雄激素与其受体在动脉粥样硬化斑块稳定性和血栓形成中的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化性血栓形成的病理基础是动脉粥样斑块破裂与继发血栓形成。传统的观点认为动脉粥样硬化血栓形成与吸烟、缺乏运动、不合理饮食,以及高血压、血脂异常、糖尿病、肥胖、代谢综合征等危险因素密切相关。近来研究显示男性随着年龄的增加睾酮水平下降。血睾酮水平降低与男性冠心病、主动脉或颈动脉粥样硬化危险性增加有关。雄激素受体在冠状动脉粥样硬化形成早期具有重要作用,雄激素受体表达与动脉粥样硬化严重程度密切相关。Alevizaki M等报告男性冠状动脉粥样硬化与雄激素受体基因CAG重复多态性密切相关。Zitzmann M等报告雄激素受体基因CAG重复率低与HDL-C水平降低密切相关。我们课题组以往的研究认为雄激素水平与冠心病、下肢动脉闭塞症显著负相关。但是以往研究的结果并不能说明低雄激素血症是冠心病的结果抑或是其原因;雄激素对动脉粥样硬化作用尚有争议;雄激素、雄激素受体在动脉粥样硬化斑块稳定性中的作用尚不清楚,相关机制尚未完全阐明。
     流行病学研究显示,男性血栓性心血管疾病显著高于女性。伴有低雄激素血症的老年男性血栓性疾病的发病率较高。动脉粥样硬化斑块破裂后继发血栓形成是动脉粥样硬化性血栓形成的重要病理过程,目前雄激素与其受体在动脉血栓形成中的作用尚不完全清楚,其机制也有待进一步研究。本课题的研究目的是探讨雄激素与其受体在动脉粥样硬化进展、斑块稳定性和血栓形成的作用与机制,进而为低雄激素血症老年男性进行动脉粥样硬化性血栓形成的一级预防与临床干预提供依据。
     第一部分:睾酮及氟他胺对雄免动脉粥样硬化进展、斑块稳定性的作用与机制研究
     目的:老年男性随着年龄的增加睾酮水平下降。与同年龄健康男性比较,男性冠心病患者的生物有效性睾酮较低。血睾酮水平降低与主动脉或颈动脉粥样硬化危险性增加有关。睾酮替代治疗可明显抑制去睾丸雄性动物动脉粥样硬化的进展。然而,雄激素与其受体在动脉粥样硬化斑块稳定性中的作用尚不清楚,作用机制亦有待进一步阐明。本研究拟探讨睾酮及其受体对动脉粥样硬化斑块的病变进展与稳定性的调节作用,并进一步观测睾酮及其受体对血浆炎症因子的调节,以阐明雄激素对动脉粥样硬化斑块稳定性调节的可能机制。
     方法:高脂饲料喂养成熟雄性新西兰白兔,制备动脉粥样硬化模型。腹主动脉病理切片行苏木精-伊红(HE)染色和Masson氏三色染色观察动脉粥样硬化斑块的病理改变与斑块面积、纤维帽厚度、胶原含量变化。血浆睾酮(T)应用Advia Centaur免疫检测系统测定(Bayer,Germany)采用化学发光免疫分析法测定。血浆二氢睾酮(DHT)应用酶联免疫试剂盒(ELISA kit)推荐方法检测。血清肿瘤坏死因子(TNFα)和白细胞介素6(IL_6)采用放射免疫测定,血清可溶性细胞间粘附分子-1(sICAM-1)和MMP_2)应用酶联免疫吸附测定法(ELISA)检测。血浆睾酮采用Advia Centaur免疫检测系统(Bayer,Germany),应用化学发光免疫分析法检测。血浆内皮素-1、血浆肾素活性、血管紧张素Ⅱ水平,根据放射免疫试剂盒推荐步骤应用放射免疫法检测。
     结果:雄兔去睾丸血浆睾酮水平显著降低,补充十一酸睾酮(6mg/kg/2w)使血浆睾酮恢复到水平,而且十一酸睾酮这一作用不受雄激素受体拮抗剂(氟他胺)的影响。去睾丸雄兔补充十一酸睾酮显著减低动脉粥样斑块的面积、内膜厚度,并使斑块纤维帽增厚、胶原含量增加。然而,同时补充氟他胺使去睾丸雄兔动脉粥样斑块的面积显著、内膜厚度增加,并使斑块纤维帽厚度减低、胶原含量下降。与假手术高脂喂养雄兔比较,去睾丸雄兔血清TNFα、IL_6、sICAM-1和MMP_2显著升高;去睾丸雄兔补充十一酸睾酮后,血清TNFα、IL_6、sICAM-1和MMP2较单纯去睾丸雄兔明显降低;去睾丸雄兔同时补充氟他胺(雄激素受体拮抗剂)与十一酸睾酮,血清TNFα、IL_6、sICAM-1和MMP_2水平再次显著升高。与标准饲料喂养雄兔比较,高脂喂养雄兔血浆ET-1、PRA、AngⅡ水平显著增加。在高脂喂养雄兔中,去睾丸-睾酮组、去睾丸-睾酮-Flut组的血浆ET-1、PRA、AngⅡ水平与假手术组无明显差异。
     结论:雄激素与其受体调节雄兔动脉粥样硬化斑块进展与斑块的稳定性,这种作用与其影响血清炎症反应有关。
     第二部分:雄激素对三氯化铁诱导雄性大鼠动脉血栓形成的作用与机制研究
     目的:心、脑和周围血管疾病存在一个共同病理改变,即动脉粥样硬化血栓形成(atherothrombosis)。冠状动脉内血栓形成是急性冠脉综合征(ACS)与冠脉介入引起的缺血并发症的关键事件。抗血栓的策略在治疗与防治动脉粥样硬化血栓症具有重要地位。近年来,男性低雄激素水平在ACS中的作用受到了越来越多的关注。老年男性睾酮水平随着年龄的升高而逐渐下降,但是心血管疾病的发生率却明显增加。男性性激素在动脉粥样硬化性血栓形成的作用尚不完全清楚,其机制也有待遇进一步阐明。本研究的目的是探讨生理剂量雄激素是否通过其受体调节实验性动脉血栓形成,并进一步阐述相关机制。
     方法:三氯化铁(FeCl_3)作为刺激因子诱发的实验性大鼠腹主动脉血栓形成模型。应用血小板聚集仪测定血小板聚集、血小板粘附仪测定血小板粘附。应用流式细胞仪测定血小板内钙离子浓度。应用放射免疫分析法测定TXB_2和6-Keto-PGF_(1α)。凝血与纤溶参数采用STA-R血凝分析仪检测;血浆粘度应用SA-6000自动血液流变学检测仪测定。
     结果:雄性大鼠去睾丸后血浆睾酮与二氢睾酮明显降低(7.94±3.07nmol/L比0.96±0.09nmol/L;1.76±0.77nmol/L比0.1±0.02nmol/L,P均<0.05)。去睾丸雄性大鼠每日补充DHT(0.25 mg/rat)使其DHT浓度达到生理水平,而且与氟他胺(flutamide)(每两日注射一次5mg/rat)联用不影响DHT浓度达到生理水平。去睾丸大鼠FeCl_3刺激诱发的主动脉血栓的面积和重量显著高于假手术大鼠。自体贫血小板血浆(PPP)稀释富血小板血浆(PRP)后,1μM二磷酸腺苷(ADP)诱导的血小板的聚集率为9.10%;Tyrode氏缓冲液稀释PRP后,1μM ADP诱导的血小板的聚集率为63.65%。Tyrode氏缓冲液稀释PRP后,如果应用DHT(1nM,2nM)预处理PRP,1μM ADP诱导的血小板的聚集率再次降低。而且自体PPP稀释PRP后,去睾丸大鼠血小板聚集明显高于假手术大鼠,去睾丸大鼠PRP补充DHT(2nM)后,血小板聚集率下降到与假手术组相似的水平。在自体PPP或Tyrode氏缓冲液稀释的PRP,氟他胺(3μM)预处理后,1μM ADP诱导的血小板的聚集率再次增加。Tyrode氏缓冲液稀释PRP后,DHT(2nM)预处理显著降低1μM ADP诱发的血小板粘附,但是如果氟他胺(3μM)预处理后,1μM ADP诱发的血小板粘附再次增加。
     去睾丸大鼠生理剂量DHT补充治疗明显降低TXB_2与6-keto-PGF_(1α)的比率,然而氟他胺与DHT联合补充治疗则显著增加TXB_2与6-keto-PGF_(1α)的比率。DHT(2nM)明显降低ADP诱导的血小板内钙离子浓度。然而,氟他胺预处理血小板之后ADP诱导的血小板内钙离子浓度再次增加。去睾丸大鼠血浆凝血酶原活动度(PA%)显著升高(68.00±4.74比53.00±1.81,P<0.05),而凝血酶原时间(PT)、活化的部分凝血酶时间(APTT)、国际标准化比值(INR)显著降低(P均<0.05)。去睾丸大鼠血浆纤维蛋白原(FIB)、纤溶酶原活性(PLG:A)、D-二聚体(D-dimer)、血浆粘度与假手术大鼠间无差别(P均>0.05)。
     结论:雄激素与其受体通过调节血小板激活以及凝血系统,进而部分抑制雄性大鼠实验性动脉血栓形成。
     第三部分:雄激素和其受体介导调节血栓素A_2释放影响氧化应激诱发的血小板聚集的研究
     目的:血小板功能与血栓形成密切相关,尤其是动脉血栓形成。大多数动脉血栓形成始于血管内皮损伤。血小板激活调节异常是动脉血栓形成的重要原因之一。氧化应激因其损伤血管内皮功能、促进血小板聚集,因而在急性冠脉综合征发病中起着重要作用。本研究的目的是探讨生理剂量雄激素和其受体在氧化应激诱发的血小板聚集中的作用,并进一步研究相关机制。
     方法:血浆(Dihydrotestosterone,DHT)应用酶联免疫试剂盒(ELISA kit)推荐方法检测。应用血小板聚集仪采用透射比浊法测定血小板聚集。应用放射免疫试剂盒采用放免法测定血栓素B_2(TXB_2)。
     结果:应用Tyrode氏缓冲液稀释PRP后,补充DHT(2nM)显著抑制过氧化氢(H_2O_2)(10mM,25mM)诱导的血小板聚集。应用自体PPP稀释PRP后,假手术大鼠H_2O_2诱发的血小板聚集明显下降;而去睾丸大鼠H_2O_2诱发的血小板聚集则明显增加;去睾丸大鼠PRP补充DHT(2nM)后,H_2O_2诱发的血小板聚集显著下降;去睾丸大鼠PRP补充氟他胺(3μM)与DHT(2nM)后,H_2O_2诱发的血小板聚集再次明显增加。应用DHT(2nM)预处理去睾丸大鼠PRP,H_2O_2诱发的血小板释放血栓素A_2(TXA_2)明显减低;而应用氟他胺(3μM)与DHT(2nM)联合预处理去睾丸大鼠PRP,H_2O_2诱发的血小板释放血栓素A_2(TXA_2)则明显增加。去睾丸大鼠血浆睾酮与DHT水平显著下降。去睾丸大鼠每日注射DHT(0.25mg/rat)后,血浆DHT又恢复至生理水平;若去睾丸大鼠补充DHT同时,每两日注射一次氟他胺((5mg/rat),血浆DHT仍然处于生理水平。去睾丸大鼠血浆TXB_2较假手术大鼠显著增加。去睾丸大鼠每日注射DHT(0.25mg/rat)后,血浆TXB_2再次下降;若去睾丸大鼠补充DHT同时,每两日注射一次氟他胺((5mg/rat),血浆TXB_2再次显著增加。
     结论:生理剂量雄激素介导其受体抑制氧化应激诱发的血小板聚集,这种作用与其减少血小板TXA_2释放有关。
The basic pathology of atherothrombosis is atherosclerotic plaque rupture and sequential thrombus formation. Traditionally, it is believed that atherothrombosis is closely related with such factors as smoking, lackness of exercise, irrational diet, hypertension, lipid disorder, diabetes, obesity and metabolism syndrome. Recent studies demonstrate that the levels of testosterone decrease with the increase of age, which is related to the risk increase of male coronary heart disease, aortic or carotid atherosclerosis. Androgen receptor palys an important role in the early phase of atherosclerosis formation and the decrease of its expression is associated with the severity of atherosclerosis progress. The study of Alevizaki, et al. revealed that the androgen receptor gene CAG polymorphism is associated with the severity of coronary artery disease in men. The study of Zitzmann, et al. demonstrated that shorter, more androgenic AR alleles with fewer CAG repeats are associated with lower HDL-C.
     The previous studies of our group disclosed that the level of androgen is negatively related to coronary heart disease and peripheral arterial disease. However, these studies didn't suggested that low leve of androgen is a result or cause of coronary heart disease. It is conflicting view which roles androgen plays in atherosclerosis progress. Atherosclerotic plaque rupture is an early phase in the atherothrombosis formation. Presently, it is unclear whether androgen and its receptor play roles in plaque stability, which the mechanisms corncerned still were elucidated. Acute thrombus formation is an important pathological progress of atherothrombosis.
     Epidemiological studies demonstrated that the morbidity of cardivascular disease is higher in men than in women. The older the male is, the higher is the morbidity of atherothrombosis. These studies reveal that androgen maybe plays an important role in atherothrombosis formation. However, it is unclear whether androgen and its receptor play roles in thrombus formation, which the mechanisms corncerned still need to be studied further.
     The purposes of the study are to determine the influence of androgen and its receptor on atherosclerotic plaque growth, stability and arterial thrombosis,to investigate the mechanisms concerned, and to further provide interventional target and evidence for first-level prevention of atherothrombosis in the eldly male with low level of androgen.
     PartⅠ: Regulation and mechanisms corncerned of Atherosclerotic Progress and Plaque Stability by Testosterone and Flutamide in Male Rabbits
     Objectives: The purposes of the study are to determine the influence of androgen and its receptor on atherosclerotic plaque growth, stability and arterial thrombosis and further to investigate the mechanisms concerned.
     Methods: Pathological sections of aorta were performed hematoxylin-eosin staining and Masson's trichrome staining. Total plasma testosterone was measured using ADVIA Centaur(?) Immunoassay System (Bayer, Germany), whereas DHT levels were measured using a DHT ELISA kit. The contents of serum tumor necrosis factor-α(TNFα) and interleukin-6 (IL_6) were assayed using radio-immunoassay kit. The concentrations of serum soluble intercellular adhesion molecule-1 (sICAM-1) and matrix metallopeptidase 2(MMP_2) were assayed using ELISA kit according to the procedure described by the manufacturer. The contents of plasma endothelin-1, plasma renin activity and angiontensinⅡwere assayed using radio-immunoassay kit.
