用户名: 密码: 验证码:
卟啉化合物的聚集及其与DNA相互作用的光谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以meso-位具有不同侧链的卟啉化合物四-[3-甲氧基-4-(N-咔唑)正丁氧苯基]卟啉(4C4-TPP)和四-[3-甲氧基-4-(N-咔唑)正己氧苯基]卟啉(4C6-TPP)为研究对象,利用吸收光谱、荧光光谱、圆二色谱和拉曼光谱探讨卟啉侧链基团在聚集体形成、聚集体结构及其与DNA结合中所起的作用
     在一定浓度范围内,4C4-TPP和4C6-TPP在有机溶剂四氢呋喃中以单体分子存在,溶于水-四氢呋喃混合溶剂中卟啉分子趋于聚集。特定水-四氢呋喃(tetrahydrofuran,THF)体积比中4C6-TPP以典型的自组装动力学而聚集。4C6-TPP,THF和水三者相互作用形成笼状结构,4C6-TPP分子处于笼中,侧链苯基团中心环的共轭程度增加,聚集体整体结构对称,圆二色信号消失。增加水-四氢呋喃混合溶剂中的离子强度诱导4C6-TPP聚集。降低pH值,导致4C6-TPP质子化进而聚集。以四苯基卟啉和咔唑基团为模型化合物深入研究质子化诱导4C6-TPP聚集的机理,并提出质子化4C6-TPP聚集体的结构模型:借助于外加酸根阴离子,卟啉中心环侧链之间以非共价键作用,分子间规则排列形成J-聚集体。
     4C4-TPP和4C6-TPP侧链插入小牛胸腺DNA(calf thymus DNA,ctDNA),4C4-TPPctDNA的作用不涉及复杂的过程,但是4C6-TPPctDNA以负协同模式分两步相互作用,其结合常数远大于4C4-TPPctDNA的结合常数。
     4C4-TPP和4C6-TPP在聚集及其ctDNA作用中的差异有力的证明了卟啉侧链不仅是形成聚集体结构的关键因素,还影响其DNA的作用
Porphyrin aggregate through non-covalent self-assembly is a common phenomenon and has a crucial role in many systems, especially in the fields of preparation of materials mimic biological systems and photodynamic therapy. Control the structure of porphyrins aggregate and study on the interaction of porphyrin and DNA play an important role in expanding application of porphyrin in the field of biology and medicine.
     Research on porphyrin aggregation and interaction of porphyrin with DNA has drawn greater attention with the expansion of its application. A large number of different structures of porphyrins are synthesized as research objects including natural porphyrins and others obtained by changing the substituent of porphyrin. The most common object is porphyrin with the meso-substituents. The porphyrins aggregation type, aggregation model, factors affecting aggregation, the interaction mode of porphyrin based on the spectroscopy with DNA has basically clear through the joint efforts of researchers. But many of the problems still exist, what merits in-depth study. Especially, the solvent induction to porphyrin aggregation and the influence of substituent on the interaction of porphyrin with DNA have been hot, retroactive issues. Recent studies show that solvent induce porphyrin aggregation througth polar interaction of substituents with solvent moleculars resulting in different morphology of aggregation. The chemical structure of peripheral substituents appears to play a more important role than merely their size in determining the binding preferences of porphyrins. An effective way to resolve these problems is that selecting appropriate solvent and modulating the size of peripheral substituents to explore the origin of the role of substituents on the aggregation and interaction of porphyrin with DNA.
     The structure of 4C4-TPP (meso- tetrakis [3-methoxy-4-(N-carbazyl) n-buxyloxyphenyl] porphyrin, 4C4-TPP) and 4C6-TPP (meso-tetrakis [3-methoxy-4-(N-carbazyl) n-hexyloxyphenyl] porphyrin, 4C6-TPP) are similar, the only difference is that the size of substituent of the later is longer than that of former. Hence, they are chose to be the model to study on the solvent induction of porphyrin aggregation and the effect of substituent on the interaction of porphyrin with DNA.
