD和ISSR标记对甜瓜种质遗传多样性的研究[J].农业生物技术学报,2002,10:231-236
    29.刘万勃.RAPD和ISSR标记对甜瓜种质遗传多样性及杂种鉴定的研究.硕士生毕业论文,重庆:西南农业大学,2002
    30.刘文革,王鸣.西瓜甜瓜育种中的染色体倍性操作及倍性鉴定[J].果树学报,2002,19(2):132-135
    31.刘小梅,刘少翔,赵军良,等.甜瓜原生质体培养及胚状体发生初探[J].山西大学学报(自然科学版),1992,15(1):61-65
    32.卢圣栋.现代分子生物学技术[M].北京:高等教育出版社,1993
    33.路铁刚,孙敬三,辛化伟.硬粒小麦单倍体高效再生体系的建立[J].中国农业科学,1996,29(3):61-65
    34.马国斌,王鸣,郑学勤,等.西瓜和甜瓜组织培养中外植体的极性现象和敏感部位[J].果树学报,16(3):232-234
    35.马国斌,王鸣,郑学勤.甜瓜组织培养再生植株中的四倍体变异[J].园艺学报,1999,26(2):128-130
    36.马跃.我国西瓜甜瓜生产回顾与展望[J].中国蔬菜,2000,(8):4-7
    37.马跃.中国西甜瓜业21世纪进入WTO后的发展分析[J].中国西瓜甜瓜,2000,(4):38-40
    38.戚佩坤主编.吉林省栽培植物真菌病害志[M].北京:科学出版社,1966
    39.钱春桃,陈劲枫,娄群峰,等.黄瓜花粉母细胞减数分裂行为的研究[J].武汉植物学研究,2003,21(3):193-197
    40.孙勇如,李仁敬,孙言,等.新疆甜瓜原生质体培养和植株再生[J].植物学报,1989,3l(12):916-922
    41.汤洁,柳红.葱根尖体细胞有丝分裂高峰期研究[J].辽宁师范学报,2000,2(2):92-94
    42.汪军妹,沈秋泉,杨建明。等.大麦加倍单倍体(DH群体)的建立及其在遗传育种中的应用[J].大麦科学,2001,4:10-13
    43.王蒂主编.植物组织培养[M].北京:中国农业出版社,2004
    44.王浩波,胡雪芹,程国旺.江淮地区厚皮甜瓜栽培的主要障害及其防治[J].中国西瓜甜瓜。2001,(3):29-30
    45.王慧中.转基因甜瓜植株的获得及其抗病性[J].植物保护学报,2000,27(2):126-130
    46.王坚主编.中国西瓜甜瓜[M].北京:中国农业出版社,2000
    47.王晓东,李国英.哈密瓜蔓枯病菌分生孢子器诱发及室内品种抗病性测定[J].新疆农业科学,2004,41(5):341-344
    48.王晓东,李国英.新疆哈密瓜蔓枯病菌的生物学特性及其室内药剂筛选试验[J].石河子大学学报(自然科学版),2004,22(4):301-304
    49.吴明珠,伊鸿平,冯炯鑫,等.哈密瓜南移东进生态育种与有机生态型无土栽培技术研究[J].中国工程科学,2000,2(8):83-88
    50.吴明珠,伊鸿平,冯炯鑫,等.新疆厚皮甜瓜辐射诱变育种效果的探讨[J].中国西瓜甜瓜,2005.(1):1-3
    51.徐秉良,师桂英,薛应钰.黄河蜜甜瓜CMVCP基因转化及其抗病性鉴定[J].果树学报,2005,22(6):734-736
    52.许勇,张海英,康国斌.分子标记技术在西瓜甜瓜伤的应用研究进展[J].中国西瓜甜瓜,1999,(4):41-45
    53.羊杏平.江苏省蔬菜种质资源保护与利用现状[J].江苏农业科学,2004,(6):113-117
    54.杨长登,吴连斌,赵成章.单倍体籼稻无性系微芽的离体调控[J].中国水稻科学,1998,12(4):219-222
    55.杨渡.浅谈新疆甜瓜产业发展[J].新疆农业科学,2002,39(1):1-5
    56.杨田堂.瓜类蔬菜蔓枯病的发生与防治技术[Jr].北方园艺,2004,(6):80
    57.杨秀英,王永嘉,钱小兵.甜瓜属(Cucumis)植物染色体核型分析[J].天津师大学报(自然科学版),2000,20(4):48-52
    58.姚世鸿,王景佑,程光中.洋葱根尖细胞有丝分裂高峰期研究[J].贵州师范大学学报(自然科学版),1994,12(2):7-11
    59.姚星伟,刘凡,云兴福,等.非对称体细胞融合获得花椰菜与Brassica spinescens的种间杂种[J].园艺学报,2005,32(6):1039-1044
    60.叶彩玲,丁胜利.新疆甜瓜上的几种主要病害及其防治[J].植物保护,2001,27(5):34-35
    61.叶兴国,王艳丽,丁文静,等.主要农作物转基因研究现状和展望[J].中国生物工程杂志,2006,26(5):93-100
    62.于喜艳,何启伟,孔庆国.甜瓜育种研究进展及展望[J].长江蔬菜,2002,S1:6-8
    63.张海英,许勇,王永健.葫芦科瓜类作物分子遗传图谱研究进展[J].分子植物育种,2004,2(4):548-556
    64.张天真主编.作物育种学总论[M].北京:中国农业出版社,2003
    65.张兴平.甜瓜种质资源的同工酶分析[J].西北农业大学学报,1988,(2):5-11
    66.张艳苓,卜崇兴,匡开源,甜瓜蔓枯病病原菌的分离培养[J].中国瓜菜,2006,(1):31.32
    67.章志宏,田永中,舒理慧.光敏感核不育水稻单倍体组织培养及再生植株遗传特性的研究[J].武汉大学学报(自然科学版),1994,(6):109-214
    68.赵建萍,柏新富,蒋小满,等.厚皮甜瓜(Cucumis melo var relieulatus)的快速繁殖[J].植物学通报,2002,19(6)::734-738
    69.赵月玲,夏海武.甜瓜的组织培养与快速繁殖[J].植物生理学通讯,1999,35(5):377
    70.周伟军,唐桂香,张国庆,等.甘兰型油菜小孢子秋水仙碱处理提高双单被体频率研究[J]-中国农业科学,2002,35(4):410-414
    71.庄志鸿,刘建,郑伟文.朱丽亚甜瓜的组织培养和快速繁殖[J].植物生理学通讯,2003,39(2):140
    72.Abak K.In vitro colchicine application pfhaploid cucumber plants [J].Cucurbit Genet Coop.,1997,20:21-23
    73.Adelberg JW,Rhodes BB,Skorupska HT.Explant origin affects the frequence of tetraploid plants from tissue culture of melon [J].HortScience,1994,29:689-692
    74.Adelberg JW,Rhodes BB,Skorupska HT.Generating tetraploid melons from tissue culture [J].Acta.Herr.,1993,336:373-380