     Results: Our results showed that testosterone undecanoate replacement reduced the plaque area, the aortic intimal thickness and increased the fibrous cap thickness and collagen contents in castrated rabbits. However, presence of flutamide increased the plaque area, the aortic intimal thickness and decreased the fibrous cap thickness and collagen contents in castrated rabbits again. Our results still revealed that levels of serum TNF_α, IL_6, sICAM and MMP_2 increased in cholesterol-rich diet rabbits as compared with standard diet rabbits. Castration caused an increase in levels of serum TNF_α, IL_6, sICAM and MMP_2 in castrated rabbits as compared with sham-operated rabbits. Treatment of testosterone undecanoate reduced the levels of serum TNF_α, IL_6, sICAM and MMP_2 in castrated rabbits. However, presence of flutamide increased the levels of serum TNF_α, IL_6, sICAM and MMP_2 again. In our study, we didn't find that testosterone undecanoate replacement or treatment with flutamide affected the levels of plasma endothelin-1, plasma renin activity and angiontensinⅡin castrated rabbits as compared with sham-operated rabbits.
     Conclusion: Androgen and its receptor can regulate atherosclerotic plaque growth and stability, which is related to influence inflammatory reaction in male rabbits;
     ParetⅡ: Roles and Mechanisms of Androgen in ferric-chloride-induced Arterial Thrombosis in Rats
     Objectives: The aim of our study is to elucidate roles androgen and its receptor in ferric-chloride-induced arterial thrombosis and mechanisms corncerned in rats
     Methods: Castrated models and experimental thrombosis models of male rats were prepared. Platelet aggregometer was used to measure platelet aggregation, and platelet adherometer was used to measure platelet adhesion. The contents of TXB_2 and 6-Keto-PGF_(1α)awere assayed using radio-immunoassay kit. The intraplatelet free calcium concentrations were measured with Fluo-3/AM FCM assay. Parameters of blood coagulation and fibrinolytic system were assayed using STA-R Coagulation analyzers, and Plasma viscosity was tested using SA-6000 automated hemorrheology tester.
     Results: DHT replacement restored circulating DHT to physiological levels, without being altered by treatment with flutamide. Pretreatment with DHT (2nM) significantly inhibited the platelet aggregation and adhesion induced by ADP. After PRP was pretreated with flutamide, ADP-induced platelet aggregation and adhesion increased again. After castration and DHT replacement, the ratio of both TXB2 and 6-keto-PGF_(1α) obviously decreased. However, administration of flutamide to DHT treated castrated rats caused an increase in the proportions of both TXB_2 and 6-keto-PGFia again. DHT (2nM) replacement obviously reduced [Ca~(2+)]_i,. However, Pretreatment with flutamide and DHT (2nM), [Ca~(2+)]_i increase induced by ADP was observed once more.
     Castration caused a significant reduction in plasma testosterone and DHT levels, whereas DHT replaced at a dose of 0.25mg/rat restored circulating DHT to physiological levels, without being altered by treatment with flutamide. The plasma TXB2 increased in castrated rats as compared with that in sham-operated rats. Replacement of DHT reduced plasma TXB2 contents in castrated rats. However, flutamide supplementation increased plasma contents of TXB2 in castrated rats again. In addition, total plasma testosterone and DHT were significantly lower in castrated rats than in normal rats (7.94±3.07nmol/L vs 0.96±0.09nmol/L; 1.76±0.77nmol/L vs 0.1±0.02nmol/L, (all P<0.05). Castration caused significant increase in the thrombus area and weight in castrated rats as compared with control group (1157.38±68.74μm~2 vs 969.43±22.66μm~2; 7.17±1.72 mg vs 5.17±1.17 mg, all P<0.05). DHT replacement restored circulating DHT to physiological levels, without being altered by treatment with flutamide. Pretreatment with DHT (2nM) significantly inhibited the platelet aggregation and adhesion induced by ADP. After PRP was pretreated with flutamide, ADP-induced platelet aggregation and adhesion increased again. After castration and DHT replacement, the ratio of both TXB2 and 6-keto-PGF_(1α) obviously decreased. However, administration of flutamide to DHT treated castrated rats caused an increase in the proportions of both TXB2 and 6-keto-PGF_(1α) again. DHT (2nM) replacement obviously reduced [Ca~(2+)]_i,. However, Pretreatment with flutamide and DHT (2nM), [Ca~(2+)]_i increase induced by ADP was observed once more. Prothrombin activity (PA%) was higher, and prothrombin time (PT), activated partial thromboplastin time (APTT) and international normalized ratio (INR) were lower in castrated rats than in normal rats (all P<0.05). There weren't significant difference in FIB, D-dimer and plasma between in castrated rats and in normal rats (all P>0.05).
     Conclusion: Androgen and its receptor regulate experimental arterial thrombosis via modulating platelet activation and coagulation processes in male rats;
     PartⅢ: Inhibition of oxidative-stress-induced platelet aggregation by androgen at physiological levels via its receptor is associated with the reduction of thromboxane A_2 release from platelets
     Objectives: Platelets play a crucial role in the development of arterial thrombosis and other pathophysiologies leading to clinical ischemic events. Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis. The purposes of our study are to assess the effect of physiological concentration of androgen via its receptor on oxidative-stress-induced platelet aggregation and to further elaborate the active mechanism.
     Methods: Dihydrotestosterone (DHT) was determined by ELISA using a commercially available kit. Platelet aggregometer was used to measure platelet aggregation. The contents of thromboxane B_2(TXB_2) were assayed using radio-immunoassay kit.
     Results: Our results showed that addition of DHT (2nM) significantly inhibited platelet aggregation induced by hydrogen peroxide (H_2O_2)(10mM, 25mM) in PRP diluted with Tyrode's buffer. Moreover, H_2O_2-induced platelet aggregation decreased in sham-operated rats. However, H_2O_2-induced platelet aggregation significantly increased in castrated rats. Replacement of DHT inhibited H_2O_2-induced platelet aggregation in castrated rats. After PRP was pretreated by flutamide, H_2O_2-induced platelet aggregation increased in castrated rats again. Presence of DHT (2nM) obviously inhibited H_2O_2-induced thromboxane A_2 (TXA_2) release in castrated rats. Pretreatment of DHT and flutamide increased H_2O_2-stimulated TXA_2 release from platelet in castrated rats again. Castration caused a significant reduction in plasma testosterone and DHT levels, whereas DHT replaced at a dose of 0.25mg/rat restored circulating DHT to physiological levels, without being altered by treatment with flutamide. The plasma TXB_2 increased in castrated rats as compared with that in sham-operated rats. Replacement of DHT reduced plasma TXB_2 contents in castrated rats. However, flutamide supplementation increased plasma contents of TXB_2 in castrated rats again.
     Conclusion: Androgen at physiological doses via its receptor inhibits oxidative-stress-induced platelet aggregation, which is associated with the reduction of TXA_2 release from platelets.
引文
1. English KM, Mandour O, Steeds RP, Diver MJ, Jones TH, Channer KS. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms [J]. Eur Heart J. 2000;21: 890-894.
    
