用户名: 密码: 验证码:
高稳定性介孔氧化铝的合成、形貌控制与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔氧化铝具有机械强度高、比表面积大、独特的孔结构、易于装载不同金属物种等优良特性,在多相催化、大分子吸附与分离、陶瓷、功能材料等诸多领域展现出诱人的应用前景。但是由于铝的电负性比硅低,更易进行亲核反应,导致铝盐水解、缩聚速率快,形成无定形的骨架,从而表现出较差的热稳定性和水热稳定性,制约了介孔材料的实际应用。此外,目前介孔氧化铝的合成路线多是基于表面活性剂模板法开发的,合成成本较高,而且合成的产物结构和形貌有待进一步改善。本文通过吸收纳米技术及介孔材料的最新研究结果,致力于探索经济、简便、快速的合成方法,制备高热稳定性和形貌可控的介孔氧化铝。论文中详细研究了介孔氧化铝在模板及无模板存在条件下的形成过程,开发了模板及无模板存在条件下高热稳定性介孔氧化铝的合成路线,探索溶剂、合成方法、产物形貌及焙烧方法等因素与介孔氧化铝热稳定性的关系,并采用X-射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氮气吸附、透射电镜(TEM)、热重-差热分析(TG-DTG)等表征手段对产物的结构和性质进行了分析,同时初步考察了典型材料在催化和先进陶瓷材料方面的应用。主要研究结果如下:
     有机溶剂对无机物种的溶解度和表面张力对介孔氧化铝的形成和热稳定性有很大的影响。在辛醇/乙腈二元体系中,异丙醇铝溶解于亲油性溶剂辛醇中,水溶解于亲水性溶剂乙腈中,使得反应在两相界面上进行,从而降低了醇盐水解和缩聚反应速率合成得到高热稳定性介孔氧化铝。在溶胶-凝胶法中,Triton X-100的超分子模板作用诱导蠕虫孔洞介孔氧化铝的生成,产物孔道结构的调控可通过陈化温度的调变实现。超声合成热稳定性更为优异的产物,超声产生的高温促使薄水铝石晶粒的生成,表面活性剂通过和薄水铝石晶粒间的氢键作用诱导“刚性”晶粒的堆积,导向具有晶化γ-Al_2O_3骨架的介孔氧化铝生成;且合成时间从数天缩短到3-6h,显著提高了合成效率。
     廉价、环境友好的小分子尿素通过-NH_2与薄水铝石胶粒表面形成氢键导向介孔氧化铝的形成。氨水控制水解条件下,产物的晶态骨架以及特殊的脚手架状形貌使其具有高比表面积、大孔容和高热稳定性,600℃焙烧3h后比表面积高达372m~2/g,孔容为0.84cm~3/g。表面活性剂模板法和尿素模板法两种合成路线均利用选定的组装模板与无机纳米颗粒之间的识别作用,使得模板指导纳米颗粒组装形成介孔结构,但介孔孔道的形成不一定需要模板的参与。
     介孔氧化铝可在无模板存在的条件下通过均匀球形胶粒有序堆积成功合成。乙酰乙酸乙酯+醋酸复合螯合剂与铝醇盐形成配位结构,控制生成形状均匀、粒度分布均一的球形胶粒;而快速焙烧的方法抑制了相转变导致的颗粒异常长大获得高热稳定性产物。
     基于薄水铝石层状结构特点,在无模板条件下,通过调控溶剂热反应温度和溶剂组分,实现了层状结构卷曲形成一维纳米结构介孔氧化铝的设想,实验现象初步揭示了薄水铝石晶体结构与一维纳米介孔结构生长的内在关联,为一维纳米结构液相生长的相关理论与机理研究提供了实验依据。
     适宜的溶剂体系是合成高热稳定性介孔氧化铝的关键因素之一;辛醇/乙腈二元体系可以合成并提高介孔氧化铝的热稳定性。合成方法的改变导致孔壁的结构和组成的变化;与常规方法相比,超声合成获得了具有晶化孔壁的介孔氧化铝,而且增加了孔壁厚度,因而显著改善了产物的热稳定性,产物经900℃焙烧3h后介孔结构不坍塌,且比表面积高达258 m~2/g。颗粒的生长与产物的晶体结构性质密切相关;产物形貌控制的同时无机相缩聚形成薄水铝石晶化孔壁;另一方面纤维状产物相互接触面积小、耐烧结,最终改善了介孔氧化铝的热稳定性。焙烧升温速率的不同影响介孔氧化铝的热稳定性。
     以介孔氧化铝为载体,负载Ni-Mo双组分的催化剂具有比商品催化剂更优异的二苯并噻吩(DBT)加氢脱硫活性和稳定性:低温260℃时,DBT转化率高达98.8%,比同类商业催化剂同温度下的DBT转化率(67.3%)高出31.5个百分点,有望实现柴油加氢脱硫生产的大幅度节能降耗。基于多孔及纳米α-Al_2O_3的表面性质,利用高速剪切乳化分散技术开发出陶瓷墨水制备新工艺,使球形α-Al_2O_3纳米粉体在乙醇/异丙醇陶瓷墨水体系中稳定分散的固相含量高达10 Vol%以上。墨水满足打印成型要求,成功实现了在基底上的单层和多层打印;同时制备时间从数天(球磨工艺)缩短至4h,大大降低了能耗。该工艺与喷墨打印技术的成功结合有望实现复杂结构薄膜材料、多层显微电路和小体积、高复杂的整体陶瓷元件的制造。
Mesoporous alumina is superior to silica due to resistance toward oxidation and corrosion, high mechanical strength, favorable combination of surface and textural properties, and convenience to be loaded with different metal species. These features make it highly desirable in catalysis and adsorption, especially in bulk molecule processes. However, the applications going beyond laboratory tests are at present out of reach. Aluminum alkoxides are susceptible to hydrolysis and phase transitions accompanied by thermal breakdown of the structural integrity, which make them difficult to create mesoporous alumina. Moreover, the structure in mesopore scale and morphology control need further improve. In the dissertation, with the recently development in nanotechnology and mesoporous materials formation mechanism, we hope to overcome the above motioned question, develop cost effective mesoporous alumina synthesis method, and improve the thermal stability and morphology control of mesoporous alumina. XRD, FT-IR, TG-DTG, TEM, and N_2 adsorption were used to characterize the mesoporous alumina. The results are listed below:
