用户名: 密码: 验证码:
基于氧化石墨烯/聚苯胺的生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯片层与片层之间有较强的范德华力,很容易因此产生聚集,使其难溶于水及常用的有机溶剂,这就给石墨烯的进一步应用造成了非常大之困难。氧化石墨烯/聚苯胺复合物作为一种功能化的石墨烯,与石墨烯相比,具有更好的水溶性,优异的电学、光学等物理和化学性质,在生物传感器、纳米电子器件、复合材料、能量储存和转换、生物科学与技术等领域得到了广泛的应用。
     本文致力于基于石墨烯/聚苯胺纳米复合材料的新型生物传感器,提高分析的灵敏度。将纳米技术、电分析技术和生物技术有机结合起来,着重围绕纳米复合材料的制备及其在生物分析中的应用开展研究。
     主要研究内容如下:
     1、氧化石墨烯/聚苯胺/硒化镉量子点纳米复合物的合成及其电致化学发光生物传感器
     将氧化石墨烯/聚苯胺复合物与硒化镉量子点复合,增强了硒化镉量子点的ECL。实验采用层层组装技术制备了基于氧化石墨烯/聚苯胺/硒化镉(GO/PANi/CdSe QDs)纳米复合物的ECL生物传感器,测试结果表明,该传感器具有较高且稳定的电致化学发光强度、良好的生物相容性;该传感器灵敏度高、选择性好,其线性范围为0.05~100μM,检测限为0.02μM。该传感器在生物分析和环境检测等方面具有潜在的应用价值。
     2、氧化石墨烯/聚苯胺纳米线阵列/硒化镉量子点复合物合成及其电致化学发光免疫传感器
     我们合成了一种新颖的氧化石墨烯/聚苯胺纳米线阵列/硒化镉量子点复合物,作为复合探针对human IL-6进行了电致化学发光免疫分析。首先,通过一步合成法制备获得GO/PANi纳米线阵列复合物,使之与硒化镉量子点复合制得形貌均一生物GO/PANi/CdSe QDs纳米复合物,这种纳米复合物具有较大的比表面积和良好的生物相容性。并将该复合材料与抗体分子通过交联法结合,形成复合生物探针,发展了一种可用于检测Human IL-6的电致化学发光免疫传感器。该免疫传感器对Human IL-6具有高灵敏性和选择性,其检测范围为0.0005~10ng/mL,检测限为0.17pg/mL。该方法有望应用于临床诊断以及生物分析体系等领域。
     3、氧化石墨烯/聚苯胺复合材料的合成及其电化学生物传感器
     我们构建了一种基子氧化石墨烯/聚苯胺纳米线阵列复合材料的电化学生物传感器。通过Hummers法制备氧化石墨烯(GO),以过硫酸钾(K2S2O8)为氧化剂将苯胺单体聚合在氧化石墨烯表面,得到具有良好生物相容性、水溶性以及较大比表面积的GO/PANi纳米复合材料,用于构建对多巴胺的电化学生物传感器。结果表明,该生物传感器对多巴胺显示出灵敏、快速的响应,响应的线性范围为1.0×10-8M~1.0×10-5M,检测限为1.02×10-9M。该电化学生物传感器响应速度快、稳定性好,在生物分析中具有很大的应用潜力。
The poor dispersion of graphene nanosheets, which results from Van der Wals forces between layer and layer in graphene, is of crucial importance for their applications. Graphene Oxide/Polyaniline (GO/PANi) nanocomposites, one kind of the functionalized graphene, have excellent electrical, optical and other physical and chemical properties, It has been demonstrated that Graphene Oxide/Polyaniline (GO/PANi) nanocomposites have been widely studied in the area of sensors, nanoelectronic devices, energy storage and conversion, bioscience and technology.
     This dissertation focuses on the studies on the biosensor based on the GO/PANi nanocomposite with the combination of nanotechnology, analytical chemistry, and biotechnology.