    2. Svartberg J, von Muhlen D, Mathiesen E, Joakimsen O, Bonaa KH, Stensland-Bugge E. Low testosterone levels are associated with carotid atherosclerosis in men [J]. J Intern Med. 2006; 259 (6): 576-582.
    
    3. Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease [J]. Endocr Rev. 2003; 24: 313-340.
    
    4. Wu FC, von Eckardstein A. Androgen and coronary artery disease [J]. Endocr Rev. 2003; 24:183-217.
    
    5. Norata GD, Tibolla G, Seccomandi PM, et al. Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab. 2006;91(2):546-554.
    
    6.武强,李小鹰,胥学伟.外源性睾酮对去睾丸家兔性激素以及血脂和载脂蛋白水平的影响[J].中国应用生理学杂志.2003;19(3):295-297.
    
    7.张永宏,周力,周石.肝硬变患者TIPS术后血浆内皮素、肾素活性、血管紧张素Ⅱ水平的变化.中国免疫学杂志.2002;18(9):658-660.。
    
    8.司全金,李小鹰.不同浓度睾酮对雄兔凝血和纤溶系统的影响[J].中国临床康复.2005;9(7):85-87.
    
    9. Chandolia RK, Weinbauer GF, Fingscheidt U, Bartlett JM, Nieschlag E.Effects of flutamide on testicular involution induced by an antagonist of gonadotropin-releasing hormone and on stimulation of spermatogenesis by follicle-stimulating hormone in rats [J]. J Reprod Fertil. 1991; 93: 313-323.
    
    10. Kishi H, Itoh M, Wada S, Yukinari Y, Tanaka Y, Nagamine N, et al. Inhibin is an important factor in the regulation of FSH secretion in the adult male hamster [J]. Am J Physiol Endocrinol Metab. 2000; 278 (4): E744-751.
    