     Thus, this paper uses 4C4-TPP and 4C6-TPP as cases study to elucidate the solvent effects on the aggregation and the interaction of porphyrin with DNA through measured by absorption spectrum, fluorescent spectrum, Circular Dichorism (CD) and Raman spectrum. In special solvent conditions, 4C6-TPP tend to aggregate through autocatalytic-like kinetics and the location of the phenyl groups plays a key role in the determination of the structure of the aggregate. Based on the understanding of porphyrin aggregation, 4C4-TPP and 4C6-TPP are interacted with calf thymus-DNA (ctDNA) to validate the conclusion that the chemical structure of peripheral substituents appears to play a more important role than merely their size in determining the binding preferences of porphyrins.
     (a) Study on the porphyrin aggregation
     The term molecular self-assembly can be defined as the spontaneous association of two or more molecules under thermodynamic equilibrium resulting in the generation of well-defined aggregates (strict self-assembly) or of extended polymolecular assemblies (self-organization) by means of noncovalent interactions such as hydrogen bonds, metal-coordination orπ-πinteractions. Porphyrin tends to aggregate through self-assembly under special solution conditions.
     4C4-TPP and 4C6-TPP tend to be monomer in organic (tetrahydrofuran, THF) in certain range of concentration. 4C4-TPP is monomer when the concentration is less than 3.34×10-6M; 4C6-TPP is monomer as the concentration is less than 4.49×10-6M. Exceeding this range, porphyrins tend to generate aggregate resulting from the intermolecular or intramolecular force.
     In special aqueous-organic solution, 4C6-TPP tends to aggregate with autocatalytic-like kinetic process. The increased conjugation of the meso-phenyl rings with the porphyrin core brings about the red shift of the electronic absorption and the increase of phenyl mode in Raman spectra. Solvent effects on the 4C6-TPP aggregate result equally in the non-planarity of the porphyrin and its substituents and the close stacking of the porphyrin monomers, then CD signal disappear. The complex of 4C6-TPP and water had the possibility to form a structure like a cage deduced by the classical clathrate structures, in which 4C6-TPP molecules existed inside the cavity composed of water. The hydroxyl group of the 4C6-TPP can be expected to form a strongly directional hydrogen bond with the water framework driving the rotation of the phenyl groups to be coplanar with the porphyrin core. In order to form hydrogen bonds, the alkyl and carbazole groups rotated to a position resulting in the equal compromise of the non-planarity of the porphyrin and substituents and the close stacking of porphyrin monomers.
     Study on the effect of pH and ionic strength to the aggregation of 4C6-TPP in aqueous-organic solution. Increasing ionic strength, the structure of aggregate tends to change. Upon addition of HCl, the pronated 4C6-TPP was found to form J-aggregate and exhibit“hyper”spectra as witnessed by a red-shifted Soret band and one broad band in 694 nm. Fluorescence spectra were deeply affected by protonation and the one-band emission converted to two-band emission. Comparison of the Raman spectra of the protonated 4C6-TPP and non-protonated indicated the former exhibited some new bands in the region of 200 cm-1 and 900 cm-1 involved in the Cmeso-Cphenyl stretching vibration and deformation of porphyrin ring. These new bands tended to be more intense with HCl concentration increased. The experimental evidence showed the dependence of the protonation and aggregation behavior on the concentration of HCl and there were obviously differences between the aggregation of partly protonated and fully protonated species. The nonplanar deformations of porphyrin core were responsible for the red-shifted electronic spectra. Based on the constructed model of TPP and carbazole, the fully protonated J-aggregate of 4C6-TPP involved the porphyrin core and substituents of carbazoles.