     A combination of octanol and acetonitrile is optimal for the synthesis of mesoporous alumina with high thermal stability. In the mixed solution, the aluminum alkoxide dissolved into octanol and not into acetonitrile, but water dissolved into acetonitrile. Hence, alkoxide hydrolysis is inhibited by the two phase interface. Mesoporous alumina with wormhole like mesopore channel can be synthesized with surfactant as template in sol-gel method. And mesopore diameters can be easily modified by the aging temperature. The nonionic PEO surfactant acts as a structure-directing agent to direct the formation of alumina mesostructure with excellent thermal stability through hydrogen bond inducing the arrangement of rigid boehmite particulates in the sonochemical method. Another advantage in the application of ultrasound radiation is the drastic reduction in the fabrication time from days to 3-6 h.
     Mesoporousγ-Al_2O_3 has been successfully synthesized by using the cheap and environmental-friendly urea. It has demonstrated that urea not only acts as a structure-directing agent via the hydrogen bonds, but also effectively preserves the sintering behavior of nanocrystals during calcination. The structural properties and thermal stability of the products can be effectively controlled through adjusting the morphologies and crystalline phases. The mesoporousγ-Al_2O_3 obtained 372 m~2/g surface area and 0.84 cm~3/g pore volume after calcination at 600℃.
     Mesoporous aluminas with high thermal stability have been prepared by hydrolysis of Al(OC_3H_7)_3 using sol-gel technique combining instant calcination without the aid of template. The results show that the organic compounds of acetoacetic ester (EAA) and acetic acid (AcOH) not only control the rate of hydrolysis and condensation but also determine the particle size and the morphology of alumina. And the instant calcination can inhibit the formation ofα-Al_2O_3 "dendrites" and improve the thermal stability.
     Based on the layer-structured A100H, a rolling mechanism has been introduced to explain the formation of the mesopores and the growth of one-dimensional nanostructures under solvothermal conditions at 190℃. The structural properties and morphologies of the products can be effectively controlled by manipulating the composition of the solvent and the reaction temperature.
     Solvent is a key factor for the formation of mesostructured alumina with high thermal stability. The thermal stability of the mesoporous alumina can be enhanced by the combination of octanol and acetonitrile. The structure and composition of pore wall can be modified by synthesis through different methods. Mesoporous aluminas prepared by ultrasound radiation obtain high specific surface areas, large porosities, and excellent thermal stabilities, which should be attributed to their crystalline and thicker framework walls. The obtained mesoporous alumina had still mesoporous structure after calcination at 900℃for 3 h and obtained 258 m~2/g surface area. The growth of particle is related to the crystalline structure. The mesoporous framework is composed of fibrous nanoparticles of boehmite. The thermal stability of mesoporous alumina was affected by the heating rate.