    11.黄继汉,黄晓晖,陈志扬,郑青山,孙瑞元.药理试验中动物间和动物与人体间的等效剂量换算[J].中国临床药理学与治疗学.2004;9:1 069-072.
    12. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C. Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits [J]. Circ Res. 1999; 84 (7): 813-819.
    13. Ma R, Wu SZ, Lin QS, Jiang SS. Regulation of androgen receptor mRNA expression by testosterone in cultured vascular smooth muscle cells. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(3):298-300.
    14. Ma R, Wu S, Lin Q. Homologous up-regulation of androgen receptor expression by androgen in vascular smooth muscle cells. Horm Res. 2005;63(1):6-14.
    15. Liu PY, Christian RC, Ruan M, Miller VM, Fitzpatrick LA. Correlating androgen and estrogen steroid receptor expression with coronary calcification and atherosclerosis in men without known coronary artery disease [J]. J Clin Endocrinol Metab. 2005;90 (2): 1041-046.
    16. Alevizaki M, Cimponeriu AT, Garofallaki M, Sarika HL, Alevizaki CC, Papamichael C, et al. The androgen receptor gene CAG polymorphism is associated with the severity of coronary artery disease in men [J]. Clin Endocrinol (Oxf). 2003; 59(6): 749-755.
    17. Corrales JJ, Almeida M, Burgo R, Mories MT, Miralles JM, Orfao A. Androgen-replacement therapy depresses the exvivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency [J]. J Endocrinol. 2006; 189 (3): 595-604.
    18. Death AK, McGrath KC, Sader MA, et al. Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappaB-dependent pathway. Endocrinology. 2004; 145(4): 1889-1897.
    19. McCrohon JA, Jessup W, Handelsman DJ, et al. Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1. Circulation. 1999;99: 2317-2322.
    20. Nettleship JE, Pugh PJ, Channer KS, Jones T, Jones RD. Inverse relationship between serum levels of interleukin-1beta and testosterone in men with stable coronary artery disease. Horm Metab Res. 2007;39(5):366-71.
    21. Lund AK, Knuckles TL, Akata CO, et al. Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis. Toxicol Sci. 2007;95(2):485-494.
    22. Dandona P, Dhindsa S, Ghanim H, et al. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21(1):20-27.
    23. Leung PS, Wong TP, Lam SY, et al. Testicular hormonal regulation of the renin-angiotensin system in the rat epididymis. Life Sci. 2000;66( 14): 1317-1324.
    24. Kumanov P, Tomova A, Kirilov G Testosterone replacement therapy in male hypogonadism is not associated with increase of endothelin-1 levels. Int J Androl. 2007;30(1):41-47.
    1 Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365-372.
    2 Ferenchick GS, Hirokawa S, Mammen EF, Schwartz KA. A. Anabolic-androgenic steroid abuse in weight lifters: evidence for activation of the hemostatic system. Am j hematol. 1995;49(4):282-288.
    3 Mochizuki RM, Richter KJ. Cardiomyopathy and cerebrovascular accident associated with anabolic-androgenic steroid use. Phys Sportsmed. 1988; 16:109-114.
    4 McNutt RA, Ferenchick GS, Kirlin PC, Hamlin NJ. Acute myocardial infarction in a 22-year-old word class weight lifter using anabolic steroids. Am J Cardiol. 1988;62:164.
    5 Frankle MA, Eichberg R, Zachariah S. Anabolic-androgenic steroids and a stroke in an athlete: case report. Arch Phys Med Rehabil. 1988;69:632-633.
    6 Rosano GM, Sheiban I, Massaro R, Pagnotta P, Marazzi G, Vitale C, Mercuro G, Volterrani M, Aversa A, Fini M. Low testosterone levels are associated with coronary artery disease in male patients with angina. Int J Impot Res. 2006 Aug 31; [Epub ahead of print]).
    7 Dunajska K, Milewicz A, Szymczak J, Jedrzejuk D, Kuliczkowski W, Salomon P, Nowicki P. Evaluation of sex hormone levels and some metabolic factors in men with coronary atherosclerosis. Aging Male. 2004;7(3): 197-204. Aging Male. 2004;7(3): 197-204.
    8 Barud W, Palusinski R, Piotrowska-Swirszcz A, Ostrowski S, Makaruk B. Sex hormones, HDL cholesterol and other lipoproteins in older males. Pol Merkuriusz Lek. 2005; 18(105):295-297.
    9 Wu FCW, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev. 2003;24: 183-217.
    10 Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS. Testosterone as a protective factor against atherosclerosis immunomodulation and influence upon plaque development and stability. J Endocrinol. 2003;178: 373-380.
    11 Wynne FL, Khalil RA. Testosterone and coronary vascular tone: implications in coronary artery disease. J Endocrinol Invest. 2003; 26:181-186.
    12 Zhou ZX, Wong CI, Sar M, Wilson EM. The androgen receptor: an overview. Recent Prog Horn Res.1994;49:249-274.
    13 Quigley CA, DeBellis A, Marschke KB, ElAwady MK, Wilson EM, French FS. Androgen receptor defects:historical, clinical and molecular perspectives. Endocr Rev. 1995; 16:271-321.
    14 Kurtz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60:269-280.
    15 Saldeen T, Li D, Mehta JL. Differential effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. J Am Coll Cardiol. 1999;34(4):1208-1215.
    16 Rulli SB, Zitta K, Calandra RS, Campo S. Effect of dihydrotestosterone on pituitary follicle-stimulating hormone isoforms in adult male rats treated with a gonadotropin-releasing hormone antagonist. Neuroendocrinology. 2003; 78(5):280-286.
    17 Rulli SB, Creus S, Pellizzari E, Cigorraga SB, Calandra RS, Campo S: Immunological and biological activities of pituitary FSH isoforms in prepubertal male rats: Effect of antiandrogens. Neuroendocrinology. 1996;63:514-521.
    18 Born GVR and Cross MJ. The aggregation of blood platelets. J Physiol. 1963; 168: 178-195.
    19 Yi ZHU, Zhen-Lun GU, Zhong-Qin LIANG, et al. Prostaglandin Al inhibits increases in intracellular calcium concentration, TXA_2 production and platelet activation [J]. Acta Pharmacologica Sinica. 2006; 27 (5): 549-554.
    20 Srikanth V,Malini T, Arunakaran J, Govindarajulu P, Balasubramanian K. Effects of ethanol treatment on epididymal secretory products and sperm maturation in albino rats. J Pharmacol Exp Ther. 1999;288(2):509-515.
    21 SI Quanjin, LI xiaoying. Effects of different levels of testosterone on the coagulative and fibrinolytic systems of male rabbits [J]. Chinese journal of clinical rehabilitation. 2005:9(7):85-87.
    22 Bhasin S. Effects of testosterone administration on fat distribution, insulin sensitivity, and atherosclerosis progression. Clin Infect Dis. 2003; 37(Suppl 2): S142-S149.
    23 Ferenchick G, Schwartz D, Ball M, Schwartz K. Androgenic-anabolic steroid abuse and platelet aggregation: a pilot study in weight lifters. Am J Med Sci. 1992 Feb;303(2):78-82.
    24 Hall J, Jones RD, Jones TH, Channer KS, Peers C. Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology. 2006;147(6):2675-80.
    25 Ajayi AA, Halushka PV. Castration reduces platelet thromboxane A_2 receptor density and aggregability. QJM. 2005;98(5):349-56.
    26 Salzman, E. W.; Ware, J. A. Ionized calcium as an intracellular messenger in blood platelets. Prog. Hemostasis Thromb. 1989;9:177-202.
    27 English KM, Steeds RP, Jones TH, Diver MJ & Channer KS. Low- dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina - A randomized, double-blind, placebo-controlled study. Circulation.2000; 102:1906-1911.
    28 Cato AC, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE. 2002; 2002(138):RE9.
    29 Cabeza M, Flores M, Bratoeff E, de la Pena A, Mendez E, Ceballos G. Intracellular Ca2+ stimulates the binding to androgen receptors in platelets. Steroids. 2004;69(11-12):767-72.
    30 Neri, R. Pharmacology and phamacokinetics of flutamide. Urology, 34 (Suppl. 4): 19-21, 1989.
    31 Kyrle PA, Minar E, Brenner B, Eichler HG, Heistinger M, Marosi L, Lechner K. Thromboxane A2 and prostacyclin generation in the microvasculature of patients with atherosclerosis-effect of low-dose aspirin. Thromb Haemost. 1989;61(3):374-377.
    32 Lellouche F, Martinuzzo M, Said P, Maclouf J, Carreras LO. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant. Blood. 1991;78(11):2894-2899.
    33 Neichi T, Tomisawa S, Kubodera N, Uchida Y. Enhancement of PGI2 formation by a new vasodilator, 2-nicotinamidoethyl nitrate in the coupled system of platelets and aortic microsomes. Prostaglandins. 1980; 19(4):577-586.
    34 Salzman EW, Ware JA. Ionized calcium as an intracellular messenger in blood platelets[J]. Prog. Hemostasis Thromb. 1989;9:177-202.
    35 Rosano GMC, Leonardo F, Pagnotta P, et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease [J]. Circulation. 1999;99:1666-1670.
    36 Webb CM, Adamson DL, De Zeihler D, et al. Effect of acute testosterone on myocardial ischemia in men with coronary artery disease [J]. American Journal of Cardiology. 1999 83:437-439.
    37 Tremblay RR, Dube JY. Plasma concentrations of free and non Te-BG bound testosterone in women on oral contraceptives [J]. Contraception. 1974 10 599-605.
    38 De Pergola G, De Mitrio V, Sciaraffia M, et al. Lower androgenicity is associated with higher plasma levels of prothrombotic factors irrespective of age, obesity, body fat distribution, and related metabolic parameters in men [J]. Metabolism. 1997;46(11):1287-1293.
    39 Kohli M, Fink LM, Spencer HJ, Zent CS. Advanced prostate cancer activates coagulation: a controlled study of activation markers of coagulation in ambulatory patients with localized and advanced prostate cancer [J]. Blood Coagul Fibrinolysis. 2002; 13(1): 1-5.
    40 Pugh PJ, Chaner KS, Parry H, et al. Bio-available testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors [J]. Endocr Res. 2002;28(3):161-173.
    41 Bavenholm P, De Faire U, Landou C, et al. Progression of coronary artery disease in young male post-infarction patients is linked to disturbances of carbohydrate and lipoprotein metabolism and to impaired fibrinolytic function [J]. European Heart Journal. 1998;19: 402-410.
    1 Nowak J, Murray JJ, Oates JA, FitzGerald GA. Biochemical evidence of a chronic abnormality in platelet and vascular function in healthy individuals who smoke cigarettes. Circulation. 1987;76:6-14.
    2 Davi G, Averna M, Catalano I, Barbagallo C, Ganci A, Notarbartolo A, Ciabattoni G, Patrono C. Increased thromboxane biosynthesis in type IIa hypercholesterolemia. Circulation. 1992;85:1792-1798.
    3 Davi G, Catalano I, Averna M, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990;322:1769-1774.
    4 Patrono C. Aspirin as an antiplatelet drug. N Engl J Med. 1994;330:1287-1294.
    5 Ridker PM. High-sensitivity C-reactive protein. Circulation. 2001;103:1813-1818.
    6 Maytin M, Leopold J, Loscalzo J. Oxidant stress in the vasculature.Curr Atheroscler Rep. 1999;1:156-164.
    7 Shiozawa Z, Yamada H, Mabuchic, Hotta T, saito M, Sobue I, Huang YP: Superior sagital sinus thrombosis associated with androgen therapy for hypoplastic anemia. Ann Neurol. 1982;12:578-80.
    8 Jaillard AS, Hommel M, Mallaret M: Venous sinus thrombosis associated with androgens in a healthy young man. Stroke 1994,25:212-13.
    9 Shahidi NT: A review of the chemistry, biological action and clinical applications of anabolic androgenic steroids. Clin therap 2001,23:1355-90.
    10 LI Shi Jun, LI Xiao Ying, LI Jian, et al. Experimental Arterial Thrombosis Regulated by Androgen and Its Receptor via Modulation of Platelet Activation. Thromb Res. 2007; ahead of publication.
    11 Gibbons GH. Endothelial function as a determinant of vascular function and structure: a new therapeutic target. Am J Cardiol. 1997;79:3-8.
    12 Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995;332:481-487.
    13 Born, G V. R., and M. J. Cross. The aggregation of blood platelets. J Physiol. 1963;168:178-195.
    14 Hornberger W, Patscheke H. Hydrogen peroxide and methyl mercury are primary stimuli of eicosanoid release in human platelets. J Clin Chem Clin Biochem. 1989;27(9):567-75.
    15 Iuliano L, Pratico' D, Ghiselli A, Bonavita MS, Violi F. Superoxide dismutase triggers activation of "primed" platelets. Arch Biochem Biophys. 1991;289(1):180-183.
    16 Hall J, Jones RD, Jones TH, Channer KS, Peers C. Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology. 2006;147(6):2675-80.
    17 Zhou ZX, Wong CI, Sar M, Wilson EM. The androgen receptor: an overview. Recent Prog Horm Res.1994;49:249-274.
    18 Quigley CA, DeBellis A, Marschke KB, ElAwady MK, Wilson EM, French FS. Androgen receptor defects:historical, clinical and molecular perspectives. Endocr Rev.1995;16:271-321.
    19 Salzman, E. W.; Ware, J. A. Ionized calcium as an intracellular messenger in blood platelets. Prog. Hemostasis Thromb. 1989;9:177-202.
    20 English KM, Steeds RP, Jones TH, Diver MJ & Channer KS. Low- dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina - A randomized, double-blind, placebo-controlled study. Circulation.2000;102:1906-1911.
    21 Cabeza M, Flores M, Bratoeff E, de la Pena A, Mendez E, Ceballos G. Intracellular Ca2+ stimulates the binding to androgen receptors in platelets. Steroids. 2004;69(11-12):767-72.
    22 Neri, R. Pharmacology and phamacokinetics of flutamide. Urology, 34 (Suppl. 4): 19-21,1989.
    23 Kyrle PA, Minar E, Brenner B, Eichler HG, Heistinger M, Marosi L, Lechner K. Thromboxane A2 and prostacyclin generation in the microvasculature of patients with atherosclerosis-effect of low-dose aspirin. Thromb Haemost. 1989;61(3):374-377.
    24 Lellouche F, Martinuzzo M, Said P, Maclouf J, Carreras LO. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant. Blood. 1991;78(11):2894-2899.
    25 Neichi T, Tomisawa S, Kubodera N, Uchida Y. Enhancement of PGI2 formation by a new vasodilator, 2-nicotinamidoethyl nitrate in the coupled system of platelets and aortic microsomes. Prostaglandins. 1980; 19(4):577-586.
    