     (b) Study on the interaction of porphyrin and DNA
     The interaction of 4C4-TPP and 4C6-TPP with calf thymus-DNA (ctDNA) is explored by UV-vis, fluorescence and CD spectra. The results suggest that 4C4-TPP and 4C6-TPP that porphyrin outside binds ctDNA but peripheral substituents intercalated. The interaction of 4C4-TPP and ctDNA generate the red shift of Soret band (△λ=3nm) and isobestic point at 445nm. For 4C6-TPP, there is no isobestic point resulted from its interaction with ctDNA, but show the great red shift of Soret band (△λ=14nm) and absorption of 4C4-TPP interacted with ctDNA. The isobestic point in the absorption imply that the interaction of 4C4-TPP with ctDNA does not involve complex binding process and the binding constants by calculation is 2.44×103 L?mol-1。However, the Scatchard plots reveal that binding of 4C6-TPP to ctDNAshows negative cooperativity. Thus this binding involves two stages: (a) initial binding to ionic sites on the ctDNA driven by ionic interaction of4C6-TPP with ionic sites on the ctDNA; (b) binding of peripheral alkyl substituents of the porphyrins to hydrophobic patches close to the ionic sites in the ctDNA. The difference of binding showed by 4C4-TPP and 4C6-TPP suggest the chemical structure of peripheral substituents plays a more important role than merely their size in determining the binding preferences of porphyrins.
     In summary, this paper uses 4C6-TPP and 4C6-TPP with similar structure but different substituents as cases study to elucidate the solvent effects on the porphyrin aggregation and interaction of porphyrin with ctDNA. All the results demonstrate the peripheral substituents play a key role in the determination of the structure of the aggregate and the interaction of porphyrin with DNA. Thus, it has great significance to realize the possibility of controlling the size, the structural, and spectroscopic features of aggregation of porphyrins and expanding application of porphyrin in the fields of preparation of materials mimic biological systems and photodynamic therapy. Meanwhile, it provides a theoretical basis for further research the interaction mechanism of porphyrin with interaction.
引文
1. Haycock RA, Hunter CA, James DA, et al., Self-assembly of oligomeric porphyrin rings. Org Lett 2000, 2(16):2435~2438.
    2. Okada S, Segawa H. Substituent-control exciton in J-aggregates of protonated water-insoluble porphyrins. J Am Chem Soc 2003, 125(9):2792~2796.
    3. Shirakawa M, Kawano S, Fujita N, et al., Hydrogen-bond-assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system. J Org Chem 2003, 68(13):5037~5044.
    4. Barton SD, Ollis WD. Comprehensive organic chemistry. London: Pergamon Press 1979, 4, 321.
    5. 王杏乔, 高爽, 于连香, 等. 卟啉纳米材料的新法合成. 高等学校化学学报 1998, 19(6):854~857.
    6. 李向清, 徐跃, 石莹岩, 等. 系列经基苯基卟啉单体的合成表征. 自然科学进展 2002, 12(2):201~204.
    7. 曹锡章, 修正坤, 牟西海, 等. 尾式卟啉铁配合物有机碱的加合作用. 化学学报 1985, 43(11):1043~1047.
    8. 朱志昂, 张智慧, 江冬青, 等. 四苯基卟吩及取代四苯基卟啉铁配合物的紫外可见光谱研究. 光谱学光谱分析 1990, 10(1):15~20.
    9. Steinberg-Yfrach G, Rigaud JL, Durantini EN, et al., Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 1998, 392(6675):479~482.
    10. Ellis PE, Lyons JE. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins-The search for a suprabiotic system. Coord Chem Rev, 1990, 105(181~193).
    11. Damrauer NH, Hodgkiss JM, Rosenthal J, et al., Observation of proton-coupledelectron transfer by transient absorption spectroscopy in a hydrogen-bonded, porphyrin donor-acceptor assembly. Journal of Physical Chemistry B 2004, 108(20):6315~6321.
    12. D'Souza F, Smith PM, Zandler ME, et al., Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. Journal of the American Chemical Society 2004, 126(25):7898~7907.
    13. Li BS, Li J, Fu YQ, et al., Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials. Journal of the American Chemical Society 2004, 126(11):3430~3431.
    14. Kang J, Wu H, Lu X, et al., Study on the interaction of new water-soluble porphyrin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 2005, 61(9):2041~2047.
