紫色土稻田磷素迁移流失及环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长必需的营养元素,但不合理过量施用时,又成为环境污染因子。为了实现作物高产和环境友好的双重目标,必须将土壤有效磷水平维持在既能满足作物高产需求又能降低磷流失风险的环境阈值之间。因此,研究农田土壤磷素的迁移动态、流失特征及影响因素,弄清土壤磷累积与作物高产及磷素流失之间的关系,探讨土壤磷素环境风险评估的方法和指标,对于降低磷素流失、控制农业磷的面源污染、制定磷肥优化管理措施具有重要意义。
     国内外对旱地磷素流失进行了大量研究,但对稻田磷素流失研究较少,关于水旱轮作、长期不同施肥条件下紫色土稻田磷素的迁移流失及环境效应未见报道。水旱轮作由于干湿交替的水分管理,磷素在土-水中的迁移和淋失必定不同于旱地和湿地;长期不同的施肥方式必然导致土壤的物理、化学和生物学特性变化,土壤对磷的吸附固定能力发生变化,进而影响磷素在土-水界面的迁移转化。为此,本文采用田间长期定位试验与短期试验、渗漏池试验与室内模拟试验相结合的方法,通过15年水早轮作长期定位试验研究了长期不同施肥处理紫色土磷素累积状况及其在土壤剖面和水体中的迁移特征,探讨了长期施肥条件下紫色土对磷的吸附解吸特性及其影响因素,为紫色土水旱轮作稻田磷肥的优化管理和控制稻田磷素流失提供依据。采用单排单灌的田间试验,在水稻生长季节研究不同磷肥用量和不同有机肥品种对土-水磷素迁移流失的影响,并对其可能产生的环境风险进行分析,为紫色土区稻田水肥的优化管理提供理论依据。利用原状土壤渗漏池,研究水旱轮作条件下不同类型紫色土磷素渗漏淋失特征及其对地下水体环境质量的影响。通过土壤测试和模拟试验分析了土壤有效磷水平与磷素淋失之间的关系,探讨了紫色土磷素环境阈值,为紫色土区农田磷素环境风险评价提供依据。
     15年长期定位试验结果表明,紫色土磷素盈亏量(x)与土壤耕层Olsen-P的增减(y)呈极显著正相关:y=0.0394x+5.923(r=0.944**,n=11),紫色土每积累100kg·hm~(-2)的磷素,土壤Olsen-P提高3.94mg·kg~(-1)。水旱轮作每年施用磷肥120kg·hm~(-2)(P_2O_5,常规施磷水平),磷素盈余53.9kg·hm~(-2),提高了土壤速效磷含量;有机肥与化学磷肥配合施用能加快土壤速效磷的积累。长期施用在表层土壤的磷肥有向下移动的趋势,施磷处理20~60cm土壤速效磷含量比不施磷处理高,在水旱轮作条件下磷己迁移至60cm土层,增加了磷渗漏淋失的风险。磷在土壤剖面中的迁移能力受磷肥用量、有机肥种类和种植方式的影响,向下迁移的磷数量随着磷肥施用量的增加而增加;在等养分情况下,配施猪粪比配施秸秆更容易导致磷的迁移;稻油轮作土壤剖面中有效磷含量比稻麦轮作高1.25~6.5mg·kg~(-1),稻油轮作体系磷素的迁移能力比稻麦轮作强,磷素流失的风险增大。
     从长期定位试验水稻季土-水磷素动态变化看,土壤磷向水体的迁移主要发生在淹水种稻后的前10天,所有处理水稻移栽后l0天田面水磷含量较高,之后急剧下降;施肥35天后各处理田面水磷含量低(在0.1 mg·L~(-1)左右波动)并趋于稳定。在水稻移栽前10天应禁止稻田排水,在水稻移栽后30天内最好不要进行稻田排水,采取浅水移栽的稻田水分管理策略可以减少磷素流失。不同施肥处理之间,田面水含磷量在水稻移栽的前30天差异较大,以高量施磷处理1.5NPK+M的TP浓度最高;其次为配施猪粪尿的处理,不施磷的处理最低;稻—油轮作田面水TP浓度高于稻—麦轮作;配施猪粪提高了土壤磷素向水体的迁移和流失。
     土壤易解吸磷(RDP)、活性磷(藻类有效磷)、磷零吸持平衡浓度(EPC_0)、最大吸磷量(Qm)、磷吸持指数(SI)等参数是评价水-土界面磷迁移能力的重要指标。长期倍量施磷(1.5NPK+M)以及化肥与猪粪配施(NPK+M)处理土壤磷素在土壤剖面和水体的迁移能力高于其它处理的机理在于这2个处理土壤的易解吸磷、活性磷、磷零点吸持平衡浓度、磷吸持饱和度最高,土壤对磷的固定能力和缓冲能力降低,提高了磷向环境迁移的风险。在水旱轮作条件下土壤对磷的固定能力与土壤活性铝、pH呈极显著正相关;与土壤有机质和土壤Olsen-P含量呈极显著负相关。
     不同磷肥用量和有机肥对稻田磷素迁移的试验结果表明,田面水磷浓度随着施磷水平的提高而提高,施肥24h后各处理田面水磷素浓度最高,TP浓度在0.928~3.824mg·L~(-1)之间。前10d田面水总磷浓度高,平均浓度为0.869mg·L~(-1),前30d田面水含磷波动大,各处理TP平均浓度在0.258~1.433mg·L_(-1)之间,这期间的田间排水会对周围的水体环境造成污染。径流水各形态磷的浓度随着降雨强度和磷肥用量的增加而增加,有机无机肥配施的处理稻田土壤磷素向水体释放磷的持续时间更长,施用牛粪比施用秸秆更容易导致磷素的流失。稻田磷素流失总负荷随着磷肥用量的增加而增加,流失磷量最低和最高分别为0.52kg·hm~(-2)和3.20kg·hm~(-2)。稻田磷素流失负荷不仅与施用磷肥的量有关,而且与有机肥的种类有关,配施秸秆能减少土壤磷的流失。
     磷素渗漏淋失试验结果表明,水旱轮作条件下,无论是旱季还是稻季在3种紫色土上磷素渗漏淋失量都随着施磷量的增加而增加。磷素的渗漏淋失与土壤性质关系较大,旱季和稻季在3种类型紫色土上磷素渗漏淋失浓度和渗漏淋失负荷为中性紫色土>钙质紫色土>酸性紫色土;在100cm土层稻季的磷渗漏量在75.4~158.2g·hm~(-2)之间,麦季在12.0~25.2g·hm~(-2)之间,稻季是旱季的5~8倍。在水稻生长季不同土层渗漏水中总磷浓度随着水稻生育期的延长呈下降趋势,前期磷素渗漏淋失量高且变幅较大,在施磷后第5d各土层渗漏水中磷素浓度最高;施肥60d后稻田磷素渗漏淋失负荷显著降低,不同土层和各处理趋于一致。渗漏水中磷素浓度随土壤剖面深度的增加而降低,磷在土壤剖面中的迁移能力弱,整个水稻生育期磷渗漏量较低,最高磷渗漏量为0.262kg·hm~(-2)。但是,在水稻移栽初期中性和钙质紫色土耕层磷肥有明显向下移动的趋势,表现为60cm土层渗漏水中磷浓度高,且施磷处理显著高于不施磷处理,淹水种稻初期是磷向下迁移最强和淋失量最高的时期,控制基肥中磷肥的施用是减少淹水初期磷素向下迁移的重要措施。水旱轮作条件下,为了降低灌水种稻初期由于水分的剧烈移动而导致的磷素渗漏淋失,可以在水稻移栽成活后施用磷肥。
     利用具有不同富磷梯度的三种紫色土模拟稻田和旱地研究了Olsen-P与CaCl_2-P之间的关系,探讨了紫色土磷素环境阈值。结果表明,无论是稻田或旱地生境,三种紫色土Olsen-P与CaCl_2-P之间都存在一个‘转折点”,当土壤Olsen-P含量低于转折点时,随着Olsen-P含量的增加,浸提液中CaCl_2-P含量上升很小,但当土壤Olsen-P含量高于转折点时,CaCl_2-P含量急剧增加,这个点就是旱地磷素淋失临界值或稻田土壤磷的环境警戒值。
     紫色土旱地磷素环境敏感淋失临界值在酸性、中性和钙质上分别为(Olsen-P含量)67.2、85.8和113.8mg·kg~(-1),与此对应的CaCl_2-P含量分别为2.5、1.6、2.3mg·kg~(-1)。三种紫色土磷的淋失临界值差别较大,受土壤性质和对磷的吸附解吸特性影响,钙质紫色土对磷的吸附固定能力强,最大吸附量(Qm为769.2mg·kg~(-1))比中性和酸性土高20%和60%。
     稻田土壤磷素的环境警戒值在酸性、中性和钙质紫色土上Olsen-P含量分别为49.2、77.9和92.1mg·kg~(-1),相应的CaCl_2-P含量分别为2.0、1.4、1.2mg·kg~(-1)。三种紫色土在淹水还原条件下土壤磷环境敏感临界值比旱地低,淹水还原条件提高了紫色土磷向水体释放的风险。
     根据土壤测试而获得的紫色土最大吸磷量(Qm)、磷吸持指数(SI)、易解吸磷(RDP)、活性磷(藻类有效磷)和磷零吸持平衡浓度(EPC_0)等参数,可以作为表征水-土界面磷迁移能力的指标。磷吸持指数(SI)可以作为Qm的替代指标来评价磷流失风险,将SI值35作为评价紫色土磷素流失的临界值,当低于此值时,紫色土固磷能力低,土壤磷素流失的风险就大;反之亦然。可以利用这些指标对紫色土区域土壤磷环境风险进行评价,并确定区域磷肥的最佳管理策略。
Phosphorus(P)management for sustainable crop production and water quality protection is in great concern worldwide.The mobility of P in terrestrial ecosystems poses water quality concern because of its contribution to eutrotrophication.Agricultural land uses are considered a leading source of P entering the rivers and lakes.Many factors,including soil properties(soil moisture,soil texture,mineralogical composition and P fractionation),climate conditions(precipitation),topographic features,and management practices(tillage,irrigation,fertilizer application,crop rotation)interact to influence the loss of P from cropland soils.As a consequence,the potential of P loss from cropland soils has high spatial and temporal variability.
     Many researches have been carried on in upland field about running off of phosphorus but few done in paddy field especially in rice-wheat rotation and long-term different fertilization in purple soil.For the different management of water in the alternation of drying and wetting,P transport and leaching running off must be different with upland field and wetland and the changing physics,chemistry and biologic biological trait of soil also influence the capability of soil absorbing and desorbing P as a result of long-term different fertilization which affect P transplant in soil-water interface eventually.Therefore,a study was carried out to address the following questions:1)Long-term fertilization effect on P accumulation in the purple soil subjected to a rice-wheat rotation system.2)Quantification of leaching loss of P during rice season using the lysimeter method.3)P fertilization effect on the P dynamic in the surface water of paddy field.4) Identification of the soil available P indices that can be used to predict P loss from paddy field.