     Main work as follows:
     1. Fabrication of GO/PANi/CdSe Nanocomposites for Sensitive Electrochemiluminescence Biosensor
     A novel graphene oxide sheets/polyaniline/CdSe quantum dots (GO/PANi/CdSe) nanocomposites were successfully synthesized and used for the sensitive electrochemiluminescence (ECL) biosensing. The GO/PANi/CdSe nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Finally, the nanocomposites were employed to construct the biosensor via layer-by-layer assembly for the ECL detection of Cytochrome C (Cyt C). The whole process was characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). Experimental parameters such as the ratio of GO/PANi, the K2S4O8concentration and the pH value of electrolyte solution were studied to investigate the effect on the ECL intensity. Under the optimized conditions, the ECL intensity decreased linearly with the Cyt C concentrations in the range from5.0×10-8to1.0×10-4M with detection limit of2.0×10-8M. Besides, the as-proposed biosensor exhibits high specificity, good reproducibility, and stability, and may applied in more bioanalytical systems.
     2. Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6
     A novel graphene oxide nanosheets/polyaniline nanowire arrays/CdSe quantum dots (GO/PANi/CdSe) nanocomposites is successfully synthesized and use as ECL immunosensor for detection of human interleukin-6(IL-6). The as-prepared GO/PANi/CdSe hybrid shows excellent biocompatibility, dispersity and solubility. Electrochemiluminescence (ECL) of CdSe quantum dots (QDs) was greatly enhanced by combining with GO/PANi nanocomposites. Herein, this hybrid was applied to develop an ultrasensitive ECL immunosensor for detection of IL-6. The ECL immunosensor has a sensitive response to IL-6in a linear range of0.0005-10ng mL-1with a detection limit of0.17pg mL-1. The ECL immunosensor exhibits high specificity, long-term stability and excellent reproducibility, which make it possible to be used in clinical application.
     3. Preparation and electrochemical biosensor of GO/PANi nanocomposites
     The novel biosensor based on GO/PANi composites was successfully fabricated. Graphene oxide (GO) was prepared from graphite powder by a modified Hummers method. GO/PANi composites was synthesized by facile in-situ polymerization using GO and aniline monomer as the raw materials. The nanocomposites which showed large specific surface and good biocompatibility was used to construct the electrochemical biosensor of dopamine. The results show that the biosensor has high sensitivity and fast response for dopamine. The linear range of the biosensor to dopamine is from1.0×10-8M to1.×10-5M with the detection limit of1.02×10-9M. The biosensor prepared shows fast sense, high sensitivity, good stability and specificity and has broad potential application in bio-analysis.
引文
[1]. A.O.K. Geim, K.U.S. Novoselov. Detection of individual gas molecules adsorbed on graphene [J]. Nature.Mater.2007,60:183-191.
    [2]G. F. Jie, L. L. Li, C. Chen, J. Xuan, J. J. Zhu. Enhanced electrochemi-luminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay[J]. Biosens Bioelectron,2009,24 (11):3352-3358.
    [3]G. F. Jie, B. Liu, H. C. Pan, J. J. Zhu, H. Y. Chen. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification[J]. Anal Chem,2007,79 (15):5574-5581.
    [4]H. P. Huang, J. J. Li, J. J. Zhu. Electrochemiluminescence based on quantum dots and their analytical application[J]. Anal. Methods,2011,3 (1):33-42.
    [5]Y. Wang, J. Lu, L.H. Tang, H. X. Chang, J. H. Li. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds[J]. Anal Chem,2009,81 (23): 9710-9715.
    [6]Y. G. Zhou, J. J. Chen, F. B. Wang, Z. H. Sheng, X. H. Xia. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells[J]. Chem Commun,2010:5951-5953.
    [7]T. Kuila, S. Bose, A. K. Mishra, P. Khanra,N. H. Kim, J. H. Lee. Chemical functionalization of graphene and its applications[J]. Progress in Mater Science,2012, 57:1061-1105.
    [8]A. K. Geim, K. S. Novoselov. The rise of graphene[J]. Nat Mater,2007,6 (3): 183-191.