    15. Ali H, van Lier JE. Metal complexes as photo- and radiosensitizers. Chemical Reviews 1999, 99(9):2379~2450.
    16. 董润安, 邱勇, 宋心琦. 卟啉类化合物对生物分子的光敏化氧化. 化学进展, 10(1):45~54.
    17. 杨继彰. 1994 年世界新药的研究和开发. 中国新药杂志 1995, 4(3):59~61.
    18. 侯长军, 郝燕, 霍丹群. 卟啉及其衍生物抗癌活性机理研究进展. 生物医学工程研究 2007, 26(1):97~100.
    19. Maji SK, Banerjee A, Drew MGB, et al., Self-assembly of a tetrapeptide in which a unique supramolecular helical structure is formed via intermolecular hydrogen bonding in the solid state. Tetrahedron Letters 2002, 43(38):6759~6762.
    20. Schweiger M, Seidel SR, Arif AM, Stang PJ. The Self-Assembly of an Unexpected, Unique Supramolecular Triangle Composed of Rigid SubunitsAngew Chem Int Ed Engl 2001, 40(18):3467~3469.
    21. Lu JZ, Huang JW, Fan LF, L et al., Supramolecular self-assembly of porphyrin-fluorescein hybrid with amino-porphyrinatocopper(II) and its fluorescence strengthening character. Inorganic Chemistry Communications 2004, 7(9):1030~1033.
    22. Tsuda A, Sakamoto S, Yamaguchi K, et al., A novel supramolecular multicolor thermometer by self-assembly of pi-extended zinc porphyrin complex. Journal of the American Chemical Society 2003, 125(51):15722~15723.
    23. Barkigia KM, Battioni P, Riou V, et al., Supramolecular self-assembly of a fluorinated Zn porphyrin. Molecular structure of a two-dimensional network of amine-functionalized, hexacoordinated Zn porphyrins. Chemical Communications 2002(9):956~957.
    24. Vinodu M, Goldberg I. Porphyrin networks. Synthesis and supramolecular self-assembly of 5,10,15-tri(4-hydroxyphenyl)-20-(2-quinolyl) metalloporphyrins. Crystengcomm 2003, 5:490~494.
    25. Mateos-Timoneda MA, Crego-Calama M, Reinhoudt DN. Supramolecular chirality of self-assembled systems in solution. Chem Soc Rev 2004, 33(6):363~372.
    26. Khairutdinov RF, Serpone N. Photoluminescence and Transient Spectroscopy of Free Base Porphyrin Aggregates. J Phys Chem B 1999, 103:761~769.
    27. Granville DJ, McManus BM, Hunt DW. Photodynamic therapy: shedding light on the biochemical pathways regulating porphyrin-mediated cell death. Histol Histopathol 2001, 16(1):309~317.
    28. Bickers DR. Photoradiation diagnosis and therapy. Dermatologic and photobiologic aspects. Invest Radiol 1986, 21(11):885~890.
    29. Jelly EE. Spectral absorption and fluorescence of dyes in the molecular state.Nature 1936, 138:1009~1010.
    30. Scheibe G.. Variability of the absorption spectra of some sensitizing dyes and its cause. Angew chem 1936, 49:563~563.
    31. Robert F. Pasternack, Huber PR, Boyd P, et al., Aggregation of meso-substituted water-soluble porphyrins J Am Chem Soc 1972, 94(13):4511~4517.
    32. Ojadi E, Selzer R, Linschitz H. Properties of porphyrin dimers, formed by pairing cationic and anionic porphyrins. J Am Chem Soc 1985, 107(25):7783~7784.
    33. Kano K, Fukuda K, Wakami H, et al., Factors influencing self-aggregation tendencies of cationic porphyrins in aqueous solution. Journal of the American Chemical Society 2000, 122(31):7494~7502.