    75.Adelberg JW,Rhodes BB,Skorupska HT.Generating tetraploid watermelon and melon from tissur culture [J].HortScience,1990,25:73
    76.Akashi Y,Fukuda N,Wake T.Genetic variation and phylogenetic relationships in East and South Asian melons,Cucumis melo L.,based on the analysis of five isozymes [J].Euphytica,2002,125:385-396
    77.Arens P,Odinot P,van Heusden A W,et al..GATA and GACA repeats are not evenly distributed throughout the tomato genome [J].Genome,1995,38:84-90
    78.Ayub R,Guis M,Amor BM,et al..Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits [J].Nature Biotechnology,1996,14:862-866
    79.Ayyangar KR.Taxonomy ofCucurbitaceae [J].Bull.Natl.Inst.Sci.India,1967,34:380-396
    80.Bates DM,Robinson RW.Evolution of Crop Plants [M].New York,Springer Verlag,1995
    81.Baudracco AS,Pitrate M.A genetic map of melon (Cucumis melo L.) with RFLP,RAPD,isozyme,disease resistance and morphological markers [J].Theor.Appl.Genet.,1996,93:57-63
    82.Belt PF,Charmer G,Sourdille P.A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers [J].Theor.Appl Genet.,1999,99:445-452
    83.Bhaduri PN,Bose PC.Cytogenetical investigations in some common cucurbits with specisl reference to fragmentation of chromosomes as a physical basis of speciation [J].Journal of Genet.,1947,48:237-256
    84.Blakeslee AF,Belling J,Farnham ME,et al.A haploid mutant in the Jimson weed,Datura straraonium [J].Science,1922,55:646-647
    85.Bohn GW,Principe JA.A second male-sterility gene in the muskmelon [J].Journal of Heredity,1964,55:211-215
    86.Bohn GW,Whitaker TW.A gene for male sterility in the muskmelon (Cueumis melo L.) [J].Proe.Amer.Soe.Hort.Science,1949,53:309-314
    87.Brotman Y,Silberstein L,Kovalaki I,et al..Linkage groups of Cucumis melo,including resistance gene homologues and known genes [J].Aeta.Hort,2000,510:441-448
    88.Brown GB,Deakin JR,Wood MB.Identification of Cucumis speciws by paper chromatography of flavonoids [J].J.Am.Soe.Hortie.Sei,1969,94:231-234
    89.Card G,Xue B.Transforming Cucumber Mosaic Virus-white leaf strain coat protein gene into Cucumis raelo L.and evaluation transgenie plants for protection against infection [J].J Amer.Soe Hort Sei.,1994,119:345-355
    90.Chauhan RS,Farman ML,Zhang HB,et al..Genetic and physical mapping of a flee blast resistance locus Pi-CO39 (t),that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea [J].Mol.Gen.Genet.,2002, 267:603-612
    91.Chiu WF,Walker JC.Morphology and variability of the cucurbit black rot fungus [J].Journal of Agricultural Research,1949,78:81-103
    92.Cuny F,Dumas de Vaulx R,Longhi B,et al..Analysis of muskmelon plants (Cucumis melo L) obtained after pollination with gamma-irradiated pollen:effect of different doses [J].Agronomic,1992,12:623-630
    93.Dane F,Denna DW,Tsuchiya T.Evolutionary studies of wild species in the genus Cucumis [J].Z Pflanzenzueht,1980,85:89-109
    94.Dane F,Tsuclaiya T.Meiosis chromosome and pollen morphological studies of polyploid Cucumis species [J].Euphytica,1979,23:563-568