     The dibenzothiophene conversions and durability superior to that of a commercial catalyst have been achieved over the mesoporous alumina catalysts. Compared with the commercial catalyst, the dibenzothiophene conversion reached 98.8% and increased 31.5% at 260℃. Inks in the form of alumina suspension have been prepared by high-shear dispersing emulsifier firstly. Compared with ball milling methodology,α-Al_2O_3 ceramic inks have shown excellent dispersiveness, stability, and high solid content (10 vol%) obtained by high-shear dispersing emulsifier which satisfy the requirements of ink-jet printer based on the print test. Another advantage of high-shear dispersing emulsifier is the drastic reduction in the fabrication time from days to 4 h.
引文
[1]Sing K S W,Everett D H,Haul R A W,et al.IUPAC manual of symbols and terminology.Pure.Appl.Chem.1972,31:578.
    [2]Kresge C T,Leonowicz M E,Roth W J,et al.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism,nature.1992,359:710-712.
    [3]Beck J S,Vartuli J C,noth W J,et al.A new family of mesoporous molecular-sieves prepared With liquid-crystal templates.J Am Chem Soc.1992,114:10834-10843.
    [4]徐如人,庞文琴.分子筛与多孔材料化学.第一版.北京:科学出版社,2004
    [5]Stein A.Advances in micropOrousand mesoporous solids-highlight of recent progress.Adv.Mater.2003,15(10):763-775
    [6]On D T,Desplantier-Giscard D,Danumah C,Kaliaguine S.Perspectives in catalytic applications of mesostructured materials.Appl.Catal.A 2003,253(2):545-602
    [7]Taguchi A,Schüth F.Ordered mesoporous materials in catalysis.Micropor.Mesopor.Mater.2005,77(1):1-45
    [8]Ying J Y,Mehnert C P,Wong M S.Synthesis and Applications of supramolecular-templated mesoporous materials.Angew.Chem.Int.Ed.1999,38(1-2):56-77
    [9]Corma A.From microporous to mesoporous molecular sieve materials and their use in catalysis.Chem.Rev.1997,97(6):2373-2419
    [10]Ciesla U,Schüth F.Ordered mesoporous materials.Micropor.Mesopor.Mater.1999,27(2-3):131-149
    [11]Schüth F.Non-siliceous mesostructured and mesoporous materials.Chem.Mater.2001,13(10):3184-3195
    [12]Yu C,Tian B,Zhao D.Recently advances in the Synthesis of non-siliceousmesoporous materials.Curr.Opin.Solid State Mater.Sci.2003,7:191-197
    [13]Patarin J.Mild methods for removing organic templates from inorganic hostmaterials.Angew.Chem.Int.Ed.2004,43(30):3878-3880
    [14]Beck J S,Vartuli J C,Roth W J,et al.A new family of mesoporous molecular-sieves prepared with liquid-crystal templates.J.Am.Chem.Soc.1992,114(27):10834-10843.
    [15]Vartuli J C,Schmitt K D,Kresge C T,et al.Development of a formation mechanism for M41s materials.Zeolites and related microporous mater:state of the art 1994,53-40
    [16]Vartuli J C,Kresge C T,Leonowicz M E,et al.Synthesis of mesoprous materials:liquid-crystal templating versus intercalation of layered silicates,Chem Mater.1994,6:2070-2077
    [17]Huo Q S,Margolese D I,Ciesla U,et al.Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays.Chem.Mater.1994,6(8): 1176-1191.
    [18]尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001.
    [19]朱洪法.催化剂载体制备及应用技术.第一版.北京:石油工业出版社,2002.
    [20]Tsukada I,Segawa H,Yasumori A,et al.Crystallinity of boehmite and its effect on the phase transition temperature of alumina.J.Mater.Chem.1999,9(2):549-553.
    [21]Trawczynski J T.Effectof aluminum hydroxide precipitation conditions on the alumina surface acidity..Ind.Eng.Chem.Res.1996,35(1):241-244.
    [22]Hicks R W.Surfactant-mediated assembly of crystalline mesoporous aluminas:synthesis,characterization,and application in hydrodesulfurization:Doctor of philosophy.Michigan State University,2002.
    [23]Levin I,Brandon D.Metastable alumina polymorphs:cyrstal structure and transition sequences.J.Am.Cream.Soc.1998,81(8):1995-2012.
    [24]臧希文,汤卡罗.无机化学丛书(第二卷).第一版.北京:科学出版社,1990.
    [25]Wefers K,Misra C.Oxide and hydroxide of aluminum.Alcoa Technical Paper,1987.