    [9]S. Park, R. S. Ruoff. Chemical methods for the production of graphenes[J]. Nat Nanotechnol,2009,4 (4):217-224.
    [10]K. P. Loh, Q. L. Bao, P. K. Ang, J. X. Yang. The chemistry of graphene[J]. J Mater Chem,2010,20 (12):2277-2289.
    [11]C. Lee, X. D. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321 (5887):385-388.
    [12]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146 (9-10):351-355.
    [13]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer[J]. Phys Rev Letters,2008,100 (1):016602.
    [14]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008, 8 (3):902-907.
    [15]X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes[J]. Nano Letters,2009,9 (12):4359-4363.
    [16]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-Based Ultracapacitors[J]. Nano Letters,2008,8 (10):3498-3502.
    [17]X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper[J]. J Am Chem Soc, 2011,133 (9):2816-2819.
    [18]L. B. Gao, W. C. Ren, J. P. Zhao. Efficient gro wth of high quality graphene films on Cu foils by am bient pre ssure chem. ical vapor deposition [J]. Applied Physics Letters,2010,97(18):183109.
    [19]S. Bhaviripudi, X. T. Jia, M. S. Dress elhaus. Role of kinetic fa ctors in che mical vapor deposition synthesis of unifo rm large area grap hene using cop per catalyst [J]. Nano Letters,2010,10(10):4128 4133.
    [20]W. W. Cai, Y. W. Zhu, X. S. Li. Large are a few layer graph eme/grap hite films as transpa rent thin condu cting electro des [J]. Applied Physics Letters,2009,95(12): 123115.
    [21]P. W. Sutter, J. I. Flege, E. A. Sutter. Epitaxi al grap hene on ruth enium [J]. Nature Materials,2008,7(5):406411.
    [22]D. Martoccia, P. R. Willmott, T. Brugger. Graph ene on Ru (0001):A 25x25 supercell [J]. Phy sical Review Letters,2008,101(12):126102.
    [23]P. Sutter, M. S. Hybertsen, J. T. Sadowski. Electronicstruc ture of few layer epita xial grap hene on Ru(0001) [J]. Nano Letters,2009,9(7):26542660.
    [24]E. Sutter, D. P. Acharya, J. T. Sadowski. Scan ning tunne ling micr oscopy on epita xial bil ayer grap hene on ruthenium (0001) [J]. Applied Phy sics Letters,2009, 94 (13):133101.
    [25]Y. Pan, H. G. Zhang, D. X. Shi. Highlyordered, millimeter sca le, continuous, single crystallline graphene monolayer formed on Ru (0001) [J]. Advanced Materials, 2009,21 (27):2777 2780.
    [26]E. Sutter, P. Albrecht, P. Sutter. Graphene growth on polycrystalline Ru thin films [J]. Applied Physics Letters,2009,95 (13):133109.
    [27]W. Moritz, B. Wang, M. L. Bocquet. Structure determination of the coincidence phase of graphene on Ru(0001) [J]. Phsical Review Letters,2010,104(13):136102.
    [28]J. H. Gao, D. Fujita, M. S. Xu. Unique synthesis of few layer graphene films on carbon doped Pt83Rh17 surfaces [J]. ACS Nano,2010,4(2):10261032.
    [29]W. S. Hummers Jr, R. E. Offeman. Preparation of Graphitic Oxide[J]. J Am Chem Soc,1957,80(6):1339.
    [30]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45 (7):1558-1565.
    [31]黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学(B):化学,2009,39:887-896.
    [32]吕鹏,冯奕钰,张学全,李璃,封伟,中国科学:技术科学,2010,40:1247.
    [33]吕鹏,冯奕钰,张学全,李瑀,封伟.功能化石墨烯的应用研究新进展[J].中国科学:技术科学,2010,40:1247.
    [34]Y. Matsuo, Y. Sakai, T. Fukutsuka, Y. Sugie. Preparation of pillared carbons by pyrolysis of silylated graphite oxide [J]. Chem Lett 2007; 36:1050.