     The results showed that Soil P balance(x)and soil Olsen-P change(y)was very significant positive correlations:y=O.0394x+5.923(r=0.944~(**),n=11)in 15 years of long-term experiment.Soil Olsen-P content increased 3.94 mg·kg~(-1)when soil accumulated 100kgP·hm~(-2).The P surplus was 53.9kg·hm~(-2)and content of soil available P increased when P application rate was 120 kg·hm~(-2)(P_2O_5,normal P application rate).Organic manure combining with inorganic fertilizer increased accumulation of soil Olsen-P.P fertilizer moved downwards for long-term fertilizing P and soil available P was higher in treatment of fertilizing P than no P fertilization in 20~60cm.The risk of running off P increased as P moving to 60cm soil layer in rice-wheat rotation.P moving downwards was influenced by amount of P fertilizer,kind of organic manure and planting methods.The quantity of P moving downwards increased with the increase of P application rote.P moving was easier in soil of chemical P application combined with pig excrement than combined with straw on the condition of equivalent nutrient.Olsen-P content was higher 1.25~6.5mg·kg~(-1) in rice-rape rotation than in rice-wheat rotation and P moving capability was stronger in rice-rape rotation than in rice-wheat rotation and the risk of P running off also increased in rice-rape rotation.
     P moving downwards water bodies mainly happened in first 10 days after paddy flooded water based on dynamic change of soil-water P in paddy season in long-term fertilization,P concentration of surface water higher in 10 days after paddy transplanted than other times and later dropping sharply.P content of surface water was low and tended towards stability after fertilization about 35 days(fluctuating in 0.1mol.L~(-1)).It was forbidden to drainage water in the first 10 days after paddy transplanted and better not to drainage water in 30 days after paddy transplanted.Paddy was transplanted in shallow water which could reduce P running off,TP concentration of surface water of every treatment differed greatly in 30 days after paddy transplanted and highest TP concentration was treatment of 1.5NPK+M,treatment of combining with pig excrement secondly and no P application lowest.TP concentration was higher in rice-rape rotation than rice-wheat rotation and combining with pig excrement increased soil P transporting and running off.
     RDP(Readily Desorbable P),BAP(Bioavailable P),EPC_0(The equilibrium P concentration at zero sorption),Qm and SI(Sorption Index)were the important indexes of evaluating P moving ability of soil-water interface.The mechanism was that RDP,BAP,EPC_0 and DPSS(Degree of Sorption Saturation) of 1.SNPK+M and NPK+M(combing with pig excrement)treatments were the highest,soil firming and buffering capacity decreased,environmental risk of P running off increased,and so P moving ability was higher in soil profile and water bodies in 1.5NPK+M and NPK+M(combing with pig excrement) treatments than other treatments.Capacity of soil firming P present extremely remarkable positive correlation with soil active Al,pH,and present extremely remarkable negative correlation with soil organic manure and Olsen-P.
     The results showed that TP concentrations in the surface water increased as P application rate enhancing and reached the peak value at the range of 0.928~3.824 mg·L~(-1)after 24 h in all the treatments based on P running off in paddy field in using different P application rate and organic manure.TP concentration was high and the average concentration was 0.869mg·L~(-1)in 10d after fertilization. Fluctuation of TP concentration in surface water was drastic,the average TP concentration was 0.259~1.433 mg·L~(-1),and drainage would pollute circumstance of water bodies during the first 30 days.The contents of different P forms in the runoff water increased with the increase of precipitation and P application rate.The time of soil releasing P would last longer in treatment of organic-inorganic fertilizer than others and P running off was easier in using cattle manure than straw.Total loading of P running off increased with the increase of P application rate and the highest and lowest loadings were 0.52kg·hm~(-2)and 3.20kg·hm~(-2),respectively.The loading of P running off not only had relation with P application rate but also with kind of organic manure.Straw combining with inorganic fertilizer could decrease P running off.
