小分子重组免疫毒素GnRH-luffinS的制备及其靶向治疗肿瘤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组免疫毒素是由靶向区和细胞毒性区组成、可以识别并选择性杀伤特定细胞的融合蛋白,是一类重要的肿瘤靶向性治疗药物。靶向区为能与肿瘤细胞表面抗原特异结合的抗体、细胞因子或激素,毒性区为细菌毒素,如铜绿假单胞菌外毒素(PE)和白喉毒素(DT),或植物毒素,如蓖麻毒素(RT)、美洲商陆抗病毒蛋白(PAP)和皂草素等。重组免疫毒素用于恶性肿瘤的导向治疗已取得很大成功,如以人IL-2为导向分子,以DT为毒性部分的免疫毒素制剂(商品名ONTKA)已获得美国FDA批准,用于治疗皮肤T细胞淋巴瘤(CTCL),另有多种重组免疫毒素在临床试验研究中也显示出良好的抗肿瘤效果。尽管重组免疫毒素具有广阔的应用前景,但是在临床应用中仍面临许多挑战,如免疫原性强和穿透性差,解决方法之一就是构建小分子的重组免疫毒素。
     丝瓜毒素(luffin)LuffinP1和luffinS2是从丝瓜籽中分离到的两种只有5kDa和8kDa的小分子量I型核糖体失活蛋白(RIP),具有N-糖苷酶活性,能特异性水解真核细胞核糖体28s rRNA 4324位的腺嘌呤,使真核细胞核糖体60s大亚基失活,从而抑制蛋白质合成,对兔网织红细胞裂解液的IC50分别为10-9和10-10M左右,可作为潜在的免疫毒素弹头分子。人Ⅰ型促性腺激素释放激素( gonadotropin-releasing hormone, GnRH或luteinizing hormone-releasing hormone, LHRH)是下丘脑分泌的一种十肽类激素,用于调控脑垂体促黄体生成素(LH)和促卵泡激素(FSH)的分泌。GnRH受体通常分布于脑垂体、性腺的细胞膜上,但研究发现,GnRH受体也高表达于某些癌细胞表面,如乳腺癌、卵巢癌、子宫内膜癌、胰腺癌、前列腺癌及肝癌细胞等。因此GnRH和相关肽已经应用于妇科学和肿瘤学领域的研究,如用于性腺机能减退、不育症和性腺依赖性肿瘤的治疗。另外,肿瘤细胞表面的GnRH受体与GnRH有较高的亲和力,因此GnRH可以作为肿瘤靶向治疗中的导向分子。如制备的LHRH-PE40重组免疫毒素对人多种肿瘤细胞系有明显的杀伤作用,目前已进入临床试验阶段。因此,以GnRH为导向分子、以luffinP1或luffinS2为毒性部分构建的重组免疫毒素是一种潜在的免疫原性低、穿透力强的小分子抗肿瘤药物。
     本文首先克隆并原核表达了luffinP1和luffinS2蛋白,测定其蛋白合成抑制作用,筛选活性较高的蛋白作为重组免疫毒素的毒性部分;随后将GnRH与luffinS2进行基因融合,原核表达并纯化GnRH-luffinS2和luffinS2-GnRH融合毒素,测定其体外细胞毒作用;因为铜绿假单胞菌外毒素转膜区(PEⅡ区)具有蛋白酶识别位点和转膜功能,能提高重组免疫毒素的转膜效率,并能使重组免疫毒素的毒性部分和导向部分在胞内分离,从而提高重组免疫毒素的细胞毒作用,所以将其插入到GnRH和luffinS2之间,构建GnRH-PEⅡ-luffinS重组免疫毒素,表达纯化后测定其体内外抑肿瘤活性。具体的实验内容和结果如下:
     1. luffinP1和luffinS2全长基因的克隆、表达和活性研究
     (1)利用Codon软件,设计luffinP1和luffinS2的重叠PCR引物,通过对重叠PCR反应体系和条件的优化,扩增得到了luffinP1和luffinS2的全长基因。(2)luffinP1和luffinS2分别与表达载体pET-His、pET32a、pQE30和pBV220连接,构建pET-His/luffinP1、pET-His/luffinS2、pET32a/luffinP1、pET32a/luffinS2、pQE30/luffinP1、pQE30/luffinS2、pBV220/luffinP1和pBV220/luffinS2表达载体,转化宿主菌,并诱导表达。结果只有pET32a/luffinP1和pET32a/luffinS2转化BL21(DE3)大肠埃希杆菌后获得表达,且均为可溶性表达。经亲和层析纯化后,获得Trx-luffinP1和Trx-luffinS2融合蛋白。随后,利用重组肠激酶(rEK)将Trx-luffinP1和Trx-luffinS2融合蛋白切割,获得rluffinP1和rluffinS2。(3)测定rluffinP1和rluffinS2对兔网织红细胞裂解液的蛋白合成抑制作用。结果表明,rluffinP1和rluffinS2的IC50分别为9.51μg/ml和1.58μg/ml,因此选择luffinS2作为重组免疫毒素的毒性部分。
     2. GnRH-luffinS2和luffinS2-GnRH融合蛋白的克隆、表达和活性研究
     (1)因为无法确定GnRH和luffinS2的连接顺序对GnRH和luffinS2的活性是否有影响,因此设计了GnRH-luffinS2(GnRH在N端)和luffinS2-GnRH(GnRH在C端)融合蛋白,并对其二级进行预测。(2)利用Codon软件,设计了GnRH-luffinS2和luffinS2-GnRH的重叠PCR引物,通过对重叠PCR反应体系和条件的优化,扩增得到了GnRH-luffinS2和luffinS2-GnRH的全长基因。(3)GnRH-luffinS2和luffinS2-GnRH分别与pET-His、pET32a、pQE30和pBV220连接,构建pET-His/GnRH-luffinS2、pET-His/luffinS2-GnRH、pET32a/GnRH-luffinS2、pET32a/luffinS2-GnRH、pQE30/GnRH-luffinS2、pQE30/luffinS2-GnRH、pBV220/GnRH-luffinS2和pBV220/luffinS2-GnRH原核表达载体,转化宿主菌,并诱导表达。结果只有pET32a/GnRH-luffinS2和pET32a/luffinS2-GnRH转化BL21(DE3)后获得表达,且均为可溶性表达。经亲和层析纯化后,获得了Trx-GnRH-luffinS2和Trx-luffinS2-GnRH。随后,利用rEK将Trx-GnRH-luffinS2和Trx-luffinS2-GnRH融合蛋白切割,获得rGnRH-luffinS2和rluffinS2-GnRH。(4)采用XTT法测定rGnRH-luffinS2和rluffinS2-GnRH对体外肿瘤细胞Hela、A549、HepG-2、SP2/0和CEF细胞毒性作用。结果表明,rGnRH-luffinS2对上述细胞的IC50分别为67.19μg/ml、70.42μg/ml、84.44μg/ml和106.25μg/ml,rluffinS2-GnRH对上述细胞的IC50分别79.5μg/ml、76.7μg/ml、96.2μg/ml和137μg/ml,两种融合毒素对CEF均无毒性,表明rGnRH-luffinS2和rluffinS2-GnRH具有一定的抗肿瘤作用,但活性不高。
     3. GnRH-PEⅡ-luffinS2融合蛋白的克隆、表达和抗肿瘤活性研究
     ( 1 )利用PEⅡ具有转膜区和蛋白酶识别位点的特性,设计GnRH-PEⅡ-luffinS重组毒素并对其二级进行预测。(2)利用Codon软件,设计了GnRH-PEⅡ-luffinS的重叠PCR引物,通过对重叠PCR反应体系和条件的优化,扩增得到了GnRH-PEⅡ-luffinS的全长基因。(3)选择pET32a为表达载体,构建pET32a/GnRH-PEⅡ-luffinS表达载体,转化BL21(DE3)大肠埃希杆菌后获得表达,蛋白以包涵体形式存在。经亲和层析纯化后,获得了Trx-GnRH-PEⅡ-luffinS融合蛋白,蛋白经透析复性和超滤浓缩后,利用rEK将Trx-GnRH-PEⅡ-luffinS融合蛋白切割为Trx和rGnRH-PEⅡ-luffinS。(4)采用XTT法测定rGnRH-PEⅡ-luffinS在体外对Hela、A549、HepG-2、SP2/0和CEF细胞毒性作用。结果表明,rGnRH-PEⅡ-luffinS对上述细胞的IC50分别为13.50μg/ml、13.74μg/ml、16.79μg/ml和26.07μg/ml,对CEF无作用,表明具有较强的抗肿瘤作用。(5)建立BALB/c小鼠的SP2/0实体瘤模型,检测rGnRH-PEⅡ-luffinS体内抗肿瘤活性。结果表明,剂量为100μg/只,瘤区内穿刺注射,连续10d给药时,rGnRH-PEⅡ-luffinS对SP2/0实体瘤的抑瘤率为50.3%,显示rGnRH-PEⅡ-luffinS具有一定的抗肿瘤作用。
     综上所述,本研究原核表达了luffinP1和luffinS2蛋白,利用兔网织红细胞裂解液证实luffinS2具有较高的蛋白合成抑制作用;然后构建了以GnRH为导向分子,以luffinS2为毒性分子的小分子重组免疫毒素GnRH-luffinS2和luffinS2-GnRH,体外对Hela、A549、HepG-2、SP2/0细胞毒实验表明,GnRH-luffinS2和luffinS2-GnRH的细胞毒性较低;为提高重组免疫毒素的细胞毒性,将PEⅡ插入到GnRH和luffinS之间,构建了GnRH-PEⅡ-luffinS重组免疫毒素。体外细胞毒实验表明,其细胞毒性获得明显提高,体内抑瘤实验表明,GnRH-PEⅡ-luffinS具有一定抗肿瘤活性,为进一步探讨其作为抗肿瘤药物的临床应用奠定了基础。