    [26]Wang Y G,Bronsveld P M,DeHosson J Th M.Ordering of octahedral vacanices in transition aluminas.J.Am.Ceram.Soc.1998,81(6):1655-1660.
    [27]Chou T C,Nieh T G.Nucleation and concurrent anomalous grain growth of α -Al_2O_3 during γ-αphase transformation.J.Am.Ceram.Soc.1991,74(9):2270-2279.
    [28]Bagwell R B,Messing G L.Effect of seeding and water vapor on the nucleation and growth of α-Al_2O_3 for γ-Al_2O_3.J.Am.Ceram.Soc.1999,82(1):825-832,
    [29]Dynys F W,Halloran J W.Alpha alumina formation in Al_2O_3 gels.Ultrastruct.Process.Ceram.,Glasses,Compos.,New York,1984:142-151.
    [30]Wen H,Yen F.Growth characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation.J.Crystal.Growth.2000,208(1-4):696-708.
    [31]Yen F S,Wen H L,Hsu Y T,et al.Crystallite size growth and the derived dilatometric effect during θ- toα-phase transformation of nano-sized alumina powders.J.Crystal Growth.2001,233(4):761-773.
    [32]Wen H L,Chen Y Y,Yen F S,et al.Size characterization of θ -and α-Al_O_3crystallites during phase transformation.Nanostruct.mater.1999,11(1):89-101.
    [33]Chang P L,Yen F S,Cheng K C,et al.Examinations on the critical and primary crystallite sizes during θ toα -phase transformation of ultrafine alumina powders.Nano Lett.2001,1(5):253-261.
    [34]Krokidis X,Raybaud P,Gobichon A E,et al.Theoretical study of the dehydration process of boehmite to γ-alumina.J.Phys.Chem.2001,105(22):5121-5130.
    [35]Lippens B C,Steggerda J J.Physical and chemicalaspects of adsorbents and catalysts.Academic Press,London,1970:171.
    [36] Nortier P, Fourre P, Saad A B, et al. Effects of crystallinity and morphology on the surface properties of alumina. Appl. Catal. 1990, 61(1): 141-160.
    [37]PagliaG, Buckley CE, Rohl A L, et al. Boehmite derived Y -alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ-alumina. Chem. Mater. 2004, 16(2): 220-236.
    [38] Paglia G, Buckley C E, Udovic T J, et al. Boehmite derived Y -alumina system. 2. Considering of hydrogen and surface effects. Chem. Mater. 2004,16(10): 1914-1923.
    [39] Suh D J, Park T J, Kim J H, et al. Fast sol-gel synthetic route to high-surface-area alumina aerogels. Chem. Mater. 1997, 9(9): 1903-1905.
    [40] Tanaka K, Imai T, Murakami Y, et al. Microporous structure of alumina prepared by a salt catalytic sol-gel process. Chem, Lett, 2002, 31(1): 110-111.
    [41] Misra C. Industrial alumina chemicals. : ACS Monograph 184. Washington D C: American Chemical Society, 1986.
    [42] Schuth F, Unger K. in: Ertl G, Knozinger H, Weitkamp J (Eds.). Preparation of solid catalysts. Weinheim: Wiley-VCH, 1999, p. 77-80
    [43] Huang Y, White A, Walpole A, Trimm D L. Control of porosity and surface area in alumina I. Effect of preparation conditions. Appl. Catal. 1989, 56(1):177-186
    
    [44] White A, Walpole A, Huang Y, Trimm D L. Control of porosity and surface area in alumina: II. Alcohol and glycol additives. Appl. Catal. 1989, 56(1):187-196
    
    [45] Sing K S W, Everett D H, Haul RAW, Moscow L, Pierotti R A, Ronquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57:603-619
    [46] Yoldas B E. Alumina gels that form porous transparent Al_2O_3. J. Mater. Sci. 1975, 10: 1856-1860.
    [47] Buelna G, Lin Y S. Sol-gel-derived mesoporous γ-alumina granules. Micropor. Mesopor. Mater. 1999, 30(2-3): 359-369.
    [48] Wang Z M, Lin Y S. Sol-gel synthesis of pure and copper oxide coated mesoporous alumina granular particles. J. Catal. 1998, 174(1): 43-51
    [49] Deng S G, Lin Y S. Microwave synthesis of mesoporous and microporous alumina powders. J. Mater. Sci. Lett. 1997, 16(15): 1291-1294.
    [50] Yao N, Xiong G X, Zhang Y H, et al. Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method. Catal. Today. 2001, 68(1-3): 97-109.
    [51] Chuah G K, Jaenicke S, Xu T H, et al. The effect of digestion on the surface area and porosity of alumina. Micropor. Mesopor. Mater. 2000, 37(3): 345-353.