     The results showed in lysimeter experiment that P concentration in leachate increased with P application rate in three kinds of soil in rice-wheat rotation,whether was in dry season or paddy season. Soil characteristic influenced greatly P leakage.Concentration and loading of P running off was neutral soil>calcium soil>acid soil in dry season and paddy season.Leakage amount of P was at the range of 75.4~158.2g·hm~(-2)on 100cm profile and leakage amount was 12.0~25.2 g·hm~(-2)in dry season,which in rice season was 5~8 times of dry season.P seepage appeared downtrend in the whole,and the leakage amount was high and the variation range was bigger in earlier stage.Concentration of P seepage was the highest in all soil layers 5 days after fertilization,remarkably decreased 60 days after fertilization,and reached coincidently at different soil profile with all treatments.P concentration of seepage water decreased with increasing the depth of soil profile and the ability of P moving was weak in soil profile.P leakage amount was low in the whole paddy season,and the highest value was 0.262kg·hm~(-2).P fertilizer moved downward obviously in neutral and calcium soil in the initial stage of paddy transplanted and P concentration of seepage water was the highest in 60cm layer,also the treatment of P fertilization was higher obviously than no P fertilization.The strongest time of P movement was earlier stage of paddy transplanted and the good measure which decreased P moving downward was to control basal dressing.In rice-wheat rotation,the stage of P fertilization was in the time after paddy transplanted surviving in which decreasing P leakage because of violent movement of water bodies.
     The relationship between Olsen-P and CaCl_2-P was studied using soil of different rich P gradient, which simulated in three kinds of soil,to elucidate P critical point of purple soil.The results showed that there was a "change-point" between Olsen-P and CaCl_2-P in three kinds of soil whether in paddy field or upland field.CaCl_2-P content of extracting solution with the increase of Olsen-P content was very low at all times when soil Olsen-P content was lower than the change-point,but CaCl_2-P content increased sharp when soil Olsen-P content was higher than the change-point,and the change-point was called critical value of upland leakage or break-point of paddy field.
     The critical value of purple soil in upland field was 67.2,85.8 and 113.8mg·kg~(-1)in acid soil,neutral soil and calcium soil,respectively,and CaCl_2-P content corresponding was 2.5,1.6 and 2.3 mg·kg~(-1).The critical value had great difference in three kinds of purple soil and was affected by soil character and characteristics of P-absorbtion and P-desorption.The capacity of absorbing P in calcium purple soil was strong and Qm of calcium soil(769.2 mg·kg~(-1))was higher 20%and 60%than that of neutral and acid soil, respectively.
     The critical value of purple soil in paddy field was 49.2,77.9 and 92.1mg·kg~(-1)in acid soil,neutral soil and calcium soil,respectively,and CaCl_2-P content corresponding was 2.0,1.4 and 1.2mg·kg~(-1).The sensitive critical value of purple soil P was lower in the condition of flooding reduction than in upland field, and flooding reduction increased the risk of P releasing into water circumstance.
     The indexes of Qm,SI,RDP,BAP,EPC_0,and so on were regard as to signify capacity of P moving in soil-water interface.SI could substitute Qm to evaluate environmental risk of P running off in purple soil and SI value 35 was regarded as a critical value.Soil had a capacity of soil firming P was weak below value 35 and the risk of P running off was high.And the same was on the contrary.Using these indexes can help evaluate the environmental risk of P running off in purple soil region and establish the best management strategy.
引文
1.曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征[J].土壤学报,2005,42(5):799-804
    2.陈西平,黄时达.涪陵地区农田径流污染负荷定量化研究[J].环境科学,1991,12(3):75-79
    3.陈欣,宇万太,沈善敏.磷肥低量施用制度下土壤磷库的发展变化Ⅱ.土壤有效磷及土壤无机磷组成[J].土壤学报,1997,34(1):81-85
    4.陈欣,姜曙千,张克中,等.红壤坡地磷素流失规律及其影响因素[J].土壤侵蚀与水土保持学报,1999,5(3):38-41,63
    5.陈欣,王兆骞,杨武德,等.红壤小流域坡地不同利用方式对土壤磷素流失的影响[J].生态学报,2000a,20(3):374-377
    6.陈欣,范兴海,李东.丘陵坡地地表径流中磷的形态及其影响因素[J].中国环境科学,2000b,20(3):284-288
    7.陈皓,章申.黄土地区氮磷流失的模拟研究[J].地理科学,1991,11(2):142-148
    8.陈永智,丁光国,胡永军,等.寿光大棚蔬菜土壤养分调查[A].1999
    9.段亮,常江,段增强.地表管理与施肥方式对太湖流域旱地磷素流失的影响.农业环境科学学报,2007,26(1):24-28
    10.段永惠,张乃明,张玉娟.农田径流氮磷污染负荷的田间施肥控制效应[J].水土保持学报,2004,18(3):130-132
    11.段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究[J].土壤,2005,37(1):48-51
    12.范兴科,吴普特,冯浩.暴雨的判定方法和评价指标[J].中国水土保持科学,2003,1(3):72-75
    13.高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价[J].环境科学学报,2001,21:344-348
    14.高超,朱继业,朱建国,等.不同土地利用方式下的地表径流磷输出及其季节性分布特征[J].环境科学学报,2005,25(11):1543-1549
    15.高超,张桃林.太湖地区农田土壤磷素动态及流失风险分析[J].农村生态环境,2000,16(4):24-27
    16.郭晓东,张雪琴,杨玲.甘肃省主要农业区土壤对磷的吸附与解吸特性[J].西北农业学报,1997,6(2):7-12
    17.顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性[J].土壤,1997,(1):13-17
    18.顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤,1990,22(2):101-110
    19.龚子同.人为作用对土壤环境质量的影响及对策[J].土壤与环境,2000,9(1):7-10
    20.Harrison A F.土壤有机磷[J].土壤学进展,1990,4:11-19
    21.胡志平,郑祥民,黄宗楚,等.上海地区不同施肥方式氮磷随地表径流流失研究[J].土壤通报,2007,38(2):310-313
    22.黄丽,董舟,等.三峡库区紫色土养分流失的试验研究[J].水土保持学报,1999,5(3):38-41
    23.黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154
    24.黄满湘,周成虎,章申,等.农田暴雨径流侵蚀泥沙流失及其对氮磷的富集[J].水土保持学报,2002,16(4):13-17