Recombinant immunotoxin is an important drug of targeted cancer therapy and is composed of a very potent protein toxin and a targeting moiety such as a recombinant antibody fragment or growth factor. Protein toxins commonly used include bacterial toxins such as PE and DT, and plant toxins such as ricin, PAP and saporin. The clinical efficacy of recombinant immunotoxins has been demonstrated in patients with malignant tumors. For example, recombinant immunotoxin ONTAK, which consists of truncated DT and IL2, has been approved by the FDA for CTCL therapy. But the antitumor activity of recombinant immunotoxins in vivo is interfered by many factors, e.g, good immunogenicity and poor penetration into tumors. One of methods is to develop new type of micromolecule recombinant immunotoxins to reduce their immunogenicity and improve their penetration into tumor cells.
     LuffinP1 and luffinS2, seperated from the seeds of Luffa cylindrical, are two novel ribosome inactivating proteins (RIPs).The two small toxin molecules are RNA N-glycosidases with molecular weights of 5 kDa and 8 kDa, respectively, and are much smaller than any other RIPs so far investigated. Their IC50 values are 10-9M and 10-10M respectively and can be used as cytotoxic moiety of recombinant immunotoxins. TypeⅠof the gonadotropin releasing-hormone (GnRH), also called luteinizing hormone-releasing hormone (LHRH), is a neuro-decapeptide. After binding to its receptor on pituitary cells, it triggers the secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH). These gonadotropin hormones control the activity of the gonads. GnRH receptors have been identified on tumor cells from mammary, endometrial, prostatic, hepatic and pancreatic tissues as well as on tumor cell lines. A growing interest has developed for the application of GnRH and related peptides in the fields of gynaecology and oncology. GnRH and its analogues have been used in treatment of hypogonadism and infertility. It is also used for the treatment of gonadotropin dependent cancers. Furthermore, this peptide binds to its receptor with high affinity (kd about 10-9M) and is not immunogenic, so GnRH is a very good candidate for the targeted moiety of recombinant immunotoxins. For example, LHRH-PE40 showed antitumor efficacy in preclinical study and has been produced for clinical phase testing. Therefore, recombinant immunotoxins, composed of GnRH used as targeted moiety and luffinP1 or luffinS2 used as cytotoxic moiety, are potential antitumor drugs which have low molecular weights, poor immunogenicity and strong penetration.
     We firstly cloned and expressed luffinP1 and luffinS2 in E. coli, and analyzed their protein biosynthesis inhibitory activity in cell-free systems. The protein with higher activity was used to construct recombinant immunotoxins along with GnRH. Then, the two recombinant immunotoxins of GnRH-luffinS2 and luffinS2-GnRH were designed and constructed. After the fusion proteins were expressed and purified, the in vitro cytotoxicity of the fusion proteins was determined by XTT method. Finally, because PEⅡfragment has the function of translocation and a protease recognition site, which can enhance efficacy of transmembrane and make targeted moiety and toxic moiety separate in cytoplasm, we constructed a novel recombinant immunotoxin GnRH-PEⅡ-luffinS, in which PEⅡw as inserted into GnRH-luffinS2, and analyzed the antitumor activity of the fusion protein in vitro and in vivo.
     In this study, the experiments were conducted as follow.
     1. Cloning, expression and activity assay of luffinP1 and luffinS2
     (1) The PCR primers were designed by Condon software, after PCR conditions were optimized, the genes of luffinP1 and luffinS2 were amplified. (2) LuffinP1 and luffinS2 were ligated with expression vectors pET-His, pET32a, pQE30 and pBV220, and recombinant vectors pET-His/luffinP1, pET-His/luffinS2, pET32a/luffinS2, pET32a/luffinP1, pQE30/luffinP1, pQE30/luffinS2, pBV220/luffinP1 and pBV220/luffinS2 were constructed. The results of expression showed that only recombinant vectors pET32a/luffinS2 and pET32a/luffinP1 of them can express target fusion proteins in soluble form. The soluble fusion proteins were purified by Ni-NTA chromatography method. After cleaved by rEK, the single rluffinP1 and rluffinS2 were produced. (3) Then, the protein bioinhibitory activitives were determined by rabbit reticulocyte lysate. The results showed that IC50 of rluffinP1 and rluffinS2 were 9.51μg/ml and 1.58μg/ml, respectively. So luffinS2 was selected as the cytotoxic moiety of recombinant immunotoxins in following experiment.