    [35]P. Laaksonen, M. Kainlauri, T. Laaksonen, A. Shchepetov, H. Jiang, J.Ahopelto,. Interfacial engineering by proteins:exfoliation and functionalization of graphene by hydrophobins[J]. Angew Chem Int 2010; 49:4946-4949.
    [36]S. M. Kang, S. Park, D. Kim, S. Y. Park, R. S. Ruoff, H. Lee. Simultaneous reduction and surface functionalization of graphene oxideby mussel-inspired chemistry[J]. Adv Funct Mater 2011; 21:108-112.
    [37]Y. Cui, S. N. Kim, S. E. Jones, L. L. Wissler, R. R. Naik, M. C. McAlpine. Chemical functionalization of graphene enabled by phage displayed peptides [J]. Nano Lett.2010; 10:4559-4565.
    [38]S. Park, D. A. Dikin, S. T. Nguyen, Ruoff RS. Graphene oxide sheets chemically cross-linked by polyallylamine[J]. J Phys Chem C 2009; 113:15801-15804.
    [39]L. Q Xu, Yang WJ, Neoh KG, Kang ET, Fu GD. Dopamine-induced reduction and functionalization of graphene oxide nanosheets[J]. Macromolecules 2010; 43: 8336-8339.
    [41]J. Zhang, J. Lei, R. Pan, Y. Xue, H. Ju. Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer [J]. Biosens Bioelectron 2010; 26: 371-376.
    [42]S. Yoon, In I. Solubilization of reduced graphene in water through noncovalent interaction with dendrimers [J]. Chem Lett 2010; 39:1160.
    [43]A. Ghosh, K.V. Rao, S. J. George, C. R. Rao. Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate [J]. Chem Eur J 2010; 16:2700-2704.
    [44]H. Yang, Q. Zhang, C. Shan, F. Li, D. Han, L. Niu. Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte [J]. Langmuir 2010; 26:6708-6712.
    [45]Z. Markovic, S. Jovanovic, D. Kleut, N. Romcevic, V. Jokanovic, V. Trajkovic. Comparative study on modification of single wall carbon nanotubes by sodium dodecylbenzene sulfonate and melamine sulfonate superplasticiser [J]. Appl Surf Sci 2009; 255:6359-6366.
    [46]R. S. Dey, C. R. Raj. Devel opment of an amperometric cholesterol biosensor based on grapheme -Pt nanop rticle hybrid material [J]. J Phys Chem C 2010; 114: 21427-21433.
    [47]H. Xu, H. Dai, G. Chen. Direct electroch emistry and electro catalysis of hemoglobin protein entrapped in graphene and chitosan composite film [J]. Talanta 2010; 81:334-338.
    [48]Q. Wu, Y. Xu, Z. Yao, A. Liu, G. S hi. Supercapacitors based on flexible grapheme/polyaniline nanofiber composite films [J]. ACS Nano 2010; 4:1963-1970.
    [49]Y. Liu, D.S. Yu, C. Zeng, Z.C. Miaoand L.M. Dai. Biocompatible graphene oxide-based glucose biosensors [J]. Langmuir 2010; 26:6158-6160.
    [50]K. X, W. J, W. Hu, A. IA, J.Liu, Y. Lin. Glucose oxidase-grapheme -chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosens Bioelectron 2009; 25:901-905.
    [51]J. H. Jung, D. S. Cheon, F. Liu, K. B. Lee, T. S. Seo. A graphene oxide based immunobiosensor for pathogen detection [J]. Angew Chem 2010; 49:5708-5711.
    [52]C. X. Lim, H. Y. Hoh, P. K. Ang, K. P. Loh. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene:an insight into the role of oxygenated defects [J]. Anal Chem 2010; 82:7387-7393.
    [53]R. S. Dey, C. R. Raj. Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material [J]. J Phys Chem C 2010; 114: 21427-21433.
    [54]H. Xu, H. Dai, G. Chen. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film [J]. Talanta 2010; 81:334-338.