    
    1 Peter A,Jens H, Claus C.The relationship of natural androgens to coronary heart disease in males: areview[J].Atherosclerosis.l996;125(1):1-13.
    
    2 吴刚,那彦群,孔祥田.BPH组织中雄激素受体与转化生长因子2β1型受体表达的相关性研究[J].中华泌尿外科杂志.1999;20(5):12-14.
    
    3 Trachtenberg J, Hicks LL, Walsh PC. Androgen- and estrogen-receptor content in spontaneous and experimentally induced ca2nine prostatic hyperplasia. J Clin Invest.1980;65 (5):1051-1059.
    
    4 Peters CA , Barrack ER. Androgen receptor localization in the human prostate : demonstration of heterogeneity using a new method of steroid receptor autoradiography. J Steroid Biochem. 1987;27 (123) :533-541.
    
    5 黄鲁刚,林苹,胡延泽,等.儿童小阴茎和正常阴茎皮肤细胞雄激素受体的观察.中华小儿外科杂志.2000;21(2):55-57.
    
    6 Roehrborn CG, Lange FW, George FW, et al. Changes in amount and intracellular distribution of androgen receptor in human foreskin as a function of age. J Clin Invest;1987;79(1):44-47.
    
    7 Fichman KR, Nyberg LM, BujnovszkyP, et al. The ontogeny of the androgen receptor in human [J].J Clin Endocrinol Metab. 1981;52; (5); :919-923.
    
    8 Mowszowicz I, Riahi M, Wright F, et al. Androgen receptor in human skin cytosol. J Clin Endocrinol Metab. 1981;52(2): 338-344.
    
    9 Mertens HJ, Heineman MJ, Theunissen PH, et al. Androgen ,estrogen and progesterone receptor expression in the human uterus during the menstrual cycle. Eur J Obstet Repord Biol. 2001;98(1):58-65.
    
    10 Mantalaris A, Panoskaltsis N, Sakai Y, et al. Localization of androgen receptor expression in human bone marrow. J Pathol. 2001;193(3):361-366.
    
    11 赵瑛,刘志民.人外周血白细胞AR的鉴定和意义.中华核医学杂志.1995;15(1):51-52.
    
    12 Neri, R. Pharmacology and phamacokinetics of flutamide. Urology. 1989;34(Suppl.4):19-21.
    
    13 Hatakeyama H, Nishizawa M, Nakagawa A, et al. Testosterone inhibits tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. FEBS Lett. 2002;530(1-3):129-132.
    
    14 Hanke H, Lenz C, Hess B, et al. Effect of testosterone on plaque development and androgen receptor expression in the arterial vessel wall.Circulation. 2001;103(10):1382-1385.
    
    15 王彩云,雷立权,邱曙东.大鼠心肌中雄激素受体的免疫组化研究.西安医科大学学报.2000;1(5):345-347.
    
    16 Winter RJA, Trapman J, Vermey M, et al. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem. 1991; 39:927-936.
    
    17 Simental JA, Sar M, Lane MV, et al. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem. 1991;266(1):510-518.
    
    18 van Laar JH, Berrevoets CA, Trapman J, et al. Hormone-dependent androgen receptor phosphorylation is accompanied by receptor transformation in human lymph node carcinoma of the prostate cells. J Biol Chem. 1991;266(6):3734-3738.
    
    19 Syms AJ, Norris JS, Panko WB, et al. Mechanism of androgen-receptor augmentation. Analysis of receptor synthesis and degradation by the density-shift technique. J Biol Chem. 1985;260(1):455-461.
    
    20 Kemppainen JA, Lane MV, Sar M, et al. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem. 1992;267(2):968-974.
    
    21 Baker HW, Burger HG, de Kretser DM, et al. Changes in the pituitary-testicular system with age. Clin Endocrinol (Oxf). 1976;5(4):349-72.
    
    22 Leifke E, Gorenoi V, Wichers C, et al. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort.Clin Endocrinol (Oxf). 2000;53(6):689-695.
    