     2. Design, cloning, expression and activity assay of GnRH-luffinS2 and luffinS2-GnRH
     (1) Because the order of GnRH and luffinS2 may influence their activitives, the GnRH-luffinS2, which GnRH was fused to the N terminus of luffinS2, and the luffinS2-GnRH, which GnRH was fused to the C terminus of luffinS2, were designed, and their secondary structures were anticipated. (2) The PCR primers were designed by Condon software, the gene fragments of GnRH-luffinS2 and luffinS2-GnRH were amplified by optimized PCR reaction conditions. (3) the two gene fragments of GnRH-luffinS2 and luffinS2-GnRH were respectively ligated with expression vectors pET-His, pET32a, pQE30 and pBV220, and recombinant vectors pET-His/GnRH-luffinS2, pET-His/luffinS2-GnRH, pET32a/GnRH-luffinS2, pET32a/luffinS2-GnRH, pQE30/GnRH-luffinS2, pQE30/luffinS2-GnRH, pBV220/GnRH-luffinS2 and pBV220/luffinS2-GnRH were all constructed. The results of expression showed that only recombinant vectors of pET32a/GnRH-luffinS2 and pET32a/luffinS2-GnRH can express target fusion proteins in soluble form. The soluble fusion proteins were purified by Ni-NTA chromatography method. After cleaved by rEK, the rGnRH-luffinS2 and rluffinS2-GnRH were produced. (4) Then their cytotoxicity to Hela, A549, HepG-2, SP2/0 and CEF cells were analyzed by XTT method. The results showed that IC50 values of rGnRH-luffinS2 were 67.19μg/ml for Hela cells, 70.42μg/ml for A549 cells, 84.44μg/ml for HepG-2 cells and 106.25μg/ml for SP2/0 cells, respectively. The IC50 values of rluffinS2-GnRH were 79.5μg/ml for Hela cells, 76.7μg/ml for A549 cells, 96.2μg/ml for HepG-2 cells and 137μg/ml for SP2/0 cells, respectively. But the two fusion proteins showed no toxic effect to CEF cells. The results revealed that GnRH-luffinS2 and luffinS2-GnRH had low cytotoxicity to cancer cell lines
     3. Design, cloning, expression and activity assay of GnRH-PEⅡ-luffinS
     (1) Because PEⅡhas the function of translocation and includes a protease recognition site, recombinant immunotoxin GnRH-PEⅡ-luffinS was designed, in which PEⅡwas inserted into GnRH-luffinS2, and its secondary structure was anticipated. (2) The PCR primers were designed by Condon software, the gene fragment of GnRH-PEⅡ-luffinS was amplified by optimized PCR reaction conditions. (3) GnRH-PEⅡ-luffinS gene was inserted into expression vector pET32a and transformed into E.coli BL21. The recombinant plasmid pET32a/GnRH-PEⅡ-luffinS expressed insoluble protein. The inclusion bodies of fusion protein were extracted and purified by Ni-NTA chromatography method. After renaturation through dialysis and concentration through ultrafiltration, the fusion protein was cleaved by rEK in order to produce rGnRH-PEⅡ-luffinS. (4) The cytotoxicity to Hela, A549, HepG-2, SP2/0 and CEF cells was analyzed by XTT method. The result showed that IC50 values of rGnRH-PEⅡ-luffinS were 13.50μg/ml for Hela cells, 13.74μg/ml for A549 cells, 16.79μg/ml for HepG-2 cells and 26.07μg/ml for SP2/0 cells, respectively and had no toxic effect to CEF. To evaluate antitumor activity in vivo of rGnRH-PEⅡ-luffinS fusion protein, animal models with solid tumor were established through inoculated SP2/0 subcutaneously. The tumor weight inhibition rate of rGnRH-PEⅡ-luffinS against SP2/0 was 50.3%, when administrated continuously for ten days with 100μg per mice. The result showed that the GnRH-PEⅡ-luffinS had antitumor activitiy both in vitro and in vivo.
     In conclusion, luffinP1 and luffinS2 were expressed in prokaryotic expression system and the protein biosynthesis inhibition activity of rluffinS2 was higher than rluffinP1 in rabbit reticulocyte lysate. The recombinant toxins GnRH-luffinS2 and luffinS2-GnRH were constructed, in which GnRH was as targeted moiety and luffinS2 was as toxic moiety. The cytotoxicity of these fusion proteins in vitro was low. Finally, PEⅡ, which has the function of translocation and proteolytic cleavage site, was inserted into GnRH-luffinS2, and GnRH-PEⅡ-luffinS was designed and expressed in prokaryotic expression system, the cytotoxicity in vitro and in vivo showed that the novel recombinant toxin GnRH-PEⅡ-luffinS had a potential to be used for targeted cancer therapy.
引文
1. Duvic M. Bexarotene and DAB {389}IL-2 (Denileukin diftitox, ONTAK) in treatment of cutaneous T-cell lymphomas: algorithms. Clin Lymphoma, 2000, 1: S51-S55.
    2. Kreitman RJ, Margulies I, Stetler-Stevenson M, et al. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) towards fresh malignant cells from patients with B-cell leukemias. Clin Cancer Res, 2000, 6(4): 1476-1487.
    3. Endo Y, Mitsui K, Motizuki M, et al. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosome. J Biol Chem, 1987, 262(12): 5908-5912.
    4. Bolognesi A, Tazzari PL, Olivieri F, et al. Induction of apoptosis by ribosome-inactivating proteins and related immunotoxins. Int J Cancer, 1996, 68(3): 349-355.
    5. Hughes JN, Lindsay CD, Griffiths GD. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol, 1996, 15(5): 443-451.
    6. Bergamaschi G, Perfetti V, Tonon L, et al. Saporin, a ribosomeinactivating protein used to prepare immunotoxins, induces cell death via apoptosis. Br J Haematol, 1996, 93(4): 789-794.
    7. Tagge E, Harris B, Burbage C, et al. Synthesis of green fl uorescent protein-ricin and monitoring of its intracellular trafficking. Bioconjug Chem, 1997, 8(5): 743-750..
    8. Phan LD, Perentesis JP, Bodley JW. Saccharomyces cerevisiae elongation factor 2: mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem, 1993, 268: 8665-8668.
    9. Kreitman RJ. Immunotoxins for Targeted Cancer Therapy.J AAPS, 2006, 8(3): E532-E551.
    10. Fulton RJ, Uhr JW, Vitetta ES. In vivo therapy of the BCL1 tumor: effect of immunotoxin valency and deglycosylation of the ricin A chain. Cancer Res, 1988, 48(9): 2626-2631.
    11. Ramakrishnan S, Bjorn MJ, Houston LL. Recombinant ricin A chain conjugated to monoclonal antibodies: improved tumor cell inhibition in the presence of lysosomotropic compounds. Cancer Res, 1989, 49(3): 613-617.
    12. van Oosterhout YV, van Emst JL, Bakker HH, et al. Production of anti-CD3 and anti-CD7 ricin A-immunotoxins for a clinical pilot study. Int J Pharm, 2001, 221(1-2): 175-186.
    13. Mohanraj D, Ramakrishnan S. Cytotoxic effects of ricin without an interchain disulfide bond: genetic modification and chemical crosslinking studies. Biochim Biophys Acta, 1995, 1243(3): 399-406.
    14. Kreitman RJ, Chaudhary VK, Siegall CB, et al. Rational design of a chimeric toxin: an intramolecular location for the insertion of transforming growth factor a within Pseudomonas exotoxin as a targeting ligand. Bioconjug Chem, 1992, 3(1): 58-62.