    [55]L. C. Clark, jr.:Monitor and control of blood and tissue oxygen tension [J]. Trans. Am. Soc. Artif. Intern. Organs2,1956:41-48.
    [56]A. P. F. Turner. Biosensors:past, present and future. http://www.cranfield.ac.uk/
    [57]张先恩.生物传感器[M].北京:化学工业出版社.2006:6-9.
    [58]张先恩.生物传感技术原理及应用[M].长春:吉林科技出版社.1991:14-26.
    [59]Y. Jung, Y. J.Jin; H. C. Bong. Recent advances in immobilization methods of antibodies on solid supports [J]. Analyst.2008,133,697.
    [60]李宗元,常文保.生化分析[M].北京:高等教育出版社,2003,71
    [61]H. P. Huang, J. J. Li, J. J. Zhu. Electrochemiluminescence based on quantum dots and their analytical application[J]. Anal. Methods,2011,3 (1):33-42.
    [1]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146 (9-10):351-355.
    [2]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer[J]. Phys Rev Lett,2008,100 (1):016602.
    [3]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008, 8 (3):902-907.
    [4]X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes[J]. Nano Letters,2009,9 (12): 4359-4363.
    [5]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-Based Ultracapacitors[J]. Nano Letters,2008,8 (10):3498-3502.
    [6]Y Wang, J. Lu, L. H. Tang, H. X. Chang, J. H. Li. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds[J]. Anal. Chem,2009,81 (23): 9710-9715.
    [7]K. Wang, Q. A. Liu, X. Y. Wu, Q. M. Guan, H. N. Li. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing[J]. Talanta,2010,82 (1):372-376.
    [8]G. Li, T. Wang, Y. Zhu, S. Y. Zhang, C. J. Mao, J. Y. Wu, B. K. Jin, Y. P. Tian. Preparation and photoelectrochemical performance of Ag/graphene/TiO2 composite film[J]. Appl Surf Sci,2011,257 (15):6568-6572.
    [9]X. Z. Guo, S. Y. Zhang, B. T. Jiang, B. K. Jin, Y. P. Tian. Synthesis, Characterization, and Properties of the Fringy CdSe Wurtzite Nanocrystals[J]. J Phys Chem C,2008,112 (46):17899-17905.
    [10]Y. H. Gao, Q. Zhang, Q. Gao, Y. P. Tian, W. Zhou, L. X. Zheng, S. Y. Zhang. Synthesis of high quality CdSe quantum dots through a mild solution-phase synthetic route[J]. Mater Chem Phys,2009,115 (2-3):724-727.
    [11]X. Liu, H. X. Ju. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle[J].Anal. Chem.,2008,80 (14):5377-5382.
    [12]W. J. Miao. Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem. Rev.,2008,108 (7):2506-2553.
    [13]Y. Shan, J. J. Xu, H. Y. Chen. Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen [J]. Chem Commun,2010,46 (28):5079-5081.
    [14]Z. F. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots[J]. Science,2002,296 (5571):1293-1297.
    [15]N. Myung, Z. F. Ding, A. J. Bard. Electrogenerated Chemiluminescence of CdSe Nanocrystals[J]. Nano Letters,2002,2 (11):1315-1319.
    [16]P. Bertoncello, R. J. Forster. Nanostructured materials for electrochemilumine scence (ECL)-based detection methods:Recent advances and future perspectives [J]. Biosens. Bioelectron,2009,24 (11):3191-3200.
    [17]N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta, M. Endo. Carbon nanotubes:biomaterial applications[J]. Chem Soc Rev,2009,38 (7):1897-1903.
    [18]G. F. Jie, J. J. Zhang, D. C. Wang, C. Cheng, H. Y. Chen, J. J. Zhu. Electrochemiluminescence immunosensor based on CdSe nanocomposites[J]. Anal Chem,2008,80 (11):4033-4039.