    [52] Pierre A C, Elaloui E, Pajonk G M, et al. Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir. 1998, 14(1): 66-73.
    [53] Ji L, Lin J, Tan K L, et al. Synthesis of high-surface-area alumina using aluminum tri-sec-butoxid-2, 4-pentanedione-2-propanol-nitric acid precursors. Chem. Mater. 2000, 12(4): 931-939.
    [54] Shan Z, Jansen J C, Zhou W, et al. Stable mesoporous alumina with high surface areas. Appl. Catal. A. 2003, 254(2): 339-343.
    [55] Liu X, Wei Y, Jin D, Shih W H. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Mater. Lett. 2000, 42(3): 143-149
    [56] Cejka J. Organized mesoporous alumina: synthesis, structure and potential in catalysis. App. Catal. A 2003, 254(2): 327-338
    [57] Bagshaw S A, Prouze E, Pinnavaia T J, et al. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995, 269(5228): 1242-1244.
    [58] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves. Angew. Chem. Int. Ed. Engl. 1996, 35(10): 1102-1105
    [59] Caragheorgheopol A, Caldararu H, Ionita G, et al. Solvent-induced textural changes of as-synthesized mesoporous alumina, as reported by spin probe electron spin resonance spectroscopy. Langmuir. 2005, 21(6): 2591-2597.
    [60] Deng W, Bodart P, Pruski M, et al. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating. Micropor. Mesopor. Mater. 2002, 52(3): 169-177.
    [61] Gonzdlez-pena V, Diaz I, Mdrquez-alvarez C, et al. Thermally stable mesoporous alumina synthesized with nonionic surfactants in the presence of amines. Micropor. Mesopor. Mater. 2001, 44-45: 203-210.
    [62] Gonzdlez-pena V, Mdrquez-alvarez C, Diaz I, et al. Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating. Micropor. Mesopor. Mater. 2005, 80(1-3): 173-182.
    [63] Cruise N, Janson K, Holmberg K, et al. Mesoporous alumina made from a bicontinuous liquid crystalline phase. J. Colloid Interface Sci. 2001, 241(2): 527-529.
    [64] Gonzalez- pena V, Mdrquez-alvarez C, Sastre E, et al. Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium. Stud. Surf. Sci. Catal. 2002, 142: 1283-1290.
    [65] Pidol L, Crosso D, Soler-illia G J, et al. Hexagonally organized mesoporous aluminium-oxo-hydroxide thin films prepared by the template approach. In Situ study of the structural formation. J. Mater. Chem. 2002, 12(3): 557-264.
    [66] Vaudry F, Khodabandeh S, Davis M E, et al. Synthesis of pure alumina mesoporous materials. Chem. Mater. 1996, 8(7): 1451-1464.
    [67] Cejka J, N, Rathousky J, et al. Nitrogen Adsorption Study of Organized Mesoporous Alumina. Phys-. Chem. Chem. Phys. 2001, 3(22): 5076-5081.
    [68] Cejka J, Kooyman P J, Veseld L, Rathousky J, Zukal A. High-temperature transformations of organized mesoporous alumina.Phys.Chem.Chem.Phys.2002,4(19):4823-4829
    [69]Cabrera S,Haskouri J E,Alamo J,et al.Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore size.Adv.Mater.1999,11(5):379-381.
    [70]Cabrera 8,Haskouri J E,Guillem C,Latorre J,Beltrán-Porter A,Beltrán-Porter D,Marcos M D,Amorós P.Generalised syntheses of ordered mesoporous oxides:the atrane route.Solid State Sci.2000,2(4):405-420
    [71]Valange S,Guth J L,Kolenda F,et al.Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in the aqueous media.Micropor.Mesopor.Mater.2000,35-36:597-607.
    [72]Sicard L,Lebeau B,Patarin J,et al.Synthesis of mesostructured or mesoporous aluminas in the presence of surfactants:comprehension of the mechanisms of formation.Oil &Gas Science and Technology-Rev.IFP.2003,58(5):557-569.
    [73]Zilková N,Zukal A,Cejka J.Synthesis of mesoporous alumina templated with ionic liquids.Micropor.Mesopor,Mater.2006,95:176-179.
    [74]Park H,Yang S H,Jun Y,et al.Facile route to synthesize large-mesoporous γ-alumina by room temperature ionic liquids.Chem.Mater.2007,19(3):535-542.
    [75]Li D,Lin Y,Li Y-C,et al.Synthesis of mesoporous pseudoboehmite and alumina templated with 1-hexadecyl-2,3-dimethyl-imidazolium chloride.Micropor.Mesopor.Mater.2008,108:276-282.