    95.Danin PY,Reis N,Tzuri N,et al..Development and characterization of mierosatellite markers in Cucumis [J].Theor.Appl.Genet.,2001,102:61-72
    96. Danin PY, Takmor Y, Tzuri G, et al.. Construction of genetic map of melon with molecular markers and horticultural traits, and location of genes associated with ZYMV resistance [J]. Euphytica, 2002, 125:373-384
    97. Danin-Poleg Y, Reis N, Tzuri G, et al.. Development and characterization of microsatellite markers in Cucumis [J]. Theor. Appl. Genet., 2001,102: 61-72
    98. De Candolle A. Origine des plantes cultivies [M]. Germes Bailliere, Paris, 1882
    99. Deakin JR, Bonn GW, Whitaker TW. Interspecific hybridization in Cucumis [J]. Econ. Bot, 1971, 25: 195-211
    100. Dirks R, Buggenum N. In vitro plant regenera- lion from leaf and cotyledon explants of Cucumis melo L. [J]. Plant Cell Rep., 1989,7:626-627
    101. Doganlar S, Frary A, Daunay MC, et al.. A comparative genetic linkage map of eggplant (Solarium melongena) and its implications for genome evolution in the Solanaceae [J]. Genetics, 2002, 161: 1697-1711
    102. Dryanovska OA. Induced callus in vitro from ovaries and anthers of species from Cucurbitaceae family [J]. C. R. Acad. Bulgare Sci., 1985, 38:1243
    103. Ezura H, Amagai H, Oosawa K. Efficient production of tetraploid in regenerated plants, a universal phenomenon, in tissue culture of melon (Cucumis melo L.) [J]. Plant Science, 1992, 85: 209-213
    104. Ezura H, Amagai H, Oosawa K. Efficient production of tetraploid melon (Cucumis melo L.) by somatic embryogenesis [J]. Japan. J. Breed., 1992,42:137-144
    105. Ficcadenti N, Sestili S, Annibali S, et al.. In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. [L]. J. GeneT. & Breed., 1999, 53:255-257
    106. Ficcadenti N, Veronese P, Sestili S, et al. Influence of genotype on the induction of haploidy in Cucumis melo L. by using irradiated pollen [J]. J. Genet. & Breed., 1995,49: 359-364
    107. Frantz JD, Jahn MM. Five independent loci each control monogenic resistance to gummy stem blight in melon (Cucumis melo L.) [J]. Theor. Appl. Genet., 2004,108: 1033-1038
    108. Galperin M, Zelcer A, Kenigsbuch D. High competence for adventi-tious regeneration in the BU-21/3 melon genotypeis controlled by a single dominant locus [J]. HortScience, 2003, 6: 1167-1168
    109. Ganal M, Riede I, Hemleben V. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.) [J]. J. Molec. Evol., 1986,23:23-30
    110. Garcia E, Jamilena M, Alvarez JI, et al.. Genetic relationships among melon breeding lines revealed by RAPD markers and agronomic traits [J]. Theor. Appl. Genet., 1998,96:878-885
    111.Garcia-Mas J,Monforte A J,Arus E Phylogenetic relationship among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers [J].Plant Syst.Evol.,2004,248:191-203
    112.Gordon WJ,Spencer TM,Mangano ML,et al..Regeneration of fertile transgenic maize plants [J].The Plant Cell,1990,2:603-618
    113.Grover Sowell JR.Additional sources of resistance to gummy stem blight of muskmelon [J].Plant Disease,1981,65:253-254