    15. Cook JP, Savage PM, Lord JM, et al. Biologically active interleukin-2-ricin A chain fusion proteins may require intracellular proteolytic cleavage to exhibit a cytotoxic effect. Bioconjug Chem, 1993, 4(6): 440-447.
    16. Dore JM, Gras E, Wijdenes J. Expression and activity of a recombinant chimeric protein composed of pokeweed antiviral protein and of human interleukin-2. FEBS Lett, 1997, 402(1):50-52.
    17. Francisco JA, Gawlak SL, Siegall CB. Construction, expression, and characterization of BD1-G28-5sFv, a single-chain anti-CD40 immunotoxin containing the ribosome-inactivating protein bryodin1. J Biol Chem, 1997, 272(39): 24165-24169.
    18. Fabbrini MS, Carpani D, Bello-Rivero I, et al. The aminoterminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: internalization is toxin mediate. FASEB J, 1997, 11(13): 1169-1176.
    19. Tetzke TA, Caton MC, Maher PA, et al. Effect of fibroblast growth factor saporin mitotoxins on human bladder cell lines. Clin Exp Metastasis, 1997, 15(6): 620-629.
    20. Greenfield L, Johnson VG, Youle RJ. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science, 1987, 238(4826): 536-539.
    21. Williams DP, Parker K, Bacha P, et al . Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng, 1987, 1(6): 493-498.
    22. Siegall CB, Chaudhary VK, FitzGerald DJ, et al. Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin. J Biol Chem, 1989, 264(24): 14256-14261.
    23. Kreitman RJ, Batra JK, Seetharam S, et al. Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug Chem, 1993, 4(2): 112-120.
    24. Kreitman RJ, Pastan I. Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem J, 1995, 307(Pt1): 29-37.
    25. Theuer CP, Kreitman RJ, FitzGerald DJ, et al. Immunotoxins made with a recombinant form of Pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res, 1993, 53(2): 340-347.
    26. Kreitman RJ, Pastan I. Purification and characterization of IL6-PE 4E, a recombinant fusion of interleukin 6 with Pseudomonas exotoxin. Bioconjug Chem, 1993, 4(6): 581-585.
    27. Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem, 1992, 205(2): 263-270.
    28. Shao Y, Warman BE, Perentesis JP. Recombinant fusion toxins directed against the human granulocyte-macrophage colony stimulating factor (GM-CSF) receptor. Methods Mol Biol, 2001, 166: 31-53.
    29. Choo AB, Dunn RD, Broady KW, et al. Soluble expression of a functional recombinant cytolytic immunotoxin in insect cells. Protein Expr Purif, 2002, 24(3): 338-347.
    30. Woo JH, Liu YY, Stavrou S, et al. Increasing secretion of a bivalent anti-T-cell immunotoxin by Pichia pastoris. Appl Environ Microbiol, 2004, 70(6): 3370-3376.
    31. Millar RP, Lu ZL, Pawson AJ, et al: Gonadotropin-releasing hormone receptors. Endocr Rev, 2004, 25(2): 235-275.
    32. Matsuo H, Baba Y, Nair RM, et al. Structure of the porcine LH-and FSH-releasing hormone 1: The proposed amino acid sequence. Biochem Biophys Res Commun, 1971, 43(6): 1334-1339.
    33. Schally AV, Kastin AI, Arimura A. Hypothalamic FSH and LH-regulating hormone, structure, physiology, and clinical studies. Fertil Steril, 1971, 22:703-721.
    34. Morgan K, Conklin D, Pawson AJ, et al: A transcriptionally active human type II gonadotropin-releasing hormone receptor gene homolog overlaps two genes in the antisense orientation on chromosome 1q12. Endocrinology, 2003, 144(2): 423-436.
    35. Engel JB, Schally AV: Drug insight: clinical use of agonists and antagonists of luteinizing hormone-releasing hormone. Nat Clin Pract Endocrinol Metab, 2007, 3(2): 157-167.
    36. Bahk JY, Hyun JS, Lee H, et al: Expression of gonadotropin-releasing hormone (GnRH) and GnRH receptor mRNA in prostate cancer cells and effect of GnRH on the proliferation of prostate cancer cells. Urol Res, 1998, 26(4): 259-264.
    37. Dondi D, Limonta P, Moretti RM, et al: Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU145: evidence for an autocrine-inhibitory LHRH loop. Cancer Res, 1994, 54(15): 4091-4095.
    38. Halmos G, Arencibia JM, Schally AV, et al: High incidence of receptors for luteinizing hormone-releasing hormone (LHRH) and LHRH receptor gene expression in human prostate cancers. J Urol, 2000, 163(2): 623-629.
    39. Kakar SS, Grizzle WE, Neill JD: The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary. Mol Cell Endocrinol, 1994, 106(1-2): 145-149.
    40. Kottler ML, Starzec A, Carre MC, et al: The genes for gonadotropin-releasing hormone and its receptor are expressed in human breast with fibrocystic disease and cancer. Int J Cancer, 1997, 71(4): 595-599.
    41. Mangia A, Tommasi S, Reshkin SJ, et al: Gonadotropin-releasing hormone receptor expression in primary breast cancer: comparison of immunohistochemical, radioligand and Western blot analyses. Oncol Rep, 2002, 9(5): 1127-1132.
    42. Chatzaki E, Bax CM, Eidne KA, et al: The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer, and its relevance as an autocrine growth factor. Cancer Res, 1996, 56(9): 2059-2065.
    43. Nagai N, Oshita T, Mukai K, et al: GnRH agonist inhibits human telomerase reverse transcriptase mRNA expression in endometrial cance cells. Int J Mol Med, 2002, 10(5): 593-597.
    44. Yin H, Cheng KW, Hwa H-L, et al: Expression of the messenger RNA for gonadotropin-releasing hormone and its receptor in human cancer cell lines. Life Sci, 1998, 62(22): 2015-2023.
    45. Imai A, Ohno T, Iida K, et al: Gonadotropin-releasing hormone receptor in gynecologic tumors. Frequent expression in adenocarcinoma histologic types. Cancer, 1994, 74(9): 2555-2561.
    46. Moretti RM, Montagnani Marelli M, Van Groeninghen JC, et al: Locally expressed LHRH receptors mediate the oncostatic and antimetastatic activity of LHRH agonists on melanoma cells. J Clin Endocrinol Metab, 2002, 87(8): 3791-3797.
    47. Keller G, Schally AV, Gaiser T, et al: Human malignant melanomas express receptors for luteinizing hormone-releasing hormone allowing targeted therapy with cytotoxic luteinizing hormone-releasing hormone analogue. Cancer Res, 2005, 65(13): 5857-5863.
    48. Keller G, Schally AV, Gaiser T, et al: Receptors for luteinizing hormone-releasing hormone (LHRH) expressed in human non-Hodgkin’s lymphomas can be targeted for therapy with the cytotoxic LHRH analogue AN-207. Eur J Cancer, 2005, 41(14): 2196-2202.
    49. Jungwirth A, Schally AV, Halmos G, et al: Inhibition of the growth of Caki-I human renal adenocarcinoma in vivo by luteinizing hormone-releasing hormone antagonist cetrorelix, somatostatin analog RC-160 and bombesin antagonist RC-3940-II. Cancer, 1998; 82(5): 909-917.