    25.黄蓉芳,黄德明.我国不同地区土壤肥力监测报告(1998—1997)一、东北区土壤肥力变化趋势及原[J].土壤肥料,2000(6):8-13
    26.王蓉芳,黄德明,崔勇.我国不同地区土壤肥力监测报告(1988—1997)二、南方二熟制稻田区土壤肥加重变化趋势及原因分析[J].土壤肥料,2002(2):3-7
    27.黄庆海,李茶苟,赖涛,等.长期施肥对红壤性水稻土磷素积累与形态分异的影响[J].土壤与环境,2000,9(4):290-293
    28.黄绍敏,宝德俊,皇甫湘荣,等.长期施肥对潮土土壤磷素利用与积累的影响[J].中国农业科学2006,39(1):102-108
    29.何振立,朱祖祥,袁可能,等.土壤对磷的吸持特性及其与土壤供磷指标之间的关系[J].土壤学报,1988,25(4):397-404
    30.何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响[J].土壤学报,1990,27(4):378-384
    31.何毓蓉,黄成敏.四川紫色土退化及其防治[J].山地研究,1993,11(4):209-215
    32.洪顺山,朱祖祥.从磷酸盐位探讨土壤中磷的固定机制及其有效度问题[J].土壤学报,1979,16(2):94-108
    33.金相灿.中国湖泊环境[M].北京:海洋出版社,1995
    34.江长胜,王跃思,郑循华,等.稻田甲烷挥发及其影响因素研究进展[J].土壤通报,2004,35(5):663-669
    35.焦少俊,胡夏民.潘根兴,等.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,2007,26(4):495-500
    36.纪雄辉,郑圣先,刘强,等.施用有机肥对长江中游地区双季稻田磷素径流损失及水稻产量的影响[J].湖南农业大学学报(自然科学版),2006,32(3):283-287
    37.纪雄辉,郑圣先,刘强,等.施用猪粪和化肥对稻田土壤表面水氮磷动态的影响[J].农业环境科学学报,2007,26(1):29-35
    38.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66
    39.蒋柏藩,沈仁芳.土壤无机磷分级的研究[J].土壤学进展,1990,18(1):1-8
    40.康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536-543
    41.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,1:6-18
    42.李晓林,张福锁,米国华.平衡施肥与可持续优质蔬菜生产[C].北京:中国农业大学出版社,2000,52-58
    43.李庆召,王定勇,朱波,等.川中紫色土旱坡地磷素的输出特征研究[J].水土保持学报,2004,18(6):97-99
    44.李庆召,王定勇,朱波.自然降雨条件下紫色土区磷素的非点源输出规律[J].农业环境科学学报,2004,23(6):1050-1054
    45.李定强,王继增,万洪富,等.广东省东江流域典型小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报,1998,4(3):12-18
    46.李裕元,邵明安,郑纪勇,等.降雨强度对黄绵土坡地磷流失特征影响试验研究[J].农业工程学报,2007,23(4):39-46
    47.李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响[J].应用生态学报,2002,13(11):1421-1424
    48.李裕元,邵明安.土壤翻耕影响坡地磷流失试验研究[J].应用生态学报,2004,15(4):443-448
    49.李卫正,王改萍,张焕朝,等.两种水稻土磷素渗漏流失及其与Olsen磷的关系[J].南京林业大学学报(自然科学版),2007,31(3):52-56
    50.吕家珑,Fortune S.,Brookes P.C..土壤磷淋溶状况及其Olsen磷“突变点”研究[J].农业环境科学学报,2003,22(2):142-146
    51.吕家珑.土壤磷运移研究[J].土壤学报,1999,36(1):75-81
    52.吕唤春,陈英旭,方志发,等.千岛湖流域坡地利用结构对径流氮、磷流失量的影响[J].水土保持学报。2002,16(2):91-93
    53.吕甚悟,陈谦,袁绍良,等.紫色土坡耕地水土流失试验分析[J].山地学报,2000,18(6):520-525
    54.林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,(2):1-5,23
    55.刘方,黄昌勇,何腾兵,等.长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响[J].应用生态学报,2003,14(2):196-200
    56.刘方,黄昌勇,何腾兵,等.黄壤旱坡地梯化对土壤磷素流失的影响[J].水土保持学报,2001, 15(4):75-78
    57.刘方,罗海波,舒英格,等.黄壤旱地—水系统中磷释放及影响因素的研究[J].中国农业科学,2006,39(1):118-124
    58.刘建玲,张福锁.小麦—玉米轮作长期肥料定位试验中土壤磷库的变化Ⅱ.土壤Olsen-P及各形态无机磷的动态变化[J].应用生态学报,2000,11(3):365-368
    59.刘建玲,张福镇,杨奋.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报,2000,6(2):179-186
    60.刘玉民,龙伟,刘亚敏,等.不同种植模式下紫色土养分流失影响因子研究[J].水土保持学报,2005,19(5):81-84
    61.梁成华,唐咏,许湘成,等.日光温室菜园土的磷素形态及吸附和解吸特征[J].植物营养与肥料学报,1998,4(4):345-351
    62.梁涛,王红萍,张秀梅,等.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究[J].环境科学学报,2005,25(4):483-490
    63.梁涛,王浩,章申,等.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征[J].环境科学,2003,24(2):35-40
    64.梁新强,田光明,李华.天然降雨条件下水稻田氮磷径流流失特征研究[J].水土保持学报,2005,19(1):59-63
    65.梁玉英,黄益宗,孟凡乔.铝化合物控制土壤磷素流失的机理研究[J].环境化学,2007,26(2):141-143
    66.鲁如坤.土壤—植物营养学原理和肥料施用[M].北京:化学工业出版社,1998
    67.鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状[J].土壤通报,1996,27(5):193-196
    68.鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8
    69.鲁如坤,时政元.退化红壤肥力障碍特征及重建措施Ⅲ.典型地区红壤磷素积累及其环境意义[J].土壤,2001:527-538
    70.鲁如坤,时正元,赖庆旺.红壤长期施肥养分的下移特征[J].土壤,2000a:27-29
    71.鲁如坤.水稻土磷的化学性质及磷肥的合理使用[J].磷肥与复肥,1993,8(1):84-86,81
    72.鲁如坤,时正元,施建平.我国南方六省农田养分平衡现状评价和动态变化研究[J].中国农业科学,2000b,33(2):63-67
    73.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:71-73
    74.刘方,黄昌勇,何腾兵,等.不同类型黄壤旱地的磷素流失及其影响因素分析[J].水土保持学报,2001,15(2):37-40
    75.刘方,黄昌勇,何腾兵,等.长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响[J].应用生态学报,2003,14(2):196-201
    76.刘建玲,廖文华,高志岭,等.河北省蔬菜保护地土壤养分的积累状况及影响因素[J].河北农业大学学报,2004,27(1):19-24
    77.刘远金,卢瑛,陈俊林,等.广州城郊菜地土壤磷素特征及流失风险分析[J].土壤与环境,2002,11(3):237-240
    78.马琨,王兆骞,陈欣,等.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,2002,16(3):16-19
    79.潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学,2003,24(3):91-95
    80.钱忠龙,章明奎,吴建军,等.浙北农地排水中磷素的空间变异研究[J].安徽农学通报,2007,13(7):58-59
    81.沈汉.从农田土壤养分的10年演变看北京市今后施肥方向与策略[M].北京农业科学,1996,14(3):1-4
    82.盛学良,舒金华,彭补拙,等.江苏省太湖流域总氮、总磷排放标准研究[J].地理科学,2002,22(4):449-452
    83.单保庆,尹澄清,于静,等.降雨—径流过程中土壤表层磷迁移过程的模拟研究[J].环境科学学报,2001,21(1):7-12
    84.单保庆,尹澄清,白颖,等.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37
    85.单艳红,杨林章,沈明星,等.长期不同施肥处理水稻土磷素在剖面的分布与移动[J].土壤学报,2005a,42(6):970-976
    86.单艳红,杨林章,颜廷梅,等.水田土壤溶液磷氮的动态变化及潜在的环境影响[J].生态学报,2005b,25(1):115-121
    87.盛海君,夏小燕,杨丽琴,等.施磷对土壤速效磷含量及径流磷组成的影响[J].生态学报,2004,24(12):2837-2840
    88.舒英格,刘方,何腾兵,等.不同土壤磷水平下黄壤旱坡地磷素流失分析[J].耕作与栽培,2002,2:36-38
    89.沈冰,王全九,李怀恩,等.土壤中农用化合物随地表径流迁移研究评述[J].水土保持通报,1995,15(3):1-8
    90.邵明安,张兴昌.坡面土壤养分与降雨、径流的相互作用机理及模型[J].世界科技研究与发展,2001,23(2):7-13
    91.司有斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000,4:188-193
    92.孙宏飞,吕家珑,刘利花,等.土壤磷素淋溶预测指标研究[J].水土保持学报,2006,26(3):55-58
    93.苏玲,章永松,林成永.干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J].植物营养与肥 料学报,2001,7(4):410-415
    94.王鹏,高超,姚琪,等.环太湖丘陵地区农田磷素随地表径流输出特征[J].农业环境科学学报,2006,25(1):165-169
    95.王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,1999,5(2):18-22
    96.王辉,王全九,邵明安.人工降雨条件下黄土坡面养分随径流迁移试验[J].农业工程学报,2006,22(6):39-44
    97.王晓燕,高焕文,李洪文,等.2000.传统耕作条件下的径流和侵蚀试验[J].农业工程学报,16(3):66-69
    98.王新军,廖文华,刘建玲.菜地土壤磷素淋失及其影响因素[J].华北农学报,2006,21(4):67-70
    99.王道涵,孙铁珩,何娜,等.固磷基质(无定形铁)淋失特征及其与磷素淋失的关系[J].生态学杂志,2005a,24(12):1384-1387