    114.Guis M,Latche A,Pech JC,et al..An efficient method for production of diploid Cantaloupe Charentais Melon (Cucumis rnelo L.var.cantalupensis) by somatic embryogenesis [J].Scientia Horticulturae,1997,69:199-206
    115.Guis M,Latche A,Roustant P,et al..Melon biotechnology [J].Biotechnology and Genetic Engineering Review,1998,5:289-311
    116.Guis M,Roustan JP,Dogimont C,et al..Melon biotechnology [J].Biotech.Gene Engin.Rev.,1998,15:289-311
    117.Gupta PK,Balyan I-IS,Edwards KJ,et al..Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat [J].Theor.Appl.Genet.,2002,105:413-422
    118.Han F,Romagosa I,Ullirich SE,et al..Molecular marker assisted selection formalting quality traits in barly [J].Molecular Breeding,1997,(3):427-437
    119.Hill M,Witsenboer H,Zabeau M,et al..PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp.[J].Theor.Appl Genet.,1996,93:1202-1210
    120.Homma Y,Sugiyama K,Oosawa K.Improvement in production and regeneration of somatic embryos from mature seed of melon (Cucumis melo L.) on solid medium [J].Japn.J.Breeding,1991,41:543-551
    121.Hu T,Metz S,Chay C,et al..Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection [J].Plant Cell Rep.,2003,21:1010-1019
    122.Kaneko Y,Bang SW,Torh-Abe J,et al..Chromosome pairing in haploid plants of radish derived from alien monosomic addition lines [J]. Plant Breeding, 2003, 122:450-452
    123.Katzir N,Danin-Poleg Y,Tzuri G,et al..Length polymorphism and homologies of microsatellites in several Cucurbitaceae species [J].Theor.Appl.Genet.,1996,93:1282-1290
    124.Keinath AP,Famham MW,Zitter TA.Morphological, pathological, and genetic differentiation of Didymella bryoniae and Phoraa spp.isolated from Cucurbits [J].Phytopathology,1995,85:364-369
    126. Kema GHJ, Goodwin SB, Hamza S, et al.. A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic linkage map of Mycosphaerella graminicola, the Septoria tritici leaf blotch pathogen of wheat [J]. Genetics, 2002,161: 1497-1505
    127. Kroon GH, Custers JBM, Kho YO, et al.. Interspecific hybridization in Cucumis (L.). 1. Need for genetic variation, biosystematic relations and possibilities to overcome crossability barriers [J]. Euphytica, 1979, 28: 723-728
    128. Kunzel G, Korzun L, Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints [J]. Genetics, 2000, 154:397-412
    129. Leppik E. Searching gene centres of the genus Cucumis through host-parasite relationship [J]. Euphytica, 1966, 15:323-328
    130. Leshem B. Polarity and responsive regions for regeneration in the culture melon cotyledon [J]. J. Plant Physiol., 1989,135: 237-239
    131. Liou PC, Chang YM, Hsu WS, et al.. Construction of a linkage map in Cucumis melo L. using random amplified polymorphic DNA markers [J]. Acta Hort., 1998,461:123-131
    132. Liu ZW, Biyashev RM, Saghai MA. Development of simple sequence repeat DNA markers and their integration into a barley linkage map [J]. Theor. Appl. Genet., 1996,93: 869-876