    34. Eisfeld A, Briggs JS. The J- and H-bands of organic dye aggregates. Chemical Physics 2006, 324(2-3):376~384.
    35. Nakamura A, Mizutani Y, Okuyama N, et al., Formation of J-aggregates of mixed merocyanine dyes in Langmuir-Blodgett films. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 284:89~92.
    36. Maiti NC, Mazumdar S, Periasamy N. J- and H-aggregates of porphyrins with surfactants: Fluorescence, stopped flow and electron microscopy studies. Journal of Porphyrins and Phthalocyanines 1998, 2(4-5):369~376.
    37. Fleming AJ, Coleman JN, Dalton AB, et al., Optical spectroscopy of isolated and aggregate hexabenzocoronene derivatives: A study of self-assembling molecular nanowires. Journal of Physical Chemistry B 2003, 107(1):37~43.
    38. Ohno O, Kaizu Y, Kobayashi H. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J Chem Phys 1993, 99(5):4128~4139.
    39. Rubires R, Crusats J, El-Hachemi Z, et al., Self-assembly in water of the sodium salts of meso-sulfonatophenyl substituted porphyrins. New Journal of Chemistry 1999, 23(2):189~198.
    40. 石双群, 杨国营, 郝振芳, 等. 卟啉化合物的聚集作用. 化学通报 2001, 64(6):360~364.
    41. Akins DL, Zhu HR, Guo C. Aggregation of Tetraaryl-Substituted Porphyrins in Homogeneous Solution J Phys Chem 1996, 100(13):5420~5425.
    42. Chowdhury A, Wachsmann Hogiu S, Bangal PR, et al., Characterization of chiral H and J aggregates of cyanine dyes formed by DNA templating using stark and fluorescence spectroscopies. Journal of Physical Chemistry B 2001, 105(48):12196~12201.
    43. Aggarwal LPF, Borissevitch IE. On the dynamics of the TPPS4 aggregation in aqueous solutions - Successive formation of H and J aggregates. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2006, 63(1):227~233.
    44. Wasbotten IH, Conradie J, Ghosh A. Electronic Absorption and Resonance Raman Signatures of Hyperporphyrins and Nonplanar Porphyrins. J Phys Chem B 2003, 107:3613~3623.
    45. 褚明福, 刘洋, 郭灿城. 卟啉化合物结构和荧光性能的关系. 精细化工中间体 2002, 32(4):24~25.
    46. Harriman A, Hosie RJ. J Chem Soc, Faraday Trans2 1981, 77:1695.
    47. Picaud T, Le Moigne C, Loock B, et al., Nonplanar distortions of bis-base low-spin iron(II)-porphyrinates: absorption and resonance Raman investigations of cross-trans-linked iron(II)-basket-handle porphyrin complexes. J Am Chem Soc 2003, 125(38):11616~11625.
    48. De Luca G, Romeo A, Scolaro LM. Counteranion dependent protonation and aggregation of tetrakis(4-sulfonatophenyl)porphyrin in organic solvents. J Phys Chem B 2006, 110(14):7309~7315.
    49. De Luca G, Romeo A, Scolaro LM. Role of counteranions in acid-induced aggregation of isomeric tetrapyridylporphyrins in organic solvents. J Phys ChemB 2005, 109(15):7149~7158.
    50. Monti D, Venanzi M, Mancini G, et al., Supramolecular chirality control by solvent changes. Solvodichroic effect on chiral porphyrin aggregation. Chem Commun 2005(19):2471~2473.
    51. Bhyrappa P, Bhavana P. Unusual solvent dependent optical absorption spectral properties of free∽ base perhaloporphyrins. Chemical Physics Letters 2001, 342(1-2):39~44.
    52. Borovkov VV, Hembury GA, Inoue Y. The origin of solvent-controlled supramolecular chirality switching in a Bis(Zinc porphyrin) system. Angew Chem Int Ed 2003, 42(43):5310~5314.