    100.王道涵,梁成华,孙铁珩,等.磷素在土壤中的垂直迁移潜力研究[J].农业环境科学学报,2005b,24(6):1157-1160
    101.王道中.长期施肥对砂姜土磷吸附和解吸特性的影响[J].安徽农业科学,2004,32(4):701-702
    102.王彩绒,胡正义,杨林章,等.太湖典型地区蔬菜地土壤磷素淋失风险[J].环境科学学报,2005,25(1):76-80
    103.王维君,蔡祖聪,任立涛.介绍一种原位采集土壤溶液方法[J].土壤学报,1995,32(增刊):232-235
    104.王光火.红壤在不同pH下对磷的吸附和解吸作用[J].土壤通报,1989,20(2):70-72
    105.翁焕新,吴自军,张兴茂.红壤中结合态磷在酸化条件下的变化及其相互关系[J].环境 科学学报,2001,21:582-586
    106.肖千明,高秀兰,娄春荣,等.辽宁省蔬菜保护地土壤肥力现状分析[J].辽宁农业科学,1997,3:17-21
    107.徐明岗,孙本华.土壤磷扩散规律及其能量特征的研究Ⅱ.施肥量及水肥温相互作用对磷扩散的影响[J].土壤学报,1998,35(1):55-65
    108.徐泰平,朱波,况福虹,等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学学报,2006a,25(4):1055-1059
    109.徐泰平,朱波,况福虹,等.四川紫色土坡耕地磷素渗漏迁移初探[J].农业环境科学学报,2006b,25(2):464-466
    110.许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征[J].环境科学学报,2007,27(2):326-331
    111.许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究[J].地理研究,2000,19(3):303-310
    112.夏瑶,娄运生,杨超光,等.几种水稻土对磷的吸附与解吸特性研究[J].中国农业科学,2002,35(11):1369-1374
    113.谢长宝,汪金舫.人工降雨条件下花卉地径流中磷形态的研究[J].农业环境科学学报,2006,25(增刊):146-149
    114.谢学俭,冉炜,沈其荣,等.田间条件下32P在淹水水稻土中的垂直运移[J].南京农业大学学报,2003,26(3):56-59
    115.熊俊芬,石孝均,毛知耘.定位施磷对土壤无机磷形态土层分布的影响[J].西南农业大学学报,2000,22(2):123-125
    116.熊凡.丘陵地区农业与多熟制—熊凡文集[C].四川:四川省南充市农业科学研究所编,1998,1-28
    117.晏维金,章审,吴淑安,等.模拟降雨条件下生物可利用磷在地表径流中的流失和预测[J].环境化学,1999,18(6):497-506
    118.晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337
    119.晏维金.磷在土壤中的解吸动力学[J].中国环境科学,2000,20(2):97-101
    120.袁东海,王兆骞,陈欣,等.不同农作方式下红壤坡耕地土壤磷素流失特征[J].应用生态学报,2003,14(10):1661-1664
    121.尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229-232
    122.尹迪信,唐华彬,朱青.植物篱逐步梯化试验研究[J].水土保持学报,2001,15(2):84-87
    123.袁东海,王兆骞,陈欣.不同农作措施红壤坡耕地水土流失特征研究[J].水土保持学报,2001,15(4):66-69
    124.袁东海,王兆骞,陈欣.不同农作方式下红壤坡耕地土壤磷素流失特征[J].应用生态学报,2003,23(14):1661-1663
    125.杨芳,何园球,李成亮,等.不同施肥条件下旱地红壤磷素固定及影响因素的研究[J].土壤学报,2006,43(2):267-272
    126.杨金玲,张甘霖,张华,等.亚热带地区土地利用对磷素径流输出的影响[J].农业环境科学学报,2003,22(1):16-20
    127.杨建军,冉炜,沈其荣.小麦生长季节太湖地区土壤溶液中氮磷浓度的变化[J].南京农业大学学报,2002,25(2):66-70
    128.杨学云,古巧珍,马路军,等.填土磷素淋移的形态研究[J].土壤学报,2005,42(5):792-798
    129.杨学云,Brookes P.C.,李生秀.土壤磷淋失机理初步研究[J].植物营养与肥料学报,2004a,10(5):479-482
    130.杨学云,李生秀,Brookes P.C..灌溉与旱作条件下长期施肥土剖面磷的分布和移动[J].植物营肥料学报,2004b,10(3):250-254
    131.曾悦,洪华生,曹文志,等.九龙江流域养猪场氮磷流失特征研究[J].农业工程学报,2005,21(2):116-120
    132.曾远,张永春,范学平.太湖流域典型平原河网区降雨径流氮磷流失特征分析[J].水资源保护,2007,23(1):24-26
    133.曾曙才,吴启堂.华南赤红壤无机复合肥氮磷淋失特征[J].应用生态学报,2007,18(5):1015-1020
    134.张维理,武淑霞,冀宏杰,等.中国农业面源污染估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形式估计[J].中国农业科学,2004,34(7):1008-1017
    135.张志剑,王珂,朱荫湄,等.水稻田表水磷素的动态特征及其潜在环境效应的研究[J].中国水稻科学,2000,14(1):55-57
    136.张志剑,王光火,王珂,等.模拟水田的土壤磷素溶解特征及其流失机制[J].土壤学报,2001a,38(1):139-143
    137.张志剑,阮俊华,朱荫湄,等.稻田层间流活性磷素的动态变化[J].环境科学,2003,24(2):46-49
    138.张志剑,朱荫湄,王珂,等.浙北水稻主产区田间土—水磷素流失潜能[J].环境科学,2001b,22(1):98-101
    139.张志剑,朱荫湄,王珂,等.水稻田土—水系统中磷素行为及其环境影响研究[J].应用生态学报,2001c,12(2):229-232
    140.张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版),2004,28(5):6-10
    141.张荣社,李广贺,周琪,等.潜流湿地控制暴雨径流中氮磷冲击负荷中试研究[J].中国给水排水,2007,23(1):64-68
    142.张亚丽,张兴昌,邵明安,等.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报,2004,20(3):55-58
    143.张建华,赵燮京,林超文,等.川中丘陵坡耕地水土保持与农业生产的发展[J].水土保持学报,2001,15(1):81-84
    144.张乃明,余扬,洪波,等.滇池流域农田土壤径流磷污染负荷影响因素[J].环境科学,2003,24(3):155-157
    145.张维理,武淑霞,冀宏杰,等.中国农业面源污染估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形式估计[J].中国农业科学,2004,34(7):1008-1017
    146.张翠荣,吕家珑,潘杨,等.冬麦不同施磷水平下土壤磷素淋溶试验[J].干旱地区农业研究,2007,25(3):105-109
    147.张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点[J].南京林业大学学报(自然科学版),2004,28(5):6-10
    148.章明奎.周翠,方利平.水稻土磷环境敏感临界值的研究[J].农业环境科学学报,2006,25(1):170-174
    149.章明奎,王丽平.旱耕地土壤磷垂直迁移机理的研究[J].农业环境科学学报,2007,26(1):282-285
    150.章永松,林咸永,倪吾钟.淹水和风干过程对水稻土磷吸附、解吸及有效磷的影响[J].中国水稻科学,1998,12(1):40-44
    151.章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ.有机肥(物)对土壤不形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150
    152.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13
    153.赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失[J].农村生态环境,2005,21(3):29-33
    154.郑世宗,陈雪,张志剑.水稻薄露灌溉对水体环境质量影响[J].中国农村水利水电,2005,3:7-9
    155.中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2003
    156.钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J].生态学报,2004,24(10):2275-2280
    157.周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟[J].应用生态学报,2006a,17(10):1845-1848
    158.周全来,赵牧秋,鲁彩艳,等.磷在稻田土壤中的淋溶和迁移模拟研究[J].土壤,2006b,38(6):734-739
    159.周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究[J].植物营养与肥料学报,2005,11(2):143-147
    160.周艺敏,小仓宽典.半干旱地区菜园土壤特征及持续利用[J].植物营养与肥料学报,1997,4(3):315-322
    161.朱兆良.我国氮肥的使用现状、问题和对策[A].中国农业持续发展中问题[C].南昌:江西出版社,1998
    162.朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施[J].农业,2005,23(4):47-51
    163.朱钟麟,陈一兵,林超文.土壤侵蚀与平衡施肥[J].西南农业学报,1999,12(专辑)
    164.Abrams M.M.Soil phosphorus as a potential nonpoint source for elevated stream phosphorus levels[J].J.Envir.Oual.,1995,24:132-138
    165.Ahuja L.R..Characterization and modeling of chemical transfer to runoff[J].Advance in soil science,1986,4:149-188
    166.Ahuja L.R.,Lehman O.R..The extent and nature of rainfall soft interaction in the release of soluble chemicals to runoff[J].Journal of Environmental Quality,1983,12(1):34-40
    167.Ahuja L.R..Release of a soluble chemical from a soil to runoff[J].Transactions of the ASCE,1982,25:948-953
    168.Ahuja L.R.,Sharpley A N.,Yamamoto M.et a..The depth of rainfall-runoffsoil interactions as determined by P[J].Water Resour Res,1981,17:65-72