    133. Lotfi M, Alan AR, Henning MJ, et al.. Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance [J]. Plant Cell Rep., 2003, 21:1121-1128
    134. Ma DW, Guo ZHH, Zhang CHH, et al.. A study on chtomosome number and karyotype of melons (Cucumis melon L.) [J]. Acta Hort., 1995,402: 61-65.
    135. Mackioo DJ, Zhang Z, Redona ED, et al.. Level of polymorphism and genetic mapping of AFLP markers in rice [J]. Genome, 1996,39: 969-977
    136. McGrath DJ, Vawdrey L, Walker IO. Resistance to gummy stem blight in muskmelon [J]. HortScience, 1993,28:930-931
    137. McGreight JD. Powdery mildew resistance genes in muskmelon [J]. J. Amer. Soc. Hort. Science, 1987,112:156-160
    138. Menz MA, Klein RR, Mullet JE, et al.. A high-density genetic map of Sorghum bicolor (L.) Moench based of 2926 AFLP(R), RFLP and SSR markers [J]. Plant Mpcecular Biology, 2002, 48: 483-499
    139. Monforte AJ, Oliver M, Gonzalo MJ, et al.. Identification of quantitative trait loci involved in fruit quality traits in melon {Cucumis melo L.) [J]. Theor. Appl. Genet., 2004, 108: 750-758
    140.Nagaoka T,Ogihara Y.Applicability of inter-simple sequence repeat polymorphism in wheat for use as DNA markers in comparison to RFLP and RAPD markers [J].Theor.Appl.Genet.,1997,94:597-602
    141.Neuhausen SL.Evaluation of restriction fragment length polymorphism in Cucurnis rnelo L.[J].Theor. Appl.Genet.,1992,82:379-384
    142.Nitzsche W,Wenzel G.Haploids in Plant Breeding [M].Verlag Paul Parey,Berlin and Hamburg,1977
    143.Norton J D,Cosper R D,Smith D A,et al.Ac-70-154,a gununy stem blight-resistant muskmelon breeding line [J].Hortscience,1989,24:709-711
    144.Norton JD,Cosper RD,Smith DA,et al..Aurora--A high quality disease resistant cantaloupe [J].Alabama Agr.Expt.Sta.Circ.,1985,278
    145.Norton JD.Chilton,a high quality fruit for the commercial market [J].Alabama Agr.Expt.Sta.Lilt.,1972,84
    146.Norton JD.Gulfcoast - a sweet cantaloupe for the produce chain store market [J].Alabama Agr.Expt.,Sta.Lilt.1971,82
    147.Oi X,Stare P,Lindhout P.Use of locus of specific AFLP markers to construct a high-density molecular map in barly [J].Theor.Appl Genet.,1998,96:376-384
    148.Oliver JL,Garcia MS,Cardus M,et al..Construction of a reference linkage map of melon [J].Genome,2001,44:836-845
    149.Paran I,Michelmore RW.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J].Theor.Appl.Genet,1993,85:985-993
    150.Perin C,Hagen LS, Conto DV, et al..A reference map of Cucumis melo based on two recombinant inbred line population [J].Theor.Appl.Genet.,2002,104:1017-1034
    151.Perl-Treves R,Galun E.The Cucumis plastome:physical map,intrageneric variation and phylogenetic relationships [J].Theor.Appl.Genet.,1985,71:417-429
    152.Perl-Treves R,Zamir D,Navot N,et al..Phylogeny of Cucumis based on isozyme variability and its comparison with plastome phylogeny [J].Theor.Appl.Genet.,1985,71:430-436
    153.Pitrat M.Linkage groups in Cucumis melo L.[J].J.Hered.,1991,82:406-411
    154.Pitrate M.List for Cucumis melo [J].Cucurbit Genet Coop.,1994,17:135-148