    [76]Liu Q,Wang A,Wang X,et al.Ordered crystalline alumina molecular sieves synthesized via a nanocasting route.Chem.Mater.2006,18(22):5153-5155.
    [77]You Z,Balint I,Aika K,et al.Mesostructured alumina nanocomposites synthesized via reverse microemulsion route.Chem.Lett.2003,32(7):630-631.
    [78]何世武.PAMAM树枝状高分子的合成及其在介孔氧化铝中的模板作用:硕士论文.大连交通大学,2004.
    [79]Xu B,Xiao T,Yan Z,et al.Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system.Micropor.Mesopor.Mater.2006,91(1-3):293-295.
    [80]Zhang Z,Bai P,Xu B,Yah Z.Synthesis of mesoporous alumina TUD-1 with high thermostability.J.Porous Mater.2006,13(3-4):245-250
    [81]Schüth F.Endo- and exotemplating to create high-surface-area inorganic materials.Angew.Chem.Int.Ed.2003,42(31):3604-3622.
    [82]Wieland W S,Davis R J,Garces J M,et al.Side-chain alkylation of toluene with methanol over alkali-exchanged zeolite X,Y,h and β.J.Catal.1998,173(2):490-500.
    [83]Zhang W,Pinnavaia T J.Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N~0I~0 pathway.Chem.Commun.1998,11:1185-1186.
    [84]Yang P,Zhao D,Margolese D I,et al.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline framework.Nature.1998,396(6707):152-155.
    [85]Yang P,Zhao D,Margolese D I,et al.Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework.Chem.Mater.1999,11(10):2813-2826.
    [86]Tian B,Yang H,Liu X,et al.Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors.Chem.Commun.2002,17:1824-1825.
    [87]Zhang W,Pinnavaia T J.Mesostructured γ-Al_2O_3 with a lathlike framework morphology.J Am Chem Soc.2002,124(41):12294-12301.
    [88]Zhang Z,Hicks R W,Pauly T R,Pinnavaia T J.Mesostructured form of γ-Al_2O_3.J.Am.Chem.Soc.2002,124(8):1592-1593
    [89]Hicks R W,Pinnavaia T J.Nanoparticle assembly of mesoporous AlOOH(boehmite).Chem.Mater.2003,15(1):78-82
    [90]Kim Y,Kim C,Kim P,et al.Effect of preparation conditions on the phase transformation of mesoporous alumina.J Non-Cryst Solids.2005,351(6-7):550-556.
    [91]Aguado J,Escola J M,Castro M C,et al.Sol-gel synthesis of mesostructured γ-alumina templated by cationic surfactants.Micropor.Mesopor.Mater.2005,83(1-3):181-192.
    [92]Ren T,Yuan Z,Su B,et al.Microwave-assisted preparation of hierarchical mesoporous-macroporrous boehmite AIOOH and γ- Al_2O_3.Langmuir.2004,20(4):1531-1534.
    [93]Liu Q,Wang A,Wang X,et al.Mesoporous γ-alumina synthesized by hydro-carboxylic acid as structure-directing agent.Micropor.Mesopor.Mater.2006,92(1):10-21.
    [94]刘茜.中孔氧化铝材料的合成、表征和催化应用研究:博士学位.大连:中国科学院大连化学物理研究所,2006.
    [95]Zhao D,Yang P,Huo Q,et al.Topological construction of mesoporous materials.Curr.Opin.Soild State & Mater.Sci.1998,3:111-121.
    [96]Lin H P,Mou C Y.Structural and morphological control of cationic surfactant-templated mesoporous silica.Acc.Chem.Res.2002,35(11):927-935.
    [97]Yu C,Fan J,Tian B,et al.Morphology development of mesoporous materials:a colloidal phase separation mechanism.Chem.Mater.2004,16(5):889-898.
    [98]Yada M,Hiyoshi H,Ohe K,et al.Synthesis of aluminum-based surfactant mesophases morphologically controlled througha layer to hexagonal transition.Inorg.Chem.1997,36(24):5565-5569
    [99]Zhu Z H,ZhuH Y,B W S,et al.Preparation andcharacterization of copper catalysts supported on mesoporous Al_2O_3 nanofibers for N_2O reduction to N_2.Catal.Lett.2003,91(1-2):73-81.
    [100]Khaleel A.Catalytic activity of mesoporous alumina for the hydrolysis and dechlorination of carbon tetrachloride.Mircrop.Mesop.Mater.2006,91(1-3):53-58
    [101]Onaka M,Oikawa T.Olefin metathesis over mesoporous alumina-supported rhenium oxide catalyst.Chem.Lett.2002,31(8):850-851.