    50. Limonta P, Dondi D, Moretti RM, et al: Antiproliferative effects of luteinizing hormone-releasing hormone agonists on the human prostatic cancer cell line LNCaP. J Clin Endocrinol Metab, 1992, 75(1): 207-212.
    51. Halmos G, Schally AV, Kahan Z: Down-regulation and change in subcellular distribution of receptors for luteinizing hormonereleasing hormone in OV-1063 human epithelial ovarian cancers during therapy with LHRH antagonist cetrorelix. Int J Oncol, 2000, 17(2): 367-373.
    52. Baumann KH, Kiesel L, Kaufmann M, et al: Characterization of binding sites for aGnRH-agonist (buserelin) in human breast cancer biopsies and their distribution in relation to tumor parameters. Breast Cancer Res Treat, 1993, 25(1): 37-46.
    53. Irmer G, Bürger C, Müller R, et al: Expression of the messenger RNAs for luteinizing hormone-releasing hormone (LHRH) and its receptor in human ovarian epithelial carcinoma. Cancer Res, 1995, 55(4): 817-822.
    54. Emons G, Schally AV. The use of luteinizing hormone-releasing hormone agonists and antagonists in gynaecological cancers. Hum Reprod, 1994; 9(7): 1364-1379.
    55. Segal-Abramson T, Kitroser H, Levy J, et al: Direct effects of luteinizing hormone-releasing hormone agonists and antagonists on MCF-7 mammary cancer cells. Proc Natl Acad Sci USA, 1992, 89(6): 2336-2339.
    56. Volker P, Grundker C, Schmidt O,et al: Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers: frequency, autoregulation, and correlation with direct antiproliferative activity of luteinizing hormone-releasing hormone analogues. Am J Obstet Gynecol, 2002, 186(2): 171-179.
    57. Tolis G, Ackman D, Stellos A, et al: Tumor growth inhibition in patients with prostatic carcinoma treated with luteinizing hormone-releasing hormone agonists. Proc Natl Acad Sci USA, 1982, 79(5): 1658-1662.
    58. Carr BR, Marshburn PB, Weatherall PT, et al: An evaluation of the effect of gonadotropin-releasing hormone analogs and medroxyprogesterone acetate on uterine leiomyomata volume by magnetic resonance imaging: a prospective, randomized, double-blind, placebo-controlled, crossover trial. J Clin Endocrinol Metab, 1993, 76(5): 1217-1223.
    59. Dondi D, Moretti RM, Montagnani Marelli M, et al: Growth-inhibitory effects of luteinizing hormone-releasing hormone (LHRH) agonists on xenografts of the DU145 human androgen-independent prostate cancer cell line in nude mice. Int J Cancer, 1998, 76(4): 506-511.
    60. Grundker C, Gunthert AR, Westphalen S, et al: Biology of the gonadotropin-releasing hormone system in gynecological cancers. Eur J Endocrinol, 2002, 146(1): 1-14.
    61. Miller WR, Scott WN, Morris R, et al: Growth of human breast cancer cells inhibited by a luteinizing hormone-releasing hormone agonist. Nature, 1985, 313(5999): 231-233.
    62. Yano T, Pinski J, Radulovic S, et al: Inhibition of human epithelial ovarian cancer cell growth in vitro by agonistic and antagonistic analogues of luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA, 1994, 91(5): 1701-1705.
    63. Jeyarajah AR, Gallagher CJ, Blake PR, et al: Longterm follow-up of gonadotrophin-releasing hormone analog treatment for recurrent endometrial cancer. Gynecol Oncol, 1996, 63(1):47-52.
    64. Klijn JG, de Jong FH. Treatment with a luteinising hormone-releasing hormone analogue (buserelin) in premenopausal patients with metastatic breast cancer. Lancet, 1982, 1(8283): 1213-1216.
    65. Celio L, Martinetti A, Ferrari L, et al: Premenopausal breast cancer patients treated with a gonadotropin-releasing hormone analog alone or in combination with an aromatase inhibitor: a comparative endocrine study. Anticancer Res, 1999, 19(3B): 2261-2268.
    66. Hofstra LS, Mourits MJ, de Vries EG, et al: Combined treatment with goserelin and tamoxifen in patients with advanced chemotherapy resistant ovarian cancer. Anticancer Res, 1999, 19(4C): 3627-3630.
    67. Limonta P, Moretti RM, Marelli MM, et al: The biology of gonadotropin hormonereleasing hormone: role in the control of tumor growth and progression in humans. Front Neuroendocrinol, 2003, 24(4): 279-295.
    68. Maudsley S, Davidson L, Pawson AJ, et al: Gonadotropinreleasing hormone (GnRH) antagonists promote proapoptotic signaling in peripheral reproductive tumor cells by activating a Gαi -coupling state of the type I GnRH receptor. Cancer Res, 2004, 64(20): 7533-7544.
    69. Kazuo K, Yasuhiko M, Takeshi H. Protein-synthesis inhibitory protein from seeds of Luffa cylindria roem. FEBS Lett, 1983, 153:209-212.
    70. 吴伸, 朱日荣, 郭峰, 等. 丝瓜核糖体失活蛋白的分离和纯化. 生物化学和生物物理进展, 1995, 22:464-468.
    71. Islam MR, Nishida H , Funatsu G. Complete amino acid sequence of luffina , a ribosome-inactivating protein from the Seeds of Luffa cylindrica. Agric Biol chem, 1990, 54:2967-2978.
    72. Islam MR, Hirayama H, Funatsu G. Complete amino acid sequence of luffinb, a ribosome-inactivating protein from Luffa cylindrica seeds. Agric Biol Chem, 1991, 55: 229-238.
    73. 高闻达, 曹惠婷, 季瑞华, 等. 丝瓜籽中蛋白质生物合成抑制蛋白的分离、纯化及性质研究. 生物化学和生物物理学报, 1994 ,26(3):289-295.
    74. 熊长云, 张祖传. 一组丝瓜分子核糖体失活蛋白的分离、纯化和性质. 生物化学和生物物理学报, 1998, 30(2):142-146.
    75. Parkash A , Ng TB, Tso WW. Isolation and characterization of Luffacylin, a ribosome inactivating peptide with Anti-Fungal activity from Luffin cylindrica seeds. Peptides, 2002, 23(6):1019-1024.
    76. Li F, Yang XX, Xia HC, et al. Purification and characterization of Luffin P1, aribosome-inactivating peptide from the seeds of Luffa Cylindrical. Peptides, 2003, 24(6):799-805.
    77. Watanabe K, Suemasu Y, Funatsu G. Identification of lysine residue at or near active site of Luffina, a ribosme-inactivating protein from seeds of Luffa cylindrica. Biochem, 1989, 106(6):977-981.
    78. Islam MR, Kungs S, Kimura Y. N-acetyl-D-glucosamine-asparagine structure in ribosome-inactivating proteins from the seeds of Luffia cylindrica and Phytolacca americana. Agric Biol Chem, 1991, 55(5):1375-1381.
    79. Minami Y, Islam MR, Fungtsu G, et al. Chemical modification of momordina and Luffina , ribosome-inactivating proteins from the seeds of Momordica charantia and Luffa cylindrici involvement of His140, Tyr165, and Lys231 in the protein-synthesis inhibitory activity. Biosci Biotechnol Biochem, 1998, 62(5):959-964.