    53. Fiel RJ, Howard JC, Mark EH, et al., Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res 1979, 6(9):3093~3118.
    54. Pasternack RF, Ewen S, Rao Aea. Interactions of copper(II) porphyrins with DNA. Inorg Chim Acta 2001, 317(1):59~71.
    55. Sari MA, Battioni JP, Mansuy D, et al., Mode of interaction and apparent binding constants of meso-tetraaryl porphyrins bearing between one and four positive charges with DNA. Biochem Biophys Res Commun 1986, 141(2):643~649.
    56. Ishikawa Y, Yamashita T, Tomisugi Y, et al., Interaction of porphyrins bearing peripheral cationic heterocycles with G-quadruplex DNA. Nucleic Acids Res Suppl 2001(1):107~108.
    57. Sari MA, Battioni JP, Dupre D, et al., Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry 1990, 29(17):4205~4215.
    58. Mettath S, Munson BR, Pandey RK. DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug Chem 1999, 10(1):94~102.
    59. 靳兰, 扬频, 李青山. 荧光法研究手性金属配合物 DNA 的作用机理. 高等学校化学学报 1996, 17(9):1345~1348.
    60. Tjahjono DH, Kartasasmita RE, Nawawi A, et al., Binding of tetrakis(pyrazoliumyl)porphyrin and its copper(II) and zinc(II) complexes to poly(dG-dC)2 and poly(dA-dT)2. J Biol Inorg Chem 2006, 11(4):527~538.
    61. Feng Y, Pilbrow JR. Porphyrin intercalation and non-specific 'edge on' outside binding to natural DNA. Biophys Chem 1990, 36(2):117~131.
    62. Lee S, Jeon SH, Kim B J, et al., Classification of CD and absorption spectra in the Soret band of H2TMPyP bound to various synthetic polynucleotides. Biophys Chem 2001, 92:35~45.
    63. Pasternack RF, Giannetto A, Pagano P, et al., Self-Assembly of Porphyrins on Nucleic Acids and Polypeptides. J Am Chem Soc 1991, 113:7799~7800.
    64. Ghazaryan AA, Dalyan YB, Haroutiunian SG, et al., Thermodynamics of interactions of water-soluble porphyrins with RNA duplexes. J Am Chem Soc 2006, 128(6):1914~1921.
    65. Lipscomb LA, Zhou FX, Presnell SR, et al., Structure of DNA-porphyrin complex. Biochemistry 1996, 35(9):2818~2823.
    66. Kuroda R, Takahashi E, Austin CA, et al., DNA binding and intercalation by novel porphyrins: role of charge and substituents probed by DNase I footprinting and topoisomerase I unwinding. FEBS Lett 1990, 262(2):293~298.
    67. Pasternack RF, Garrity P, Ehrlich B, et al., The influence of ionic strength on the binding of a water soluble porphyrin to nucleic acids. Nucleic Acids Res 1986, 14(14):5919~5931.
    68. Kim JO, Lee YA, Yun BH, et al., Binding of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to AT oligomers: effect of chain length and the location of the porphyrin stacking. Biophys J 2004,86(2):1012~1017.
    69. Jin B, Sub Shin J, Hwan Bae C, et al., Minor groove binding of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to various duplex and triplex polynucleotides. Biochim Biophys Acta 2006, 1760(7):993~1000.
    70. Jin B, Lee HM, Lee YA, et al., Simultaneous binding of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin and 4',6-diamidino-2- phenylindole at the minor grooves of poly(dA).poly(dT) and poly[d(A-T)(2)]: fluorescence resonance energy transfer between DNA bound drugs. J Am Chem Soc 2005, 127(8):2417~2424.
    71. Pasternack RF, Gibbs EJ, Villafranca JJ. Interactions of porphyrins with nucleic acids. Biochemistry 1983, 22(10):2406~2414.
    72. Tong AJ, Tong CY, Yang QY. Study on the binding mode of zinc(II) protoporphyrin and ctDNA in water. Spectrochim Acta A Mol Biomol Spectrosc 2003, 59(13):2967~2970.