    [19]G F. Jie, L. L. Li, C. Chen, J. Xuan, J. J. Zhu. Enhanced electrochemi luminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay[J]. Biosens Bioelectron,2009,24 (11):3352-3358.
    [20]L. L. Li, K. P. Liu, G H. Yang, C. M. Wang, J. R. Zhang, J. J. Zhu. Fabrication of Graphene-Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing[J].,Adv. Funct. Mater.,2011,21 (5):869-878.
    [21]X. H. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, Y H. Lin. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosens Bioelectron,2009,25 (4):901-905.
    [22]K. Zhou, Y. Zhu, X. Yang, C. Li. Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite[J]. Electroanal, 2010,22 (3):259-264.
    [23]X. J. Chen, Y. Y. Wang, J. J. Zhou, W. Yan, X. H. Li, J. J. Zhu. Electrochemical Impedance Immunosensor Based on Three-Dimensionally Ordered Macroporous Gold Film[J]. Anal Chem,2008,80 (6):2133-2140.
    [24]W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide[J]. J Am Chem Soc,1957,80(6):1339.
    [25]Y. S. Park, A. Dmytruk, I. Dmitruk, A. Kasuya, M. Takeda, N. Ohuchi, Y. Okamoto, N. Kaji, M. Tokeshi, Y. Baba. Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution[J]. Acs Nano,2009,4(1):121-128.
    [26]X. M. Feng, R. M. Li, Y. W. Ma, R. F. Chen, N. E. Shi, Q. L. Fan,W. Huang, One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications[J]. Adv. Fund. Mater.2011,21,2989-2996
    [27]T. Wang, S.Y. Zhang, C. J. Mao, J. M. Song, H. L. Niu, B. K. Jin, Y. P. Tian, Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor[J]. Biosens Bioelectron 2009:31 369-375
    [28]G. F. Jie, J. J. Zhang, D. C. Wang, C. Cheng, H. Y. Chen, J. J. Zhu, Electro chemiluminescence Immunosensor Based on CdSe Nanocomposites[J]. Anal. Chem. 2008,80,4033-4039
    [29]G. F. Jie, H. P. Huang, X. L.Sun, J. J. Zhu, Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin[J].Biosens Bioelectron 2008: 23,1896-1899
    [1]K. S. Novos elov, A. K. Geim, S. V. Morizov, D. Jiaig, Y. Zhang, S. V. Dubonos, I. V. Grigorie va and A. A. Firisov. Electric field effect in atomically thin carbon films[J], Sciencie,2004,306,666.
    [2]C. Sta mpifer, E. Schurit enberiger, F. Moliitor, J. Guttiin ger, T. Ihn anid K. En sslin, Energy gaps in etched graphene nanoribbons[J]. Nano Lett.,2008,8,2378.
    [3]D. Li and R. B. Kainer, Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Science,2008,320,1170.
    [4]W. Cai, R. D.Piner, F. J. Stadirm anin, S. Park, M. A. Shiaibat, Y. Ishii, D.Yang, A. Velam akianni, S. J. An, M. An. J. Stioller, D. Chien, and R. S. Ruoiff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science,2008,321,1815.
    [5]S. J. Piark, D. A. Di kin, S. T. Nguy en, and R. S. Ruo ff, The chemistry of graphene oxide[J]. J. Phys. Chem. C.,2009,113,15801.
    [6]A. Savchienko, Control of graphene's properties by reversible hydrogenation: evidence for graphane[J]. Scieince,2009,323,589.
    [7]C. Shan, H. Yang, J. Song, D. Han, A. Iviaska and L. Niiu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Anal. Chem.,2009,81,2378.
    [8]Y. Wang, Y. M. Li, L. H. Tang, J. Lu, J. H. Li, Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake[J]. Electriochem. Comimun.,2009,11 889.
    [9]F. Liu, J. Y. Choi, T. S. Seo, Preparation of graphene relying on porphyrin exfoliation of graphite[J]. Chem. Comimun.,2010,46,2844.
    [10]Y. X. Liu, X. C. Dong, P. Chen, Graphene-based electronic sensors[J]. Chem. Soc.Rev.,2012,41,2283.