    169.Alberts E.E.,Neibling W.H.,Moldenhauer W.C..Transport of sediment nitrogen and phosphorus in nmoff through cornstalk residue strips[J].Soil Sci Soc Am J.1981,45:1177-1184
    170.Andraski B.J.,Mueler D.H.,Daniel T.C.Phosphorus losses in runoff as affected by tillage[J].Soil Sci Soc Am J.,1985,49:1523-1527
    171.Andraski B.J.,Mueler D.H.,Daniel TC..Phosphorus losses in runoffas affected by tillage.Soil Sci Soc Am J.,1985,49:1523-1527
    172.Austion N.R.,Prandergast J.B.,Coflons M.D..Phosphorus losses in runoff irrigation from fertilized pasture[J].J.Environ.Qual.,1996,26:63-68
    173.Axt J.R.,Walbridge M.R..Phosphorus removal capacity of Palestine forested wetlands and adjacent uplands in Virginia[J].Soil Sci.Soc.Am.J.,1999,63:1019-1031
    174.Bach B.W.,William E.G..A phosphorus sorption index for soils[J].J.Soil Science,1971,22(3):288-301
    175.Beauchemin S.,Simard R.R.,Cluis D..Phosphorus sorption-desorption kinetics of soil under contrasting land uses[J].J.Environ.QuaL.,1996,25:1317-1325
    176.Behrenolt H.,Boekhold A..Phosphorus saturation in soils and ground waters[J].Land Degradation and Rehabilitation,1993,4(4):233-243
    177.Bechmann M.E.,Berge D.,Eggestad H.O.et a..Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes—two long-term integrated studies from Norway[J].Journal of Hydrology,2005,304:238-250
    178.Blevins R.L.,Frye W.W.,Baldwin P.L.et a.Tillage effects on sediment and soluble nutrient losses from a Maury silt loam soil[J].J.Environ Qual.,1990,19:683-686
    179.Boesch D.F.,Brinsfield R.B.,Magnien R.E.Chesapeake Bay eutrophication:Scientific understanding,ecosystem restoration,and challenges for agriculture[J].Journal of Environmental Quality,2001
    180.Breeuwsma A.J.,Reijerink G.A.,Schoumana O.F..Impact of manure on accumulation and leaching of phosphorus in areas of intensive livestock farming[J].1995:Pp239-251.In K.Steele(ed)Animal waste and the land-water interface.Lews Publ.CRC,New York
    181.Carpenter S.R.,Carcao N.F.,Correll D.L.et a..Nonpoint of surface waters with phosphorus and nitrogen[J].Ecological Applications,1998,8:559-568
    182.Catt J.A.,Howse K.R.,Farina R.et al..Phosphorus losses from arable land in England.Soil Use and Management[J].1998,14:168-174
    183.Chardon W.J..Organic phosphorus in solutions and leachates from soils treated with animal slurries[J].J.Environ.Qual.,1997,26:272-278
    184.Chardon W.J.et al..Iron oxide impregnated filter paper(Pi-test)a review of its development and methodologreal research[J].Nutr.Cycl.Agroeco.1996,46:41-51
    185.Chen J H,Barber S A.Effect of liming and adding phosphate on predicted phosphorus uptake by maize on acid soils of three soil orders.Soil Sci.,1990,150:84-850
    186.Correll D.L..The role of phosphorus in the eutrophication of receiving waters:a review[J].J.Environ.Qual.,1998,27:261-266
    187.Daniel T.C.,Sharpley D.R.,Edwards D.R.et a..Minimizing surface water eutrophication from agriculture by phosphorus management[J].J Soil and Water Conservation,1994,49(2):30-38
    188.Daniel T.C.,Sharple A.N.,Lemunyon J.L..Agricultural phosphorus and eutrophication:asymposium overview[J].J.Environ.Qual.,1998,27:251-257
    189.Dillaha T.A.,Reneau R.B.,Mostaghimi S.et al..Vegetative filter strips for agricultural non—point source pollution control.ASAE,1989,32(2):513-519
    190.Dorich R.A.,Nelson D.W.,Sommers L.E.,et al..Algal availability of sediment phosphorus in drainage water of the Black Creek Watershed[J].J Environ Oual.,1980,9:557-563
    191.Eghball B.,Binford G.D.,David D..Baltensperger.Phosphorus movement and adsorption in a soil receiving Long-term manure and fertilizer application[J].J.Environ.Qual.,1996,25:1339-1343
    192.Edwards A.C.,Withers P.J.A..Soil phosphorus management and water quality:a UK perspective[J].Soil Use and management,1998,(14):124-130
    193.Eze O C,Loganathan P.Effect of pH on phosphate sorption of some paleuduhs of southern Nigeria.Soft Sci.,1990,150:613-621
    194.Fawcett R.S..The impact of conservation tillage on pesticide runoff in to surface water:a review and analysis[J].Soil Water Conserv,1994,49:126-135
    195.Fleming N.K.and J.W.Cox.Carbon and phosphorus losses from dairy pasture in South Australia.J.Soil Res.,2001,39:969-978
    196.Foy R.H.,R.V.Smith,C.Jordan et a..Upward trend in soluble phosphorus loadings to Lough Neagh despite phosphorus reduction at sewage treatment works[J].Water Res.,1995,29:1015-1063
    197.Fox T.R.,Comerford N.B..Influence of oxalate loading on phosphorus and alumium solubility[J].Soil Soc Am J.,1992,56:290-294
    198.Fortune S.,Lu J.,Addiscott T.M.,et al..Assessment of phosphorus leaching losses from arable land[J].Plant and Soil,2005,269:99-108
    199.Gaynor J.D.and Findlay W.I..Soil and phosphorus loss form conservation and conventional tillage in corn production[J].J.Environ.Qual.,1995,24:734-741
    200.Gborek W.J.,A.N.Sharpley.Hydrologic controls on phosphorus loss from upland agricultural watersheds[J].J.Environ.Qual.,1998,27:267-277
    201.Gburek W.J.,A.N.Sharpley.Heathwaite et a..Phosphorus manage at the watershed:A modification of the phosphorus index[J].J.Environ.Qual.,2000,29:130-140
    202.Gerke J.,Hermann R..Adsorption of orthophosphate to humic-Fe-complexes and to amorphous FeOoxide[J].Z Pflanzenernahr Bodenk,1992,155:233-236
    203.Gong Z.T..Wetland soils in China.Wetland:Characterization Classification and Utilization.IRRI.Philippines,1985
    204.Harris W.G.,H.D.Wang and K.R.Reddy.Dairy manure influence on soil and sediment composition:Implications for phosphorus retention[J].J.Environ.Qual.,1994,23:1071-1078