    23 Harman SM, Metter EJ, Tobin JD, et al. Longitu-dinal effects of aging on serum total and free testosterone levels in. healthy men. Baltimore Longitudinal Study of Aging. J Clin Endo-crinol Metab. 2001;86:724-731.
    24 Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589-598.
    25 Zumoff B, Strain GW, Kream J, et al. Age variation of the 24-hour mean plasma concentrations of androgens, estrogens, and gonadotropins in normal adult men. J Clin Endocrinol Metab. 1982;54(3):534-538.
    26 Gray A, Feldman HA, McKinlay JB, et al. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73(5):1016-1025.
    27 Gray A, Jackson DN, McKinlay JB. The relation between dominance, anger, and hormones in normally aging men: results from the Massachusetts Male Aging Study. Psychosom Med. 1991;53(4):375-385.
    28 Tenover JS, Bremner WJ. The effects of normal aging on the response of the pituitary-gonadal axis to chronic clomiphene administration in men. J Androl 1991;12(4):258-263.
    29 Simon D, Preziosi P, Barrett-Connor E, Roger M, Saint-Paul M, Nahoul K, Papoz L. The influence of aging on plasma sex hormones in men: the Telecom Study. Am J Epidemiol. 1992;135(7):783-791.
    30 Morley JE, Kaiser FE, Perry HM III, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997; 46:410-413.
    31 Zmuda JM, Cauley JA, Kriska A, et al. Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men. A 13 year follow-up of former Multiple Risk Factor Invention Trial participants. Am J Epidemiol 1997; 146: 609-617.
    32 Ferrini RL, Barrett-Connor E. Sex hormones and age: A cross-sectional study of testosterone and estradiol and their bioavailable fractions in communi ty-dwelling men. Am J Epidemiol. 1998; 147 (8):750-754.
    33 Harman SM,Metter EJ,Tobin JD,et al.Longitudinal effects or aging of serum total and free testosterone levels in healthy men J Clin Endocrinol Mctab 2001 ;86:724-731.
    34 Davidson JM, Chen JJ, Crapo L, et al. Hormonal changes and sexual function in aging men. J Clin Endocrinol Metab. 1983;57(1):71-77.
    35 de Pergola G, Pannacciulli N, Ciccone, M., et al. Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int. J. Obes. Relat. Metab. Disord. 2003;27(7):803-807.
    36 Debing E, Peeters E, Duquet W, Poppe K, Velkeniers B, Van Den Brande P. Men with atherosclerotic stenosis of the carotid artery have lower testosterone levels compared with controls.Int Angiol. 2008 Apr;27(2): 135-41.
    37 Janghorbani M, Hedley AJ, Jones RB, et al. Gender differential in all-cause and cardiovascular disease mortality. Iat J Epidemiol. 1993 ;22:1056-1063.
    38 Mendoza SG, Zerpa A, Carrasco H, et al. Estradiol, testosterone, apolipoproteins, lipoprotein cholesterol and lipolytic enzymes in men with premature myocardial infarction and angiographically assessed coronary occlusion. Artery. 1983;12:l-23.
    39 Barth JD, Jansen H, Hugenholtz PG, et al. Post heparin lipases, lipids and related hormones in men undergoing coronary arteriography to assess atherosclerosis. Atherosclerosis 1983;48:235-241.
    40 Hromadova M, Hacik T, Riecansky I. Concentration of lipid, apoprotein-B and testosterone in patients with coronarographic findings. Klin Wochenschr. 1985;63:1071-1074.
    41 Breier C, Muhlberger V, Drexel H, et al. Essential role of post-heparin lipoprotein lipase activity and of plasma testosterone in coronary artery disease. Lancet. 1985;1:1242-1244.
    42 Aksut SV, Aksut G, Karamehmetoglu A, et al. The determination of serum estradiol, testosterone and progesterone in acute myocardial infarction. Jpn Heart J. 1986;27:825-837.
    43 Sewdarsen M, Jialal I, Vythilingum S, et al. Sex hormone levels in young Indian patients with myocardial infarction. Arteriosclerosis. 1986;6:418-421.
    44 Chute CG, Baron JA, Plymate SR, et al. Sex hormones and coronary artery disease. Am J Med. 1987;83:853-859.
    45 Ha¨ma¨la¨inen E, Tikkanen H, Ha¨rkonen M, et al. Serum lipoproteins, sex hormones and sex hormone binding globulin in middle-aged men of different physical fitness and risk of coronary heart disease. Atherosclerosis. 1987;67:155-162.
    46 Lichtenstein MJ, Yamell JW, Elwood PC, et al. Sex hormones, insulin, lipids, and prevalent ischemic heart disease. Am J Epidemiol. 1987;126:647-657.
    47 Swartz CM, Young MA. Low serum testosterone and myocardial infarction in geriatric male inpatients. J Am Geriatr Soc. 1987;35:39-44.
    48 Sewdarsen M, Jialal I, NaiduRK. The low plasma testosterone levels of young Indian infarct survivors are not due to a primary testicular defect. Postgrad Med J. 1988;64:264-266.
    49 Sewdarsen M, Vythilingum S, Jialal I, et al. Abnormalities in sex hormones are a risk factor for premature manifestation of coronary artery disease in South African Indian men. Atherosclerosis. 1990;83:l 11-117.
    50 Rice T, Sprecher DL, Borecki IB, et al. Cincinnati myocardial infarction and hormone family study: family resemblance for testosterone in random and MI families. Am J Med Genet.1993;47:542-549.
    51 Phillips GB, Pinkernell BH, Jing TY. The association of hypotestosteronemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 1994; 14:701-706.
    52 Zhao SP, Li XP. The association of low plasma testosterone level with coronary artery disease in Chinese men. Int J Cardiol. 1998 ;63:161-164.
    53 English KM, Mandour O, Steeds RP, et al. Men with coronary disease have lower levels of androgens than those with coronary angiograms. Eur Heart J. 2000;21:890-895.
    54 Luria MH, Johnson MW, Pego R, et al. Relationship between sex hormones, myocardial infarction, and occlusive coronary disease. Arch Intern Med. 1982;142:42-44.
    55 Labropoulos B, Velonakis E, Oekonomakos P,et al. Serum sex hormones in patients with coronary disease and their relationship to known factors causing atherosclerosis. Cardiology 1982;69:98-103.
    56 Zumoff B, Troxler RG, O'Connor J, et al. Abnormal hormone levels in men with coronary artery disease. Arteriosclerosis. 1982;2:58-67.
    57 Phillips GB, Castelli WP, Abbott RD, et al. Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort. Am J Med. 1983;74:863-869.
    58 Heller RF, Wheeler MJ, Micallef J, et al. Relationship of high density lipoprotein cholesterol with total and free testosterone and sex hormone binding globulin. Acta Endocrinol (Copenh). 1983; 104:253-256.
    59 Small M, Lowe GDO, Beastall GH, et al. Serum oestradiol and not coronary atheroma or haemostasis. Q J Med. 1985;57:775-782.
    60 Franzen J, Fex G. Low serum apolipoprotein A-1 in acute myocardial infarction survivors with normalHDLcholesterol. Atherosclerosis. 1986;59:37-42.
    61 Baumann G, Reza P, Chatterton R, et al. Plasma estrogens, androgens, and von Willebrand factor in men on chronic hemodialysis. Int J Artif Organs. 1988;11:449-453.
    62 Slowinska-Srzednicka J, Zgliczynski S, Ciswicka-Sznajderman M, et al. Decreased plasma dehydroepiandrosterone sulfate and dihydrotestosterone concentrations in young men after myocardial infarction. Atherosclerosis. 1989;79:197-203.
    63 Cengiz K, Alvur M, Dindar U. Serum creatinine phosphokinase, lactic dehydrogenase, estradiol, progesterone, and testosterone levels in male patients with acute myocardial infarction and unstable angina pectoris. Mater Med Pol. 1991;23:195-198.
    64 Hauner H, Stangl K, Burger K, et al. Sex hormone concentration in men with angiographically assessed coronary artery disease-relationship to obesity and body fat distribution. Klin Wochenschr. 1991;69:664-668
    65 Mitchell LE, Sprecher DL, Borecki IB, et al. Evidence for an 70 Marquez-Vidal P, Sie P, Cambou J-P, Chap H, Perret B 1995 Relationships of plasminogen activator inhibitor activity and lipoprotein (a) with insulin, testosterone, 17_-estradiol, and testosterone binding globulin in myocardial infarction patients and healthy controls. J Clin Endocrinol Metab. 1994;80:1794-1798.
    66 Feldman HA, Johannes CB, McKinlay JB, et al. Low dehydroepiandrosterone sulfate and heart disease in middle-aged men: cross-sectional results from the Massachusetts male aging study. Ann Epidemiol. 1998;8:217-228.
    67 Kabakci G, Yildirir A, Can I, et al. Relationship between endogenous sex hormone levels, lipoproteins and coronary atherosclerosis in men undergoing coronary angiography. Cardiology. 1999;92:221-225.
    68 Schuler-Lu¨ttmann S, Mo¨nnig G, Enbergs A, et al. Insulin-like growth factor binding protein-3 is associated with the presence and extent of coronary arteriosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:e10-e15.
    69 Wu FC, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev. 2003,24:183-217.
    70 Alexandersen, J. Haarbo, C. Christiansen. The relationship of natural androgens to coronary heart disease in males: a review. Atherosclerosis. 125 (1996) 1-13.
    71 Sullivan M L, Martinez C M, Gennis P, et al. The cardiac toxicity ofanabolic steroids. Prog Cardiovasc Dis, 1998,41:1-15
    72 Feng Y, Zhu Y, Chen X, et al. Effects of diet-induced hypercholesterolemia on testosterone-regulated protein expression in mice liver. J Nanosci Nanotechno. 2005;5(8): 1273-1276.
    73 Toda T, Toda Y, Cho BH, et al. Ultrastructural changes in the comb and aorta of chicks fed excess testosterone. Atherosclerosis 1984;51:47-57.
    74 Fogelberg M, Bjorkhem I, Diczfalusy U, et al. Stanozolol and experimental atherosclerosis: Atherosclerotic development and blood lipids during anabolic steroid therapy of New Zealand white rabbits. Scand J Clin Lab Invest 1990;50:693-696.
    75 Ludden JB, Brugwer M, Wright IS. Effect of testosterone propionate and estradiol dipropionate on experimental atherosclerosis in rabbits. Arch Pathol. 1942;33:58-62.