    155.Prasad K,Norton JD.Inheritance of resistance to Mycosphaerella Citrullina in muskmelon [J].J.Amer.Soc.Hort.Science,1967,91:396-400
    156.Ramachandran C,Narayan RK.Chromosomal DNA variation in Cucurnis [J].Theor.Appl.Genet.,1985,69:497-502
    157. Ramachandran C, Seshadri VS. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.) [J]. Plant Breeding, 1986,96 :25-38
    158. Ratnaparkhe MB, Santra DK, Tullu A, et al. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with fusarium wilt resistance gene in chickpea [J]. Theor. Appl. Genet., 1998, 96: 348-353
    159. Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ. Inter-simple-sequence-repeat (ISSR) polymorphism are useful for finding markers associated with disease resistance gene clusters [J]. Theor. Appl. Genet., 1998,97:515-519
    160. Reamon-Buettner SM, Jung C. AFLP-derived STS markers for identification of sex in Asparagus officinalis L. [J]. Theor. Appl Genet., 2000, 100:432-438
    161. Roux O, Gevrey L, Arvanitakis L, et al. ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas [J]. Molecular Phylogenetics and Evolution, 2006, doi: 10.1016/j.ympev.2006.09.017
    162. Sair N, Abak K. Comparison of ploidy level screening methods in watermelon: Citrulius Lanatus Thunb [J]. Scientia Horticulturae, 1999, 82:265-277
    163. Sakata K, Antonio BA, Mukai Y, et al.. INE: A rice genome database with an integrated map view [J]. Nucleic Acids Research, 2000,28: 97-101
    164. Sari N, Abak K, Pitrat M, et al.. Induction of parthenogenetic haploid embryos and production of plants in melon {Cucumis melo L. var. inodorus Naud. and C. melo L. var. reticulatus Naud.) [J]. Doga, -Turk-Tarim-ve-Ormancilik-Dergisi, 1992,16: 302-314
    165. Sato S, Xing A, Ye X, et al.. Production of linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean [J]. Crop. Sci., 2004,44:646-652
    166. Sauton A, Dumas De Vaulx R. Obtention de plantes haploids chez le melon (Cucumis melo L.) par gynogenese induite par du pollen irradie [J]. Agronomie, 1987,7:141-148
    167. Sauton A. Doubled haploid production in melon (Cucumis melo L.) [M]. 1988
    168. Sauton A. Effect of season and genotype on gynogenetic haploid production in muskmelon, Cucumis melo L [J]. Scientia Horticulturae, 1988, 35: 71-75
    169. Savin F, Decomble V, Le Couviour M, et al.. The X-ray detection of haploid embryos arisen in muskmelon Cucumis melo L. seeds and resulting from a parthenogenetic development induced by irradiated pollen [J]. Cucurbit Genet. Coop., 1988,11:39-42
    170. Sharopova N, McMullen MD, Schultz L, et al.. Development and mapping of SSR markers for maize [J]. Plant Molecular Biology, 2002,48: 463-481
    171. Silberstein L, Kovalski I, Brotman Y, et al.. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes [J]. Genome, 2003,46: 761-773
    172.Sowell GJ.Additional sources of resistance to gummy stem blight of muskmelon [J].Plant Disease,1981,65:253-254
    173.Staub JE,Meglic V,McCreight JD.Inheritance and linkage relationship of melon (Cucumis melo L.) isozymes [J].J.Am.Soc.Herr.Sci.,1998,123:264-272