    [11]N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta, M. Endo. Carbon nanotubes:biomaterial applications[J]. Chem Soc Rev,2009,38 (7):1897-1903.
    [12]G. F. Jie, J. J. Zhang, D. C. Wang, C. Cheng, H. Y. Chen, J. J. Zhu. Electrochemiluminescence immunosensor based on CdSe nanocomposites[J]. Anal Chem,2008,80 (11):4033-4039.
    [13]A. J. Bavrd, Z. Ding,, M. yung,Electrovchemvistry and Electrovgenerated Chemilumine scence of Semiconductor Nancrystals in Solutions and Films [J], Struct. Bonding (Berlin),2005,118:1-57.
    [14]J. A. Ho,,Y. C. Lin, L. S.Wang,, Silvicone Memvbrane Equivlibrator: Mevasuring Chvemical Activvity of Novnpolar Chemivcals [J], Anal. Chem,2009,81: 1340-1346.
    [15]Michvalet, X., Pinavud, F. F, Bentvolila, L. A., Quantvum dots for live cells, in vivo imaging, and diavgnostic[J], Science 2005,307:538-544.
    [16]D.NZhao, W. H. Chan, Z. He, Quantum dot-rutvhenium complex dyads: recognition of double-Stravnd DNA throuvgh dual-vcolor fluorescence detection[J], Anal. Chem,2009,81:3537-3543.
    [17]L. H. Qu, X. G. Peng, Control of photoluvminescence properties of CdSev nanocrystals in growth [J]. J. Am. Chem. Soc,2002,124:2049-2055.
    [18]Z. Ding, B. M. Quinn, S. K. Haram,. Quantuvm Dots Chvemiluminescence fvrom Silicon Nanocrystal Electrochevmistry and Electrogenevrated[J]. Science,2002, 296:1293-1297.
    [19]G. A. Messina, N. V. Panini, N. A. Martinez and J. Raba, Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples[J]. Anal. Biochemistry,2008,380,262-267.
    [20]W. E. Naugler and M. Karin, The wolf in sheep's clothing:the role of interleukin-6 in immunity, inflammation and cancer[J]. Trends in Molecular Medicine, 2008,14,109-119.
    [21]W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide[J]. J Am Chem Soc,1957,80 (6):1339.
    [22]Y. S. Park, A. Dmytruk, I. Dmitruk, A. Kasuya, M. Takeda, N. Ohuchi, Y. Okamoto, N. Kaji, M. Tokeshi, Y. Baba. Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution[J]. ACS Nano,2009,4 (1):121-128.
    [1]K. S. Novoselov; A. K. Geim; S. V. Morozov; D. Jiang; Y. Zhang; S. V. Dubonos; I. V. Grigorieva; A. A. Firsov, Electric field effect in atomically thin carbon films[J]. Science 2004,306,666-669.
    [2]Geim, A. K.; Novoselov, K. S. The rise of graphene[J]. Nat. Mater.2007,6,183-191.
    [3]M. Zhou.; Y. Zhai; S. J. Dong. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J]. Anal. Chem.2009,81,5603-5613.
    [4]S. Alwarappan; A. Erdem; C. Liu; C.-Z. Li, Application of Graphene Edge Effect in Electrochemical Biosensors[J]. J. Phys. Chem. C.2009,113,8853-8857.
    [5]H. Wu,; J. Wang,; X. Kang,; C. Wang,; D. Wang,;J. Liu,; I.A. Aksay; Y. Lin, Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film[J]. Talanta 2009,80,403-406.
    [6]Z. Wang,; X. Zhou; J. Zhang; F. Boey; H. Zhang. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. J. Phys. Chem. C 2009,113,14071-14075.
    [7]C. Shan; H. Yang;J. Song; D. Han;A. Ivaska; L. Niu. Electrochemical Glucose Biosensors[J].Anal. Chem.2009,81,2378-2382.