    [102]Chaube V D,Shylesh S,Singh A P,et al.Synthesis,characterization and catalytic activity of Mn.(Ⅲ)- and Co(Ⅱ)- salen complexes immobilized mesoporous alumina.J.Mol.Catal.A:Chem.2005,241(1-2).
    [103]Kaluza L,Zdrazil M,Zikova N,et al.High activity of highly loaded MoS_2hydrodesulfurization catalysts supported on organized mesoporous alumina.Catal.Commun.2002,3(4):151-157.
    [104]Kim Y H,Kim C M,Choi I H,et al.Arsenic removal using mesoporous alumina prepared via a templating method.Environ.Sci.Technol.2004,38(3):924-931.
    [105]Gedanken A,Tang X,Wang Y,et al.Using sonochemical methods for the preparation of mesoporous materials and for the deposition of catalysts into the mesopores.Chem.Eur.J.2001,7(21):4546-4552.
    [106]Barrett E P,Joyner L G,Halenda P P,et al.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms.J.Am.Chem.Soc.1951,73(1):373-380.
    [107]Storck S,Bretinger H,Maier W F,et al.Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis.Appl.Catal.A.1998,174(1-2):137-146.
    [108]Ogihara T,Nakajima H,Yanagawa T,et al.Preparation of Uonodisperse,Spherical Alumina Powders from Alkoxides.J.Am.Ceram.Soc.1991,74(9):2263-2269.
    [109]赵国玺.表面活性剂物理化学.第二版.北京:北京大学出版社,1991.
    [110]汪志银,朱慧,王兆伦等.醇的链长对Triton X-100微乳液的调控.应用化学.2006,23(10):1081-1084.
    [111]Gregg S J,Sing K S W.Adsorption,Surface Area and Porosity.London:Academic Press,1982.
    [112]Sing K.The use of nitrogen adsorption for the characterization of porous materials.Colloids Surf.A.2001,187-188:3-9.
    [113]Sing K S W,Williams R T.Physisorption hysteresis loops and the characterization of nanoporous,materials.Adsorption Science & Technology.2004,22(10):773-782.
    [114]Zhu H Y,Riches J D,Barry J C,et al.γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide)surfactant.Chem.Mater.2002,14(5):2086-2093.
    [115]Wang J A,Bokhimi X,Morales A,et al.Aluminum Local Environment and Defects in the Crystalline Structure of Sol-Gel Alumina Catalyst.J.Phys.Chem.B.1999,103(2):299-3O3.
    [116]Porter M R.Handbook of surfactants.2nd ed.London:Blackie,1994
    [117]Adair J H,Suvaci E.Morphological control of particles.Current Opinion Colloid &Interface Science.2000,(5):160-167.
    [118]Wei Y,Jin D,Ding T,et al.A non-surfactant templating route to mesoporous silica materials.Adv.Mater.1998,10(4):313-316.
    [119]Custelcean R,Moyer B A,Bryantsev V S,et al.Anion coordination in metal-organic frameworks functionalized with urea hydrogen-bonding groups.Crystal Growth & design.2006,6(2):555-563.
    [120]Kumar D K,Das A,Dastidar P,et al.Remarkably stable porousassembly of nanorods derived from a simple metal-organic framework.Crystal Growth & design.2007,7(2):205-207.
    [121]Xie Y C,Tang Y Q.Spontaneous monolayer dispersion of oxide and salts onto surfaces of supports:applications to heterogeneous catalysis.Adv.Cataly.1990,37:1.
    [122]宁桂玲.Al_2O_3纳米粉的制备过程及不同形状纳米颗粒形成机理的研究:博士学位.大连:大连理工大学,1996.
    [123]卫伟,段连运,谢有畅等.尿素在斜发沸石上的自发单层分散.物理化学学报.2000,16(5):472-475.
    [124]刘勇,陈晓银.氧化铝热稳定性的研究进展.化学通报.2001,2:65-70.
    [125]Ovenstone J,Yanagisawa K.Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination.Chem.Mater.1999,11(10):2770-2774.
    [126]Rezgui S,Gates B C,Burket S L,et al.Chemistry of sol-gel synthesis of aluminum oxides with in situ water formation:control of the morphology and texture.Chem.Mater.1994,6(12):2390-2397.
    [127]Mamchik A I,Verteger A A,Tomashevich K V,et al.Cryosol synthesis of nanocrystalline alumina.Chem.Mater.1998,10(11):3548-3554.