    205.Haygarth P.M.and SharpleyA.N..Perminology for phosphorus transfer.J.Environ.Qual.,2000,29:10-15
    206.Haygarth P.M.,Hepworth L.Jarvis S.C..Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland[J].Euro.J.Soil Sci.,1998,49:65-72
    207.Haygarth P.M.and S.C.Jarvis.Transfer of phosphorus from agricultural soils[J].Advances in Agronomy Volume,1999,66:195-249
    208.Hargrave A.P.,Shaykewich C.F..Rainfall induced nitrogen and phosphorus loses from Manitoba soils.Can J Soil Sci.1997,77:59-65
    209.He Z.L.,M.D.Wilson,C.O.Campbell,et al..Distribution of phosphorus insoil aggregate fractious and its significance with regard to phosphorus transport in agricultural runoff[J].Water Air and Soil Pollution,1995:83(1-2):69-84
    210.Heckkrath G.,Brookes P.C.,Poulton P.R..Phosphorus leaching from softs containing different phosphorus eoncentrations in the Broadbalk Experiment[J].J.Environ.Qual.,1995,24(5):904-910
    211.Hesketh N.,Brookes P.C..Development of an Indicator forrisk of phosphorus leaching[J].J.Environ.Qual.,2000,29:105-110
    212.Hooda P.S.,Moynagh M.,Svoboda I.F.et a..Phosphorus loss in dralnflow from intensively managed grassland soils[J].J.Environ.Qual.,1999,28:1235-1242
    213.Holford R.D..The high and low energy phosphate adsorbing surface in calcareous soils.Soil Sci.,1975,26:407-417
    214.Hooda P.S.,Rendell A.R.,Edwards A.C..Relating soil phosphorus indices to potential phosphorus release to water[J].Journal Environmental Quality,2000,29:1166-1171
    215.Hooda P.S.,Truesdale V.W.,Edwards A.C..Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications[J].Advances in Environmental Research,2001,5:13-21
    216.Huang P.M.,Schnitzer M..Interaction of soil minerals with natural organics and microbes.Madison,WI:SSSA.,1986
    217.Indiate R.,Sharpley A N..Soil phosphorus sorption and simulated runoff parameters as affected by fertilizer addition and soil properties[J].Commun Soil Sci Plant Anal,1995,26(15&16):2319-2321
    218.Jager P C.,Claassens A S..Long-term phosphorus desorption kinetics of an acid sand clay soil from Mpumalanga south Africa[J].Communications in Soil Science and Plant Analysis,2005,36:309-319
    219.James D.W.,J.Kotuby-Amacher G.L.,Anderson and D.A.Huber.Phosphorus mobility in calcareous soils under heavy manuring[J].J.Environ.Qual.,1996,25:770-775
    220.Kleinman P J A.,Bryant R B.,Reid W S.,et al..Using soil phosphorus behavior to identify environmental thresholds[J].Soil Sci.,2000,165:943-950
    221.Kleinman P J A.,Sharpley A.N..Effect of broadcast manure on runoff phosphorus concentrations over successive rainfall events[J].J Environ Qual.,2003,32:1072-1081
    222.Kumar R.,Ambasht R.S.,Srivastava A.et al..Reduction of nitrogen losses through erosion by Leonotis nepetaefolia and Sida acuta insimulated rain intensities[J].Ecological Engineering,1997,8:233-239
    223.Lee G.F.Rule of phosphorus in eutrophication and diffuse source control[J].J.Water Qual.,1973,24:904-910
    224.Liu Z.H.and Peng H.Y..Removal characteristics of phosphorus element in soil horizon underwater-dry cultivation of waste watedand treatment[J].Environmental Science,2000,21(3):48-51
    225.Lu R.K..Principal and methods of soil-plant nutrition science[M].Beijing:Chemical industry press,1997,433-436
    226.Lu Jia long,Fortune S.,Brookes P..P fractions in drainage waters from the Broadbalk continuous wheat experiment at Rothamsted.Pedosphere,2004,14(2):235-240
    227.Leytem A.B.,Mikkelsen R.L.,GilliamJ W..Sorption of organic phosphorus compounds in Atlantic coastal plain soils[J].Soil Science.,1999,167(10):652-658
    228.Lookman R.,K Jansen,R Merckx.et al..Relationship between soil properties and phosphate saturation parameters a transect study in northern Belgium[J].Geoderma,1996,69:265-274
    229.Lyons J.B.,JH.Gorres,JA.Amador.Spatial and temporal variability of phosphorus retention in a riparian forest soil[J].J.Environ Qual.,1998,27:895-903
    230.MAFF.Fertilizer recommendations for agricultural and horticultural crops,Reference Book Ministry of Agricultural,Fishers and Food,HMSO,London,UK,1994,112-209
    231.Menon R.G.,RG Menon,SH Chien.Iron oxide impregnated filter paper(Pi-test)a review of its application[J].Nutr.Cycl.Agroeco.1996,47:7-18
    232.Mozaffari M.,J.T.Sims.Phosphorus availability and sorption in Atlantic plain watershed dominated by animal-based agriculture[J].Soil Sci.,1994,157:97-107
    233.Mulqueen J.,Rodgers M.,Scally P..Phosphorus transfer from soil to surface waters[J].Agricultural Water Management,2004,68:91-105
    234.Nair V.D.,Graetz D A.,Portier K.M..Forms of phosphorus soil profiles from dairies of south Florida[J].Soil Sci.Soc.A m.J.,1995,59:1244-1249
    235.Nash D.M.,Halliwell D.J..Fertilizers and Phosphorus loss from agricultural grazing systems[J].Aust.J.Soil Res.,1999,37:4034-429
    236.Nash D.,M.Hannah,L.Clemow,et al..A field study of phosphorus mobilization from commercial fertilizers[J].Aust.J.Soil Res.,2004,42:313-320
    237.Philip M H.,Stephen C J..Transfer of phosphorus from agricultural soils[J].Advances in Agronomy,1999,66:195-249
    238.Pote D H.,Daniel T C.,Sharpley A N.et a..Relating extractable soil phosphorus losses in runoff[J].Soil Sci Soc A m J,1996,60:855-859
    239.Pore D H.,Daniel T C.,Nichols D J.et al.Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff[J].J Environ Qual.,1999,28:170-175