    73. Tjahjono DH, Mima S, Akutsu T, et al., Interaction of metallopyrazoliumylporphyrins with calf thymus DNA. J Inorg Biochem 2001, 85(2 ∽ 3):219~228.
    74. 熊亚, 黄素秋, 吴鼎泉, 等. 两种水溶性卟啉 DNA 相互作用的研究. 物理化学学报 1996, 12(6):543 ∽ 546.
    75. Kelly JM, Murphy MJ, McConnell DJ, et al., A comparative study of the interaction of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation. Nucleic Acids Res 1985, 13(1):167~184.
    76. 黄承志, 胡小莉, 刘希东, 等. Meso-四[对-三甲基铵基)苯基]卟啉在核酸分子表面长距组装的荧光特性及分析应用. 西南师范大学学报 1997, 22(6):648~653.
    77. Pasternack RF, Gibbs EJ, Collings PJ, et al., J Am Chem Soc 1998, 120:5873~5878.
    78. Pasternack RF, Goldsmith JI, Szep S, et al., A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies. Biophys J 1998, 75(2):1024~1031.
    79. Carvlin MJ, Fiel RJ. Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA. Nucleic Acids Res 1983, 11(17):6121~6139.
    80. Lang K, Anzencbacher P, Kapusta P, et al., Long-range assemblies on poly(dG-dC)2 and poly(dA-dT)2: phosphonium cationic porphyrins and the importance of the charge. J Photochem Photobiol B 2000, 57(1):51~59.
    81. Huo C, Zhang HD, Guo JH, et al., Synthesis and assembly with mesoporous silica of platinum (II) porphyrin complexes bearing carbazyl groups: Luminescent and oxygen sensing properties. Chinese Science Bulletin 2006, 51(19):2327~2334.
    82. 任奇志, 黄锦汪, 刘展良, 计亮年. 单核铁双卟啉配合物的可见光谱及其构象. 光 谱 学 光 谱 分 析 1999, 19(1):38~40.
    83. Kasha M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat Res 1963, 20:55~70.
    84. Pasternack RF, Gibbs EJ, Bruzewicz D, et al., Kinetics of disassembly of a DNA-bound porphyrin supramolecular array. J Am Chem Soc 2002, 124(14):3533~3539.
    85. Barber DC, Freitag RA, Whitten DG. Atropisomer-specific formation of premicellar porphyrin J-aggregates in aqueous surfactant solutions J Phys Chem 1991, 95(10):4074~4086.
    86. Zhang YH, Chen DM, He TJ, et al., Raman and infrared spectral study ofmeso-sulfonatophenyl substituted porphyrins (TPPSn, n=1, 2A, 2O, 3, 4). Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2003, 59(1):87~101.
    87. Burke JM, Kincaid JR, Spiro TG. Resonance Raman Spectra and Vibrational Modes of Iron( 111) Tetraphenylporphine p-Oxo Dimer. Evidence for Phenyl Interaction and Lack of Dimer Splitting. J Am Chem Soc 1978, 100(19):6077~6083.
    88. Stein P, Ulman A, Spiro TG. Resonance Raman Spectra of S2TPP, SSeTPP, Se2TPP, and H2TPP: Extended Tetraphenylporphine Vibrational Assignments and Bonding Effects. J Phys Chem 1984, 88:369 ∽ 374.
    89. Terekhov SN, Kruglik SG, Malinovskii VL, et al., Resonance Raman characterization of cationic Co(II) and Co(III) tetrakis(N-methyl-4-pyridinyl)porphyrins in aqueous and non-aqueous media. J Raman Spectrosc 2003, 34(11):868~881.
    90. Fuchsman WH, Smith QR, Stein MM. Direct Raman evidence for resonance interactions between the porphyrin ring system and ring-conjugated substituents in porphyrins, porphyrin dications, and metalloporphyrins. J Am Chem Soc 1977, 99(12):4190~4192.
    91. Li X-Y, Czernuszewicz RS, Kincaid JR, et al., Consistent porphyrin force field. 2. Nickel octaethylporphyrin skeletal and substituent mode assignments from nitrogen-15, meso-d4, and methylene-d16 Raman and infrared isotope shifts J Phys Chem 1990, 94(1):47~61.