    [8]X. Kang; J. Wang,; H. Wu; I. A.Aksay; J. Liu; Y. Lin. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens. Bioelectron.2009,25,901.
    [9]C. Shan; H. Yang;J. Song; D. Han;A. Ivaska; L. Niu.Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine[J]. Langmuir 2009,25, 12030-12033.
    [10]B. J.Venton; R. M.Wightman, Resolving neurotransmitters detected by fast-scan cyclic voltammetry[J]. Anal. Chem.2003,75,414A-421.
    [11]N. Ben-Jonathan; Hnasko, R. Dopamineas a prolactin (PRL) inhibitor [J]. Endocr. ReV.2001,22,724-763.
    [12]D. Q. Zhang; K. Y.Wong;,D. M. Berson; P. J. Sollars; G. E. Pickard; D. G. McMahon.Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons[J]. Proc. Natl. Acad. Sci. U.S.A.2008,105,14181-14186.
    [13]D. Q. Zhang; T. R. Zhou; D.G. McMahon. Connecting TNF-a signaling pathways to iNOS expression in a mouse model of Alzheimer's disease:relevance for the behavioral and synaptic deficits induced by [J]. Neurosci.2007,27,692-699.
    [14]D. Q. Zhang; J. F. Stone; T. R. Zhou; H. Ohta; D. G. McMahon, Characterization of genetically labeled catecholamine neurons in the mouse retina[J].Neuro Report,2004,15,1761-1765.
    [15]Redgrave, P.; Gurney, K. The short-latency dopamine signal:a role in discovering novel actions? [J]. Nat. ReV. Neurosci.2006,7,967-975
    [16]D.Merims; N. Giladi. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease[J]. Parkinsonism Rel. Disord.2008,14, 273-80.
    [17]M. E.Rice; A. F. Oke; C. W. Bradberry; R. N. Adams, Simultaneous volta mmetric and chemical monitoring of dopamine release in situ[J]. Brain Res.1985, 340,151.
    [18]C. D. Blaha; R. F. Lane Nafion-coated electrodes with high selectivity for CNS electrochemistry[J]. Brain Res. Bull.1983,10,861-864.
    [19]D. J. Wiedemann; K. T. Kawagoe; R. T. Kennedy; E. L.Ciolkowski; Wight-man, R. M. Strategies for low detection limit measurements with cyclic voltammetry [J]. Anal. Chem.1991,63,2965-70.
    [20]D. L. Robinson; A.Hermans; A. T.Seipel; R. M. Wightman Monitoring rapid chemical communication in the brain[J]. Chem. ReV.2008,108,2554-2584.
    [21]S.El Ganouni; C.Forni; A. Nieoullon. Sites of origin of gonadotropin releasing hormone containing projections to the amygdala and the interpenduncular nucleus[J]. Brain Res.1987,404,239-256.
    [22]F.Crespi; C Mobius. In vivo selective monitoring of basal levels of cerebral dopamine using voltammetry with Nafion modified (NA-CRO) carbon fibre micro-electrodes[J]. Neurosci. Methods 1992,42,149-161.
    [23]P. F.Huang; L. Wang; J. Y.Bai; H. J.Wang; Y. Q.Zhao; S. D.Fan spectrometric determination of lead (Ⅱ) in sediment and water samples[J]. Microchim. Acta.2007, 157,41-47.
    [24]A.Balamurugan; S. M.Chen. Poly (3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)(PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine [J]. Anal. Chim. Acta.2007,596,92-98.
    [25]W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide[J]. J Am Chem Soc,1957,80(6):1339.
    [20]P. K. Rajendra, N. Munichandraiah. Elcctrooxidation of methanol on polyaniline without dispersed catalyst particles[J]. J. Power Sources.2002,103 (2): 300-304.
    [21]王彦怀,潘壮英,梅延丽,李艳芬,贾文丽,陶绪泉,王怀生.聚(3-甲基噻吩)修饰电极的制备及其用于多巴胺的电化学行为及测定研究[J].化学传感器,2009,29(2):49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700