    80. 高闻达, 等. LuffinA免疫毒素的构建及对人黑色素瘤细胞的体外抑制. 科学通报, 1994 , 39(4):356-358.
    81. 张茹平, 熊长云, 严明, 等. 免疫毒素LuffinB-Ng76对人黑色素瘤细胞的体外抑制作用. 生物化学和生物物理学报, 1998 ,30(6):561-564.
    82. 王儒鹏, 周丽娜, 吴军, 等. 重组免疫毒素hIL-2-Luff in P1的构建及表达. 第三军医大学学报, 2005, 27(9): 828-830.
    83. 王儒鹏, 吴军, 袁军, 等. 核糖体失活蛋白LuffinP1的构建. 贵阳医学院学报, 2005, 30(2): 104-107.
    84. 罗良生, 黄强. 基因重组免疫毒素研究进展. 国外医学肿瘤学分册, 2000 , 27(5):269-273.
    1. Gensini GF, Conti AA, Lippi D. The 150th anniversary of the birth of Paul Ehrlich, chemotherapy pioneer. J Infect, 2006.
    2. FitzGerald DJ, Kreitman R, Wilson W, et al. Recombinant immunotoxins for treating cancer. Int. J Med Microbiol, 2004, 293(7-8):577-582.
    3. Foss F. Clinical experience with denileukin diftitox (ONTAK). Semin Oncol, 2006, 33(1 Suppl 3):S11-16.
    4. Ghetie V, Vitetta ES. Chemical construction of immunotoxins. Mol Biotechnol, 2001, 18(3):251-268.
    5. Vitetta ES. Immunotoxins and vascular leak syndrome. Cancer J, 2000, 6(Suppl 3):S218-224.
    6. Brinkmann U, Pai LH, FitzGerald DJ, et al. B3 (Fv)-PE38KDEL, a single chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci USA, 1991, 88(19):8616-8620.
    7. Benhar I, Pastan I. Identification of residues that stabilize the single-chain Fv of monoclonal antibodies B3. J Biol Chem, 1995, 270(40):23373-23380.
    8. Zhu Z, Presta LG, Zapata G, et al. Remodeling domain interfaces to enhance heterodimer formation. Protein Sci, 1997, 6(4):781-788.
    9. Pai-Scherf LH, Villa J, Pearson D, et al. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin. Cancer Res, 1999, 5(9):2311-2315.
    10. Kreitman RJ, Wilson WH, Bergeron K, et al.. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med, 2001, 345(4):241-247.
    11. Chiron MF, Fryling CM, FitzGerald DJ. Cleavage of Pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem, 1994, 269(27):18167-18176.
    12. Williams DP, Wen Z, Watson RS, et al. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem,. 1990, 265(33):20673-20677.
    13. Jain RK. Delivery of molecular medicine to solid tumors. Science, 1996, 271(5252):1079-1080.
    14. Kodaka T, Uchiyama T, Ishikawa T, et al. Interleukin-2 receptor b-chain (p70–75) expressed on leukemic cells from adult T cell leukemia patients. Jpn J Cancer Res, 1990, 81(9):902-1008.
    15. Kreitman RJ, Pastan I. Recombinant single-chain immunotoxins against T and B cell leukemias. Leuk Lymphoma, 1994, 13(1-2):1-10.
    16. Strauchen JA, Breakstone BA. IL-2 receptor expression in human lymphoid lesions. Am J Pathol, 1987, 126(3):506-512.
    17. Yagura H, Tamaki T, Furitsu T, et al. Demonstration of high-affinity interleukin-2 receptors on B-chronic lymphocytic leukemia cells: functional and structural characterization. Blut, 1990, 60(3):181-186.
    18. Robb RJ, Greene WC, Rusk CM. Low and high affinity cellular receptors for interleukin 2. J Exp Med, 1984, 160(4):1126-1146.
    19. Bacha P, Forte S, Kassam S, et al. Pharmacokinetics of the recombinant fusion protein DAB486IL-2 in animal models. Cancer Chemother Pharmacol, 1990, 26(4):409-414.
    20. Bacha P,Williams DP,Waters C, et al. Interleukin 2 receptor-targeted cytotoxicity: interleukin
    2 receptor-mediated action of a diphtheria toxin-related interleukin 2 fusion protein. J Exp Med, 1988, 167(2):612-622.
    21. LeMaistre CF, Saleh MN, Kuzel TM, et al. Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood, 1998, 91(2):399-405.
    22. Duvic M, Kuzel TM, Olsen E, et al. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK). Clin Lymphoma, 2002, 2(4):222-228.
    23. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol, 2001, 19(2):376-388.
    24. McGinnis KS, Shapiro M, Junkins-Hopkins JM, et al. Denileukin diftitox for the treatment of panniculitic lymphoma. Arch Dermatol, 2002, 138(6):740-742.
    25. Frankel AE, Fleming DR, Hall PD, et al. A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin Cancer Res, 2003, 9(10 Pt 1):3555-35561.
    26. Dang NH, Hagemeister FB, Pro B, et al. Phase II study of denileukin diftitox for relapsed/refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 2004, 22(20):4095-4102.
    27. Martin A, Gutierrez E, Muglia J, et al. A multicenter dose-escalation trial with denileukin diftitox (ONTAK, DAB (389)IL-2) in patients with severe psoriasis. J Am Acad Dermatol, 2001, 45(6):871-881.
    28. Foss F, Demierre MF, DiVenuti G. A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneousT-cell lymphoma. Blood, 2005, 106(2):454-457.
    29. Kobayashi H, Kao CK, Kreitman RJ, et al. Pharmacokinetics of In-111- and I-125-labeled antiTac single-chain Fv recombinant immunotoxin. J Nucl Med, 2000, 41:755-762.
    30. Kreitman RJ, Bailon P, Chaudhary VK, et al. Recombinant immunotoxins containing anti-Tac (Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood, 1994, 83(2):426-434.
    31. Kreitman RJ, Pastan I. Targeting Pseudomonas exotoxin to hematologic malignancies. Semin Cancer Biol, 1995, 6(5):297-306.
    32. Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: fewer than 1000 molecules per cell are sufficient for complete responses. Cancer Res, 1998, 58(5):968-975.
    33. Robbins DH, Margulies I, Stetler-Stevenson M, et al. Hairy cell leukemia, a B cell neoplasm which is particularly sensitive to the cytotoxic effect of anti-Tac(Fv)-PE38 (LMB-2). Clin Cancer Res, 2000, 6(2):693-700.
    34. Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol, 2000, 18(8):1614-1636.
    35. Onda M, Kreitman RJ, Vasmatzis G, et al. Reduction of the nonspecific toxicity of anti-Tac(Fv)-PE38 by mutations in the framework regions of the Fv which lower the isoelectric point. J Immunol, 1999, 163(11):6072-6077.
    36. Onda M, Willingham M, Wang Q, et al. Inhibition of TNF alpha produced by Kupffer cells protects against the nonspecific liver toxicity of immunotoxin anti-Tac(Fv)- PE38, LMB-2. JImmunol, 2000, 165(12):7150-7156.
    37. Attia P, Powell DJJr, Maker AV, et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin, LMB-2. J Immunother, 2006, 29(2):208-214.
    38. Schnell R, Borchmann P, Staak JO, et al. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol, 2003, 14(5):729-736.