    76 Larsen BA, Nordestgaard BG, Stender S, et al. Effect of testosterone on atherogenesis in cholesterol-fed rabbits with similar plasma cholesterol levels. Atherosclerosis. 1993;99:79-86.
    77 Bruck B, Brehme U, Gugel N, et al. Gender-specific differences in the effects of testosterone and estrogen on the development of atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 1997;17:2192-2199.
    78 Alexandersen P, Haarbo J, Byrjalsen et al. Natural androgens inhibit male atherosclerosis: A study in castrated, cholesterol-fed rabbits. Circ Res 1999;84:813-819.
    79 Gordon GB, Bush DE, Weisman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone. A study in the hypercholesterolemic New Zealand white rabbit with aortic intimal injury. J Clin Invest. 1988;82:712-720.
    80 Eich DM, Nestler JE, Johnson DE, et al. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation. 1993;87:261-269.
    81 Osborne-Pellegrin M, Coutard M, Weill D, et al.. Intimal lesions in rat caudal artery. Ablation, replacement, and receptor studies on the protective effects of estrogen. Circ Res. 1980;46:I103-105.
    82 Chen SJ, Li H, Durand J, et al. Estrogen reduces myointimal proliferation after balloon injury of rat carotid artery. Circulation. 1996;93:577-584.
    83 Nathan L, Shi W, Dinh H, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: Critical role of aromatase. Proc Natl Acad Sci USA. 2001;98:3589-3593.
    84 Elhage R, Arnal JF, Pieraggi MT, et al. 17a-estradiol prevents fatty streak formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 1997; 17:2679-2684.
    85 von Dehn G, von Dehn O, Volker W, et al. Atherosclerosis in apolipoprotein E-deficient mice is decreased by the suppression of endogenous sex hormones. Horm Metab Res.2001;33:110-114.
    86 Lin AL, Gonzalez R Jr, Shain SA. Androgen directs apparent cytoplasmic and nuclear distribution of rat cardiovascular androgen receptors. Arteriosclerosis. 1985;5(6):659-67.
    87 Hatzoglou A, Kampa M, Kogia C, et al. Membrane androgen receptor activation induces apoptotic regression of human prostate cancer cells in vitro and in vivo. J Clin Endocrinol Metab. 2005;90(2):893-903.
    88 Benten WP, Guo Z, Krucken J, et al. Rapid effects of androgens in macrophages. Steroids. 2004;69(8-9):585-90.
    89 Benten WP, Becker A, Schmitt-Wrede HP, et al.. Developmental regulation of intracellular and surface androgen receptors in T cells. Steroids. 2002,67(11):925-31.
    90 Guo Z, Benten WP, Krucken J, Wunderlich F. Nongenomic testosterone calcium signaling. Genotropic actions in androgen receptor-free macrophages. J Biol Chem. 2002;277(33):29600-7.
    91 Benten WP, Stephan C, Wunderlich F. B cells express intracellular but not surface receptors for testosterone and estradiol. Steroids. 2002;67(7):647-54.
    92 Zhiyong Guo, W. Peter M. Benten, Ju¨rgen Kru¨cken, and Frank Wunderlich. Nongenomic Testosterone Calcium Signaling. J Biol Chem. 2002;277(33):29600-29607.
    93 Jones RD, English KM, Jones TH, et al. Testosterone-induced coronary vasodilatation occurs via a non-genomic mechanism: evidence of a direct calcium antagonism action. Clin Sci (Lond). 2004;107(2):149-58.
    94 Somjen D, Kohen F, Gayer B, et al. Role of putative membrane receptors in the effect of androgens on human vascular cell growth. J Endocrinol. 2004;180(1):97-106.
    95 Ma R, Wu SZ, Lin QS, et al. Regulation of androgen receptor mRNA expression by testosterone in cultured vascular smooth muscle cells. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(3):298-300.
    96 Ma R, Wu S, Lin Q. Homologous up-regulation of androgen receptor expression by androgen in vascular smooth muscle cells. Horm Res. 2005;63(1):6-14.
    97 Liu PY, Christian RC, Ruan M, Miller VM, Fitzpatrick LA. Correlating androgen and estrogen steroid receptor expression with coronary calcification and atherosclerosis in men without known coronary artery disease. J Clin Endocrinol Metab. 2005;90(2):1041-1046.
    98 Zitzmann M, Brune M, Kornmann B, et al. The CAG repeat polymorphism in the AR gene affects high density lipoprotein cholesterol and arterial vasoreactivity. J Clin Endocrinol Metab. 2001;86:4867-4873.
    99 Alevizaki M,Cimponeriu AT,Garofallaki, et al. The androgen receptor gene CAG polymorphism is associated with the severity of coronary artery disease in men. Clin Endocrinol (Oxf). 2003;59(6):749-755.
    100 Hersberger M, Muntwyler J, Funke H, Marti-Jaun J, Schulte H, Assmann G, Luscher TF, von Eckardstein A. The CAG repeat polymorphism in the androgen receptor gene is associated with HDL-cholesterol but not with coronary atherosclerosis or myocardial infarction. Clin Chem. 2005;51 (7): 1110-5.
    101 Hergenc H, Schulte G, Assmann A, et al. Associations of obesity markers, insulin, and sex hormones with HDL-cholesterol levels in Turkish and German individuals. Atherosclerosis. 1999;145:147-156.
    102 Tchernof A, Labrie F, Belanger A, et al. Obesity and metabolic complications: contribution of dehydroepiandrosterone and other steroid hormones, J. Endocrinol. 1996;150(Suppl.):S155-164.
    103 Tsai E.C, Boyko E.J, Leonetti D.L, et al. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men, Int. J. Obes. Relat. Metab. Disord. 2000;24:485-491.
    104 Zitzmann M, Gromoll J, von Eckardstein A, et al. The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum levels of leptin and insulin in men, Diabetologia. 2003;46:31-39.
    105 Bj(?)orntorp P. The regulation of adipose tissue distribution in humans, Int. J. Obesity. 1996;20:291-302.
    106 Leenen R, van der Kooy K, Seidell JC, et al. Visceral fat accumulation in relation to sex hormones in obese men and women undergoing weight loss therapy, J. Clin. Endocrinol. Metab. 1994;78:1515-1520.
    107 Pasquali R, Macor C, Vicennati V, et al. Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men. Metabolism. 1997;46:526-529.
    108 Couillard C, Gagnon J, Bergeron J, et al. Contribution of body fatness and adipose tissue distribution to the age variation in plasma steroids hormone concentration in men: the HERITAGE family study, J. Clin. Endocrinol. Metab. 2000;85:1026-1031.
    109 Behre HM, Simoni M, Nieschlag E. Strong association between serum levels ofleptin and testosterone in men, Clin. Endocrinol. 1997;47:237-240.
    110 Wang C, Swerdloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. Testosterone Gel Study Group, J. Clin. Endocrinol. Metab. 2000;85:2839-2853.
    111 Whitsel EA, Boyko EJ, Matsumoto AM, et al. Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis, Am J Med. 2001 ;111:261-269.
    112 Langer C, Gansz B, Goepfert C, et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages, Biochem. Biophys. Res. Commun. 2002;296:1051-1057.
    113 Tan KC, Shiu SW, Kung AW. Alterations in hepatic lipase and lipoprotein subtractions with transdermal testosterone replacement therapy, Clin. Endocrinol. (Oxf.).1999;51:765-769.
    114 B€uchter D, Behre HM, Kliesch S, et al. Effects oftestosterone suppression in young men by the gonadotropin releasing hormone antagonist cetrorelix on plasma lipids, lipolytic enzymes, lipid transfer proteins, insulin, and leptin, Exp. Clin. Endocrinol. Diabet. 1999;107:522-529.
    115 von Eckardstein A, Nofer JR, Assmann G. HDL and coronary heart disease: role ofcholesterol efflux and reverse cholesterol transport, Arterioscler. Thromb. Vasc. Biol. 2001;20:13-27.
    116 Danesh J, Collins R, Peto R. Lipoprotein(a) coronary heart disease. Meta-analysis ofprospective studies, Circulation. 2000; 102:1082-1085.
    117 Angelin B. Therapy for lowering lipoprotein(a) levels, Curr. Opin. Lipidol. 1997;8:337-341.
    118 von Eckardstein A, Kliesch S, Nieschlag E, et al. Suppression ofendogeno us testosterone in young men increases serum levels of HDL-sub class LpA-I and lipoprotein(a), Clin. Endocrinol. Metab. 1997;82:3367-3372.
    119 von Eckardstein A, Assmann G. Prevention of coronary heart disease by raising of HDL cholesterol? Curr. Opin. Lipidol. 2000; 11:627-637.
    120 Ross R. Atherosclerosis - an inflammatory disease, N. Engl. J. Med. 340 (1999) 115-126.
    121 McCredie R.J, McCrohon JA, Turner L, et al. Vascular reactivity is impaired in genetic females taking high-dose androgens. J Am Coll Cardiol. 1998;32:1331-1335.
    122 Herman SM, Robinson JTC, McCredie RJ, et al. Androgen deprivation is associated with enhanced endothelium-dependent dilatation in adult men. Arterioscler Thromb Vasc Biol. 1997; 17:2004-2009.
    123 Chou TM, Sudhir K, Hutchison SJ, et al. Testosterone induces dilatation ofcanine coronary conductance and resistance arteries in vivo. Circulation. 1996;94:2614-2619.
    124 Costarella CE, Stallone JN, Rutecki GW, et al. Testosterone causes direct relaxation ofrat thoracic aorta, J. Pharmacol. Exp. Ther. 1996;277:34-39.
    125 Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P. Testosterone relaxes rabbit coronary arteries and aorta. Circulation. 1995 ;91:1154-1160.
    126 Teoh H, Quan A, Leung SW, et al. Differential effects of 17-b-estradiol and testosterone on the contractile responses of porcine coronary arteries. Br J Pharmacol. 2000;129:1301-1308.
    127 Ceballos G, Figueroa L, Rubio I, et al. Acute and nongenomic effects oftestosterone on isolated and perfused rat heart. J Cardiovasc Pharmacol. 1999;33:691-697.
    128 Farhat MY, Wolfe R, Vargas R, et al. Effect oftestostero ne treatment on vasoconstrictor response to left anterior descending coronary artery in male and female pigs. J Cardiovasc Pharmacol. 1995;25:495-500.
    129 Hutchison SJ, Sudhir K, Chou TM, et al. Testosterone worsens endothelial dysfunction associated with hypercholesterolemia and environmental tobacco smoke??exposure in male rabbit aorta, J. Am. Coll. Cardiol. 1997;29:800-807.
    