    240.Reeve N G.,Sumner M E..Efeets of aluminium toxicity and phosphorus fixation on crop growth on oxisols of Natal[J].Soil Sci.Soc.Am.Proc.,1970,34:263-267
    241.Rekolainen S..Contribution of agriculture to the phosphorus in surface waters in Finland and measures to reduce it[A].In H Tunney,Q T.Carton,P.C.Brookes.A.E.Joneston(eds.)Phosphosrus Loss from Soil to Water.CAB International,wallingford,UK 1997,389-391
    242.Rreeuwama A.,Reijerlnk J G.,Schoumans O F..Impact of manure on accumulation and leaching of phosphate on area of intensive livestock farming.Bt Stest K(ed),Animal waste and the landwater interface,New York:Lawis Pahl.C RC,1995,239-251
    243.Sah R N.,Mikkelsen D S..Effects of anaerobic decomposition of organic matter on sorption and transformations of phosphate in drained soils:I.Effects on phosphate sorption[J].Soil Science,1986,142(5):267-274
    244.Sanyal S K.and De Datta S K..Chemistry of phosphorus transformations in soil.Advances in Soil Science[M].New York:Springer Verlag,1991:11-20
    245.Sharpley A.N..Assessing phosphorus bioavailability in agricultural soils and runoff[J].Fertiliser Research.1993a,36:259-272
    246.Sharpley A.N..An innovative approach to estimate bioavailable phosphorus in agricultural runoff using iron—oxide impregnated paper[J].J Environ Oual.1993b,22:597-601
    247.Sharpley A.N..Dependence of runoff phosphorus on extractable soil phosphorus[J].J Environ Qual.,1995a,24:920-926
    248.Sharpley A.N..Identifying sites vulnerable to phosphorus loss in agricultural runoff[J].Journal of Environmental Quality,1995b,24:947-951
    249.Sharpley A.N.Chapra,S.C.,Wedepohl,R.,Sims,J.T.,Managing agricultural phosphorus for protection of surface waters:Issues and Options[J].J.Environ.Qual.,1994,23:437-451
    250.Sharpley A.N.T.C.Daniel,J.T.Sims,D.H.Pote..Determining environmentally sound soil phosphorus leyels[J].J.Soil Water Conserv.,1996,51(2):160-166
    251.Sharpley A.N.Tunney H..Phosphorus research strategies to meet agricultural and environmental challenges of the 21 st century[J].J Environ Qual,2000,29:176-181
    252.Sharpley A.N.Ahuja L.R..The kinetics of phosphorus desorption from soil.Soil Science Society America of Journal,1981,45:493-496
    253.Sharpley A.N.Gburek W J.,Folmar G J.et al..Sources of phosphorus exported from an agricultural watershed in Pennsylvania[J].Agric Water Managt,1999,41:77-89
    254.Sharpley A.N.Meyer M..Minimizing agricultural nonpoint-source overview[J].J Environ Qual,1994a,23:1-3
    255.Sharpley A N.,Charpa S C.,Wedepoh J R,et al..Managing agriculture phosphorus protection of surface waters:Issues and options[J].J Environ Qual,1994b,23:437-451
    256.Sharply A.N..Soil mixing to decrease surface stratification of phosphorus in manured soils.J.Environ.Qual.,2003,32:1375-1384
    257.Sharpley A.N.,B.Foy and P.Withers.Practical and innovative measure for the control of agricultural phosphorus losses to water:An overview[J].J.Environ.Qual.,2000a:29:1-9
    258.Simard R.R.,Cluis D.,Gangbazo G.,et al..Phosphorus status of forest and agricultural soils form a watershed of high aninal density[J].J.Environ.Qual.,1995,24:1010-1017
    259.Sims J T.,Simard R R.,Joem B C..Phosphorus loss in agricultural drainage:historical perspective and current research[J].J Environ Qual,1998a,27:277-293
    260.Sims J T..Phosphorus soil testing:Innovations for water quality protection[J].Com Soil Sci Plant Anal,1998b,29(11~14):1471-1489
    261.Smith K A.,Chalmers A G.,Chambers B J.et al..Organic manure phosphorus accumulation,mobility and management[J].Soil Use and Management(Supplement),1998,14:168-174
    262.Syers J.K.,Iskander I K..Soil phosphorus chemistry Modeling Wastwater Reservation[J].(E.and F.N Spon Ltd),New York,1981:571-599
    263.Taylor A W.and Kunishi H M..Phosphate equilibria on stream sediment and soil in a watershed chaining an agricultural region[J].J Agric.Food Chem.1971,19:827-831
    264.Tim U.S.,Jolly R.Evaluating agricultural nonpoint- source pollution using integrated geographic information systems and hydraulic/water quality model[J].J Environ Qual.,1994,23(1):25-35
    265.Van der Molen D F.,Breeuwsma A.,Boers P C M..Agricultural nutrient losses to surface water in the Netherlands:impact,strategies,and perspectives[J].J.Environ.Qual.,1998,27:4-11
    266.Wendt R C.Corey R B..Phosphorus variation in surface runoff from agricultural lands as a function of land use[J].J Environ Qual,1980,9(1):130-136
    267.Whalen J.K.,C.Chang.Phosphorus accumulation in cultivated soils from long—term annual application of cattle feedlot manure[J].Journal of Environmental Quality,2001,30:229-237
    268.Young E O.,Ross DS..Phosphorus release from seasonally flooded soils:A laboratory microcosm study[J].J Environ Qual.,2001,30:91-101
    269.Yuan G,Lavkulich L.M..Phosphate sorption in relation to extractable iron and aluminium in spodosols[J].Soil Sci Soc.Am.J.,1994,58:343-346
    270.Zhang Yongsong,Lin Xianyong,Ni Wuzhong.Effects of flooding and subsequent air-drying on phosphorus assorption,desorption and available phosphorus in the paddy soils[J].Chinese J.Rice Sci.,1998,12(1):40-44
    271.Zhou M.,Rhue R.D.,Harris W.G..Phosphorus sorption characteristics of Bh and Bt horizon from sandy coastal plain soils.Soil Sci.SOc.Am J.,1997,61:1364-1369
    272.Zobisch M.A.,Richter C.,Heiligtag B.,et al..Nutrient losses from cropland in the Central Highlands of Kenya due to surface runoff and soil erosion[J].Soil & Tillage Research,1999,33:109-116