    39. Schnell R,Vitetta E, Schindler J, et al. Treatment of refractory Hodgkin’s lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia, 2000, 14(1):129-135.
    40. Martin PJ, Pei J, Gooley T, et al. Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Biol Blood Marrow Transplant, 2004, 10(8):552-560.
    41. Ghetie MA, May RD, Till M, et al. Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy. Cancer Res, 1988, 48(9):2610-2617.
    42. Ghetie MA, Richardson J, Tucker T, et al. Antitumor activity of Fab’ and IgGanti-CD22 immunotoxins in disseminated human B lymphoma grown in mice with severe combined immunodeficiency disease: effect on tumor cells in extranodal sites. Cancer Res, 1991, 51(21):5876-5880.
    43. Bregni M, Siena S, Formosa A, et al. B-cell restricted saporin immunotoxins: activity against B-cell lines and chronic lymphocytic leukemia cells. Blood, 1989, 73(3):753-762.
    44. Amlot PL, Stone MJ, Cunningham D, et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood, 1993, 82(9):2624-2633.
    45. Sausville EA, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood, 1995, 85(12):3457-3465.
    46. Kreitman RJ. Taming ricin toxin. Nat Biotechnol, 2003, 21(4):372-374 .
    47. Smallshaw JE, Ghetie V, Rizo J, et al. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat Biotechnol, 2003, 21(4):387-391.
    48. Kreitman RJ, Hansen HJ, Jones AL, et al. Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab’ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res, 1993, 53(4):819-825.
    49. Kreitman RJ, Wang QC, FitzGerald DJ, et al. Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by Cynomolgus monkeys. Int J Cancer, 1999, 81(1):148-155.
    50. Kreitman RJ, Margulies I, Stetler-Stevenson M, et al. Cytotoxic activity of disulfidestabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) towards fresh malignant cells from patients with B-cell leukemias. Clin Cancer Res, 2000, 6(2):1476-1487.
    51. Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. Phase I trial of recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol, 2005, 23(27):6719-6729.
    52. Blasinska-Morawiec M, Robak T, Krykowski E, et al. Hairy cell leukemia-variant treated with 2-chlorodeoxyadenosine - a report of three cases. Leuk Lymphoma, 1997,25(3-4):381-385.
    53. Matutes E, Wotherspoon A, Brito-Babapulle V, et al. The natural history and clinico-pathological features of the variant form of hairy cell leukemia. Leukemia, 2001, 15(1):184-186.
    54. Salvatore G, Beers R, Margulies I, et al. Improved cytotoxic activity towards cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res, 2002, 8(4):995-1002.
    55. Frankel AE, Powell BL, Hall PD, et al. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res, 2002, 8(5):1004-1013.
    56. Frankel A, McCubrey J, Miller MS, et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with acute phase chronic myeloid leukemia. Leukemia, 2000, 14(4):576-585.
    57. Urieto JO, Liu T, Black JH, et al. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Exp Purif, 2004, 33(1):123-133.
    58. Grossbard ML, Fidias P, Kinsella J, et al. Anti-B4-blocked ricin: a phase II trial of 7 day continuous infusion in patients with multiple myeloma. Br J Haematol, 1998, 102(2):509-515.
    59. Grossbard ML, Freedman AS, Ritz J, et al. Serotherapy of B-cell neoplasms with anti-B4-blocked ricin: a phase I trial of daily bolus infusion. Blood, 1992, 79(3):576-585.
    60. Grossbard ML, Lambert JM, Goldmacher VS, et al. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol, 1993, 11(4):726-737.
    61. Multani PS, O’Day S, Nadler LM, et al. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res, 1998, 4(11):2599-2604.
    62. Grossbard ML, Multani PS, Freedman AS, et al. A phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res, 1999, 5(9):2392-2398.
    63. Grossbard ML, Gribben JG, Freedman AS, et al. Adjuvant immunotoxin therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with B-cell non-Hodgkin’s lymphoma. Blood, 1993, 81(9):2263-2271.
    64. Longo DL, Duffey PL, Gribben JG, et al. Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study. Cancer J Sci Am, 2000, 6(3):146-150.
    65. Scadden DT, Schenkein DP, Bernstein Z, et al. Immunotoxin combined with chemotherapy for patients with AIDS-related non-Hodgkin’s lymphoma. Cancer, 1998, 83(12):2580-2587.
    66. Szatrowski TP, Dodge RK, Reynolds C, et al. Lineage specific treatment of adult patients with acute lymphoblastic leukemia in first remission with anti-B4-blocked ricin or high-dose cytarabine: cancer and leukemia group B study 9311. Cancer, 2003, 97(6):1471-1480.
    67. Messmann RA, Vitetta ES, Headlee D, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19 (+), CD22(+)Bcell lymphoma. Clin Cancer Res, 2000, 6(4):1302-1313.
    68. Schnell R, Staak O, Borchmann P, et al. A phase I study with an anti-CD30 ricin A-chainimmunotoxin (Ki-4.dgA) in patients with refractory CD30+Hodgkin’s and non-Hodgkin’s lymphoma. Clin Cancer Res, 2002, 8(6):1779-1786.
    69. Barth S, Huhn M, Matthey B, et al. Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood, 2000, 95(12):3909-3914.
    70. Klimka A, Barth S, Matthey B, et al. Ananti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETA’) is a potent immunotoxin against a Hodgkin-derived cell line. Br J Cancer, 1999, .80(8):1214-1222.
    71. Nagata S, Onda M, Numata Y, et al. Novel anti-CD30 recombinant immunotoxins containing disulfide-stabilized Fv fragments. Clin Cancer Res, 2002, 8(7):2345-2355.
    72. Rozemuller H, Chowdhury PS, Pastan I, et al. Isolation of new anti-CD30 scFvs from DNA immunized mice by phage display and biologic activity of recombinant immunotoxins produced by fusion with truncated Pseudomonas exotoxin. Int J Cancer,2001, 92(6):861-870.
    73. Pastan I, Lovelace ET, Gallo MG, et al. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res, 1991, 51(14):3781-3787.
    74. Pai LH, Wittes R, Setser A, et al. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 1996, 2(3):350-353.
    75. Posey JA, Khazaeli MB, Bookman MA, et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res, 2002, 8(10):3092-3099.
    76. Azemar M, Djahansouzi S, Jager E, et al. Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res Treat, 2003, 82(3):155-164.
    77. von Minckwitz G, Harder S, Hovelmann S, et al. Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Res, 2005, 7(5):R617-626.
    78. Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res, 2004, 10(12 Pt 1):3937-3942.
    79. Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol, 1999, 17(6):568-572.
    80. Hassan R, Bullock S, Kindler H, et al. Updated results of the phase I study of SS1(dsFv)PE38 for targeted therapy of mesothelin expressing cancers. Eur J Cancer, 2004, 2(Suppl.):280a.
    81. Zhang Y, Hassan R, Paik CH, et al. Synergistic antitumor activity of taxol and immunotoxin SS1P in tumor bearing mice. Clin Cancer Res, 2006, 12(15):4695-4701.
    82. Dalken B, Giesubel U, Knauer SK, et al. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ, 2006, 13(4):576-585.
    83. Hursey M, Newton DL, Hansen HJ, et al. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: a new generation of therapeutics. Leuk Lymphoma, 2002, 43(5):953-959.