    92. Kitagawa T, Ozaki Y. Infrared and Raman spectra of metalloporphyrins. Struct Bonding 1987, 64:71~114.
    93. Desbois A, Momenteau M, Lutz M. Resonance Raman spectroscopy of iron(II) superstructured porphyrins: influence of porphyrin distortions on carbonyl anddioxygen ligand dissociation Inorg Chem 1989, 28(5):825~834.
    94. Dixit S, Crain J, Poon WC, et al., Molecular segregation observed in a concentrated alcohol ∽ water solution. Nature 2002, 416(6883):829~832.
    95. Udachin KA, Ripmeester JA. A complex clathrate hydrate structure showing bimodal guest hydration. Nature 1999, 397(6718):420~423.
    96. Rush TS, Kozlowski PM, Piffat CA, et al., Computational Modeling of Metalloporphyrin Structure and Vibrational Spectra: Porphyrin Ruffling in NiTPP J Phys Chem B 2000, 104(20):5020~5034.
    97. Sehlstedt U, Kim SK, Carter P, et al., Interaction of cationic porphyrins with DNA. Biochemistry 1994, 33(2):417~426.
    98. Ding L, Balzarini J, Schols D, et al., Anti-human immunodeficiency virus effects of cationic metalloporphyrin-ellipticine complexes. Biochem Pharmacol 1992, 44(8):1675~1679.
    99. Onuki J, Ribas AV, Medeiros MH, et al., Supramolecular cationic tetraruthenated porphyrin induces single-strand breaks and 8-oxo-7,8-dihydr-2'-deoxyguanosine formation in DNA in the presence of light. Photochem Photobiol 1996, 63(3):272~277.
    100. Fiel RJ. Porphyrin-nucleic acid interactions: a review. J Biomol Struct Dyn 1989, 6(6):1259~1274.
    101. Zupan K, Herenyi L, Toth K, et al., Binding of cationic porphyrin to isolated and encapsidated viral DNA analyzed by comprehensive spectroscopic methods. Biochemistry 2004, 43(28):9151~9159.
    102. Zupan K, Herenyi L, Toth K, et al., Binding of cationic porphyrin to isolated DNA and nucleoprotein complex: quantitative analysis of binding forms under various experimental conditions. Biochemistry 2005, 44(45):15000~15006.
    103. Pachter JA, Huang CH, DuVernay VH, et al., Viscometric and fluorometricstudies of deoxyribonucleic acid interactions of several new anthracyclines. Biochemistry 1982, 21(7):1541~1547.
    104. Wei C, Jia G, Yuan J, et al., A spectroscopic study on the interactions of porphyrin with G∽ quadruplex DNAs. Biochemistry 2006, 45(21):6681~6691.
    105. Anantha NV, Azam M, Sheardy RD. Porphyrin binding to quadrupled T4G4. Biochemistry 1998, 37(9):2709~2714.
    106. Chaires JB. Analysis and interpretation of ligand-DNA binding isotherms. Methods Enzymol 2001, 340:3~22.
    107. Keating LR, Szalai VA. Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin. Biochemistry 2004, 43(50):15891~15900.
    108. De S, Girigoswami A, Das S. Fluorescence probing of albumin-surfactant interaction. J Colloid Interface Sci 2005, 285(2):562~573.
    109. Uno T, Hamasaki K, Tanigawa M, et al., Binding of meso-Tetrakis(N-methylpyridinium-4-yl)porphyrin to Double Helical RNA and DNA.RNA Hybrids. Inorg Chem 1997, 36(8):1676~1683.
    110. Gray TA, Yue KT, Marzilli LG. Effect of N-alkyl substituents on the DNA binding properties of meso-tetrakis (4-N-alkylpyridinium-4-yl)porphyrins and their nickel derivatives. J Inorg Biochem 1991, 41(3):205~219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700