    [128]Shelleman R A,Messing G L,Kumagai M,et al.Alpha-alumina transformation in seeded boehmite gels.J.Non-Cryst.Solids.1986,82(1-3):277-285.
    [129]Peng X S,Zhang L D,Meng G W,et al.Photoluminescence and infrared properties of γ- Al_2O_3 nanowires and nanobelts.J.Phys.Chem.B.2002,106(43):11163-11167.
    [130]Kuiry S C,Megen E,Patil S.D,et al.Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods.J.Phys.Chem.B.2005,109(9):3868-3872.
    [131]Pu L,Bao X M,Zou J P,et al.Individual alumina nanotubes.Angew.Chem.Int.Ed.2001,40(8):1490-1493.
    [132]Mei Y F,Siu G G,Fu R K Y,et al.Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template.J.Appl.Phys.2005,97:034305.
    [133]Zhang Y J,Liu J,He R R,et al.Synthesis of alumina nanotubes using carbon nanotubes as templates.Chem.Phys.Lett.2002,360:579-584.
    [134]Link S,Burda C,Mohamed M B,et al.Femtosecond transient-absorption dynamics of colloidal gold nanorods:shape independence of the electron-phonon relaxation time. Phys.Rev.B.2000,61:6086-6090.
    [135]Wu Y Y,Yang P D.Germanium/carbon core-sheath nanostructures.Appl.Phys.Lett.2000,77:43-45.
    [136]Buckett M I,Strane J,Luzzi D E,et al.Electron irradiation damage in oxides.Ultramicroscopy.1989,29:217-227.
    [137]Zinkle S J,Snead L L.Influence of irradiation on spectrum and implanted ions on the amorphization of ceramics.Nucl.Instrum.Meth.B.1996,116:92-101.
    [138]Smith D J,Barry J C.High-resolution electron microscopy and associated techniques.New York:Oxford University Press,1992.
    [139]Patuwathavithane C,WuW Y,Zee R H,et al,Radiationinduced conductivity in alumina.J.Nucl.Mater.1995,225:328-335.
    [140]Quere D,Meglio J D,Brochard-wyart F,et al.Spreading of liquid on highly curved surfaces.Science.1990,249:1256-1260.
    [141]Adschiri T,Kanazawa K,Arai K,et al.Rapid and continuous hydrothermal synthesis of boehmite particlesin subcritical and supercritical water.J.Am.Ceram.Soc.1992,75(9):2615-2618.
    [142]Zhu H Y,Gao X P,Song D Y,et al.Manipulating the size and morphology of aluminum hydrous oxide nanoparticles by soft-chemistry approaches.Micropor.Mesopor.Mater.2005,85(3):226-233.
    [143]Li W,Shi E,Zhong W,et al.Growth mechanism and growth habit of oxide crystals.J.Cryst.Growth.1999,203(1-2):186-196.
    [144]Wang X,Li Y D.Synthesis and formation mechanism of manganese dioxide nanowires/nanorods.Chem.Eur.J.2003,9(1):300-306
    [145]Sawada S,Hamada N.Energetics of carbon nano-tubes.Solid State Commun.1992,83(11):917-919
    [146]Atkinson A,Doorbar J,Hudd A,et al.Continuous ink-jet printing using sol-gel ceramic inks.J.Sol-Gel Sci.Tech.1997,28(8):1093-1097.
    [147]Teng W D,Edirisinghe M J,Evans J R G,et al.Optimization of dispersion and viscosity of a ceramic jet printing ink.J.Am.Ceram.Soc.1997,80(2):486-494.
    [148]周振君,杨雪梅.用Sol-Gel法制备喷墨打印用BaTiO_3陶瓷墨水.材料研究学报.2002,16(5):495-499.
    [149]郭瑞松,丁湘,梁青菊等.用反相微乳液法制备陶瓷墨水.材料研究学报.2001,15(5):583-586.
    [150]贺连星,温廷琏,吕之奕.流延法制备陶瓷燃料电池电解质膜的研究进展.材料科学与工程.1997,15(3):15-18.
    [151]程能林,胡声闻.溶剂手册.北京:化学工业出版社,1986.
    [152]翁学华,彭美春.α-Al_2O_3粉末在有机溶剂中的分散性研究.陶瓷工程.1994,27(3): 11-14.
    [153] Vamvakaki M, Billingham N C, Armes S P, et al. Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media. J. Mater. Chem. 2001, (11): 2437-2444.
    [154] Teng W D, Edirisinghe M J. Development of Ceramic Inks for Direct Continuous Jet Printing. J. Am. Ceram. Soc. 1998, 81(4): 1033-1036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700