    130 Geary GG, Krause DN, Duckies SP. Gonadal hormones affect diameter ofmale rat cerebral arteries through endotheliumdependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279:H610-618.
    
    131 Webb CM, McNeil JG, Hayward CS , et al. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease.Circulation. 1999;100:1690-1696.
    
    132 Medras M, Jankowska E. Testosterone and atherosclerosis in males during andropause. Pol Merkariusz Lek.l999;6:205-207.
    
    133 Makondo K, Kimura K, Kitamura N,et al. Hepatocyte growth factor activates endothelial nitric oxide synthase by Ca~(2+) and phosphoinositide 3-kinase/Akt-dependent phosphorylation in aortic endothelial cells. Biochem J. 2003;374(Pt 1):63-69.
    
    134 任国庆,黄从新,孙广辉,侯建民.睾酮对雄性家兔血管损伤后内皮功能及内膜增生的影响.镇江医学院学报.2001;11(3):298-302.
    
    135 Matsuda K, Ruff A, Morinelli TA, et al. Testosterone increase thromboxane A2 receptor density and responsiveness in rat aortas and platelets. Am J Physiol Heart Circ Physiol. 1994;267: H887-H893.
    
    136 Somjen D, Kohen F, Jaffe A, et al . Effects of gonadal steroids and their antagonists on DNA synthesis in human vascular cells. Hypertension. 1998;32:39-45.
    
    137 Williams MR, Ling S, Dawood T, et al. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab. 2002 Jan;87(1):176-81.
    
    138 Furutama D, Fukui R, Amakawa M, et al Inhibition of migration and proliferation of vascular smooth muscle cells by dehydroepiandrosterone sulfate. Biochim Biophys Acta. 1998;1406(1):107-14.
    
    139 Akishita M, OuchiY, Miyoshi H, Kozaki K, et al. Estrogen inhibits cuffmduced intimal thickening ofrat femoral artery: effects on migration and proliferation of vascular smooth muscle cells, Atherosclerosis. 1997;130:1-10.
    
    140 Kolodgie FD, Jacob A, Wilson PS, et al. Estradiol attenuates directed migration of vascular smooth muscle cells in vitro. Am J Pathol. 1996; 148:969-976.
    141 Willams MRI , Ling SH , Dawood T, et al. Dehydroepiandrosterone inhabits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab. 2002;87(1) .176-181.
    142 Fujimoto R, Morimoto I, Marita E, et al. Androgen receptors 5 alpha reductase activity and androgen dependent proliferation of vascular smooth muscle cells. J Steroid biochem Mol Biol. 1994;50:169-174.
    143 Ma R, Wu SZ, Lin QS, et al. Regulation of androgen receptor mRNA expression by testosterone in cultured vascular smooth muscle cells. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(3):298-300.
    144 McCrohon JA, Death AK, Nakhla S, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis, Circulation. 2000;101(3):224-226.
    145 Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem. 1994;269:7217-7223.
    146 Glass CK, Witztum JL. Atherosclerosis: the road ahead.Cell. 2001; 104:503-516.
    147 Zhu XD, Bonet B, Knopp RH. 17b-Estradiol, progesterone, and testosterone inversely modulate low density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages, Am. J. Obstet. Gynecol. 1997; 177:196-209.
    148 AgostinoPD, Milano S, Barbera C, et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci. 1999;876:426-429.
    149 Justice LT, Dauterman K, Smedira NG, et al. Left main dissection and thrombosis in a young athlete. Cardiol Rev. 2005;13(5):260-262.
    150 Cotlar MJ. Androgen-androgenic steroids, the athlete, and mortality. J Insur Med. 2001;33(3):251-6.
    151 Ajayi AA, Mathur R, Halushka PV. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation. 1995;91(11):2742-7.
    
    
    152 司全金,李小鹰.老年雄激素低下患者血液凝血和纤溶系统的变化.中华老年心脑血管病杂志.2005;7(3):157-158.
    
    153 Tan KCB, Shiu SWM, Kung AWC. Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone replacement therapy, Clin. Endocrinol. 1999;51:765-769.
    
    154 Anderson RA, Ludlam CA, Wu FCW. Haemostatic effects of supraphysiological levels oftestosterone in normal men, Thromb. Haemostat. 1995;74:693-697.
    
    155 Eri LM, Urdal P, Bechensteen AG. Effects ofthe luteinizing hormone-releasing hormone agonist leuprolide on lipoproteins, fibrinogen and plasminogen activator inhibitor in patients with benign prostatic hyperplasia. J Urol. 1995; 154:100-104.