    84. Abi-Habib RJ, Liu S, Bugge TH, et al. A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood, 2004, 104(7):2143-2148.
    85. Bolognesi A, Tazzari PL, Tassi C, et al. A comparison of antilymphocyte immunotoxinscontaining different ribosome-inactivating proteins and antibodies. Clin Exp Immunol, 1992, 89(3):341-346.
    86. Foss FM. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann NY Acad Sci, 2001, 941:166-176.
    87. Duvic M, Kuzel T, Olsen E, Martin AG. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK). Clin Lymphoma, 2002, 2(4):222-228.
    88. Kreitman RJ, Wilson WH, Robbins D, et al. Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood, 1999, 94(10):3340-3348.
    89. Gould BJ, Borowitz MJ, Groves ES, et al. Phase I study of an antibreast cancer immunotoxin by continuous infusion: report of a targeted toxic effect not predicted by animal studies. J Natl Cancer Inst, 1989, 81(10):775-781.
    90. Weiner LM, O’Dwyer J, Kitson J, et al. Phase I evaluation of an antibreast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res, 1989, 49(14):4062-4067.
    91. Pai LH, Bookman MA, Ozols RF, et al. Clinical evaluation of intraperitoneal Pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J Clin Oncol, 1991, 9(12):2095-2103.
    92. Gonzalez R, Salem P, Bunn PA Jr, et al. Single-dose murine monoclonal antibody ricin A chain immunotoxin in the treatment of metastatic melanoma: a phase I trial. Mol Biother, 1991, 3(4):192-196.
    93. Oratz R, Speyer JL, Wernz JC, et al. Antimelanoma monoclonal antibody-ricin A chain immunoconjugate (XMMME-001-RTA) plus cyclophosphamide in the treatment of metastatic malignant melanoma: results of a phase II trial. J Biol Response Mod, 1990, 9(4):345-354.
    94. Selvaggi K, Saria EA, Schwartz R, et al. Phase I/II study of murine monoclonal antibody-ricin A chain (XOMAZYME-Mel) immunoconjugate plus cyclosporine A in patients with metastatic melanoma. J Immunother, 1993, 13(3):201-207.
    95. Byers VS, Rodvien R, Grant K, et al. Phase I study of monoclonal antibody-ricin A chain immunotoxin XomaZyme-791 in patients with metastatic colon cancer. Cancer Res, 1989, 49(21):6153-6160.
    96. LoRusso PM, Lomen PL, Redman BG, et al. Phase I study of monoclonal antibody ricin A chain immunoconjugate Xomazyme-791 in patients with metastatic colon cancer. Am J Clin Oncol ,1995, 18(4):307-312.
    97. Zalcberg JR, Pietersz G, Toohey B, et al. A phase I/II study of the intralesional injection of ricin-monoclonal antibody conjugates in patients with hepatic metastases. Eur J Cancer, 1994, 30A(9):1227-1231.
    98. Fidias P, Grossbard M, Lynch TJ Jr. A phase II study of the immunotoxin N901-blocked ricin in small-cell lung cancer. Clin Lung Cancer, 2002, 3(3):219-222.
    99. Lynch TJ, Lambert JM, Coral F, et al. Immunotoxin therapy of small-cell lung cancer: a phase I study of N901-blocked ricin. J Clin Oncol, 1997, 15(2):723–-734.
    100.Garland L, Gitlitz B, Ebbinghaus S, et al. Phase I trial of intravenous IL-4 Pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother, 2005, 28(4):376-381.
    [1] Pastan I, FitzGerald D. Recombinant toxins for cancer treatment[J]. Science., 1991, 254(5035):1173-1177.
    [2] Pastan I, Willingham MC, FitzGerald DJ. Immunotoxins[J]. Cell, 1986 , 47(5):641-648.
    [3] Vitetta ES, Thorpe PE, Uhr JW. Immunotoxins: magic bullets or misguided missiles[J]. Immunol Today, 1993, 14(6):252-259.
    [4] Kreitman RJ. Immunotoxins in cancer therapy[J]. Curr Opin Immunol, 1999, 11(5):570-578.
    [5] Robert JK. Immunotoxins for targeted cancer therapy[J]. The AAPS journal, 2006, 8(3): 532-551.
    [6] 邓欣, 吴广谋, 张国利等. LHRH-PE40预Hela细胞表面LHRH受体结合的特异性及其细胞毒性[J]. 中国医科大学学报, 2005, 34(2):107-110.
    [7] 赵刚, 龚守良, 朱平等. LHRH-PE40与正常肝组织和肝癌细胞表面LHRH受体结合特性的比较研究[J]. 西安交通大学学报(医学版), 2003, 24(3): 193-195.
    [8] 吴广谋, 朱平, 李俊值等. LHRH-PE40注射剂对体外培养人肿瘤细胞系的细胞毒作用[J]. 中国生物制品学杂志, 2001, 14(4):221-222.
    [9] 赵刚, 龚守良, 朱平. 融合蛋白LHRH-PE40与癌细胞表面LHRH受体结合的特性[J].吉林大学学报(医学版), 2003, 29(1):5-8.
    [10] 高闻达, 曹慧婷, 季瑞华等. 丝瓜籽中蛋白质生物合成抑制蛋白等额分离、纯化及性质研究[J].生物化学和生物物理学报, 1994, 26(3): 289-295.
    [11] 熊长云, 张祖传. 一组丝瓜分子核糖体失活蛋白的分离、纯化和性质[J]. 生物化学和生物物理学报, 1998, 30(2): 142-146.
    [12] Emons G, Schroder B, Ortmann O, et al. High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines[J]. J Clin Endocrinol Metab, 1993, 77(6):1458-1464.
    [13] Eidne KA, Flanagan CA, Harris NS, et al. Gonadotropin-releasing hormone (GnRH)-binding sites in human breast cancer cell lines and inhibitory effects of GnRH antagonists[J]. J Clin Endocrinol Metab, 1987;64(3):425-432.
    [14] Qayum A, Gullick W, Clayton RC, et al. The effects of gonadotrophin releasing hormone analogues in prostate cancer are mediated through specific tumour receptors[J]. Br J Cancer, 1990, 62(1):96-99.
    [15] Imai A, Ohno T, Iida K, et al. Gonadotropin-releasing hormone receptor in gynecologic tumors. Frequent expression in adenocarcinoma histologic types[J]. Cancer, 1994, 74(9):2555-2561.
    [16] Srkalovic G, Bokser L, Radulovic S, et al. Receptors for luteinizing hormone-releasing hormone (LHRH) in Dunning R3327 prostate cancers and rat anterior pituitaries after treatment with a sustained delivery system of LHRH antagonist SB-75[J]. Endocrinology, 1990, 127(6):3052-3060.
    [17] 吴广谋, 朱平, 李俊植等. LHRH-PE40注射剂对体外培养人肿瘤细胞系的细胞毒作用[J]. 中国生物制品学杂志, 2001, 14(4): 221-222.
    [18] 吴广谋, 张国利, 岳玉环等. LHRH-PE40对LOVO细胞的靶向杀伤作用[J]. 中国生物制品学杂志, 2006, 19(4): 349-351.
    [19] 姜洋, 宋燕, 张颖超等. LHRH-PE40 对人结肠癌细胞增殖抑制和调亡的影响[J]. 吉林大学学报, 2006, 32(4): 647-650.