    174.Stewart CN,Adang N J,All JN.Genetic transformation, recovery,and characterization of fertile soybean transgenic for a synthetic cryIAc gene [J].Plant Physiol.,1996,112:121-129
    175.Tanksley SD and Orton TJ.Isozymes in Plant Genetics and Breeding [M].Elsevier Sci Publishers,1983
    176.Terauchi R,Kahl G.Mapping of the Dioscorea tokoro genome:AFLP markers linked to sex [J].Genome,1999,42:752-762
    177.Trivedi RN,Roy RP.ytological studies in Cucumis and Citrullus [J].Cytologia,1970,35:561-569
    178.Tsuchiya T,Gupta PK.Chromosome Engineering in Plants,Genetics,Breeding,and Evolution [M].Elsevier,1991
    179.Tsumura Y,Ohba K,Strauss SH.Diversity and inheritance of inter-simple sequence repeat polymorphism in Douglas-fir (Pseudotsuga menziesiO and sugi (Cryptomeria japonica) [J].Theor.Appl.Genet.,1996,92:40-45
    180.Van BD,Breyne P,Goetghebeur P,et al..AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuaor [J].Theor.Appl Genet.,2002,105:289-297
    181.Wang YH,Thomas CE,Dean RA.A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers [J].Theor.Appl.Genet.,1997,95:791-798
    182.Wang Z,Weber JL,Zhong G,et al..Survey of plant short tandem DNA repeats [J].Theor.Appl.Genet.,1994,88:1-6
    183.Yadava KS,Singh AK,Arya HC.Cytogenetic investigation in Cucumis L.I.Meiotic analysis of twenty four Cucumis species [J].Cytologia,1984,49:1-9
    184.Yang HY,Zhou C.In vitro induction of haploid plants from unpollinated ovaries and ovules [J].Theor. Appl.Genet.,1982,41:743-750
    185.Yanmaz R,Ellialtioglu S,Taner KY.The effects of gamma irradiation on pollen viability and haploid plant formation in snake cucumber (Cucumis melo L.var.flexuosus Naud.) [J].Acta Hort.,1999,492:307-310
    186.Ye XD,Salin AB,Andreas K,et al..Engineering the provitam in a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endsperm [J].Science,2000,287:303-305
    187. Yu YG, Saghai Maroof MA, Buss GR. Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers [J]. Theor. Appl. Genet., 1996,92:64-49
    188. Zapata C, Park SH, El Zik KM, et al.. Transformation of texas cotton cultivar by using Agrobacterium and the shoot apex [J]. Theor. Appl. Genet., 1999,98: 252-256
    189. Zha DS. Haploid plant production and ploidy level determination in netted melon (Cucumis melo L.) [J]. Acta-Agriculturae-Shanghai, 2002,18(1): 43-45
    190. Zhang YP, Kyle M, Anagnostou K. Screening melon (Cucumis melo) for resistance to gummy stem blight in the greenhouse and field [J]. HortScience, 1997,32:117-121
    191. Zheng XY, Woiff DW, Baudraccco AS, et al.. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.) [J]. Theor. Appl. Genet., 1999, 99: 453-463
    192. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics, 1994,20:176-183
    193. Zitter TA, Hopkins DL, Thomas C. Compendium of Cucurbit Diseases [M]. APS Press, 1996
    194. Zuniga TL, Jantz JP, Zitter TA, et al.. Monogenic dominant resistance to gummy stem blight in two melon (Cucumis melo) accessions. Plant Disease, 1999, 83:1105-1107