多孔介质热电材料传热过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于热电效应和多孔介质的特性,研制成的多孔介质热电材料温差发电器件,可以安装在汽车排气管内部,通过对流传热将汽车高温尾气的一部分能量转化为电能。多孔介质温差发电器件具有无运动部件、无噪声、容易微型化、易于控制等优点,由于多孔介质的特性以及排气管设计等原因,可以在排气管内建立起比较大的温度梯度,提高温差发电器的发电功率。为了更好了解温度梯度的分布、发电功率的大小,可以更好利用尾气的热能,需要对排气管的流场和温度场进行数值模拟。
     本文首先建立四个不同的汽车排气管物理模型。然后针对不同的排气管建立不同的三维单温度数学模型,区分为无旋和有旋数学模型。利用数值热传学原理,采用SIMPLE算法,对排气管的流场进行数值模拟,在有旋模型中使用带旋流修正的数学模型。接下来对流场、温度场的模拟结果进行比较分析,并发现带旋流修正的数学模型,其出口温度更加趋近于真实情况。最后由温度梯度的特点,确定多孔介质热电材料安插方式,计算排气管内多孔介质热电材料的发电功率,并对不同区域内发电功率进行比较,发现带旋流修正的数学模型在发电功率上更加科学合理。
     借助仿真程序可以对不同工况下或者安装不同参数的多孔介质温差发电器的情形进行模拟,可对排气管内传热情况进行分析,其结论对多孔介质温差发电器件的研发与安装具有借鉴意义。
A new system for converting heat which came from car exhausts into electric power was proposed on basis of convection heat transfer in a thermoelectric porous medium. The elements are thermoelectric effect and character of porous medium. The thermoelectric generator by the steep temperature gradient in porous-medium exhaust pipe has several advantages: there are no moving parts and there is no noise, it can be made into micro size and it can be control easily. In exhaust pipe, a trapezoidal temperature distribution was established along y axis because of porous element and the exhaust pipe. The thermoelectric generator increased power generation as a result of this temperature gradient. In order to better research the distribution of the temperature gradient and the power generation, the flow field and temperature field in the exhaust pipe must be numerical simulated carefully.
     Above all, four different physical models of a car exhaust pipe were established. Second, two different three-dimensional mathematical models of a single temperature were established for two different exhaust pipes. One mathematical model is non-rotational flow model, the other one is rotational flow model. The gas flow filed of exhaust pipe has been simulated numerically with SIMPLE method. A mathematical model Updating by rotational flow used in rotational flow model. Afterwards, the velocities and temperature are compared. It is found that temperature on outlet is closer to the real situation by mathematical model updating by rotational flow. Finally, the placement of thermoelectric materials in porous medium was determined by the character of the temperature gradient. The power generation was computed. Different power generation in different area compared with each other. It is found that power generating is more appropriate by mathematical model updating by rotational flow.
     By the simulating method, we can simulate the heat transfer by different intake flows and the different thermoelectric generator by porous medium with different parameters. The simulate results are very helpful for optimizing the thermoelectric generator.
引文
[1]李光虎.汽车排放污染与环境保护[M].北京:机械工业出版社,1999:3~4
    [2]蔡锐彬,杨建威,陈子健.汽车排气热反应净化机理研究[J].机械工程学报,1997(4):65~69
    [3]刘恩科,朱秉升,罗晋生等.半导体物理学[M].西安:西安交通大学出版社,1998:295~298
    [4] Ware R M, McNeill D J. Proc IEE, 1964,111:178
    [5] Masashi Komabayashi,Ken-ichi Hijikata,Shunji Ido. Effeets of some additives on thermoelectric properties of FeSi 2 thin films[J].Jpn J APPl Phys,1991,30(2):331一334
    [6] Tokiai T,Uesugi T, Nosaka M,Hirayama A,Ito K,Koumoto K. Thermoelectric ProPerties of Mn-doped iron disilieide ceramics fabricated from radio-frequency plasms-treated fine powers[J].J Mater Sei,1997,32:3007-3011
    [7]高敏,张景韶,D.M.Rowe.温差电转换及其应用[M].北京:兵器工业出版社,1996:276~317.
    [8] Peter Bastian. Numerical Computation of Multiphase Flows in Porous Media[J]. Habilitation- sschrift,1999.
    [9]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006:2~4.
    [10] Katsunori Hanamura,Tomoyuki Kumano,Yuya Iida.Electric poeer generation by super-adiabatic combustion in thermoelectric porous element[J]. Energy,2005 (30):347-357.
    [11] Chen Jincan,Lin Bihong,Wang Hongjie. Optimal De2sign of a Multi couple Thermoelectric Generator[J].Semiconductor Science and Technolog,2000,2(15):184~188.
    [12] Haidar J G, Ghojel J I. Waste Heat Recovery from theExhaust of Lowpower Diesel Engine Using Thermoelectric Generators[A] . Proceedings of International Conference on Thermoelectrics (ICT) [C] . 2001:413~418.
    [13] B.卡多夫,E.密勒编著.温差电材料和器件[M].上海:上海科学技术出版社.1964:116~118.
    [14] Morelli,D.T. Potential Applications of Advanced Thermoelectrics in the Automobile Industry[C].Proceedings of ICT.1996:383~386.
    [15] ShanL,Lu DW,ArunaSA,etal.Magnetical refrigeration effect of type Superconductors [J] Cryoletters , 2001 ,22 (1) :51~61.
    [16]南策文,热电材料及多场耦合效应[J]中国科学基金,1999 ,2(4) :199~202.
    [17]徐德胜编著.半导体制冷与应用技术[M].上海:上海交通大学出版社.1992:6.
    [18] Kushch A S , Bass J C , Ghamaty S and Elsner N B.Thermoelectric Development at Hi-Z Technology[C] .Proceedings of ICT . 2001: 422~430.
    [19] Mahav A Karri , Eric F Thancher , Brian T Helenbrook ,Marc S Compeau. Thermoelectrical energy recovery from the exhaustof a light truck[J]. Proceedings of 2003 Diesel Engine EmissionsReduction Conference Newport , Rhode Island , 2003,August24~28
    [20]刘斌,徐江荣.柴油机排气管恒温进气的内流场数值模拟[J].杭州电子科技大学学报. 2009,29(1):73~76
    [21]周芸.沈容.史庆南等.热电材料的最新进展[J].昆明理工大学学报(理工版) .2000 ,28(3):14~17
    [22]焦正宽,汪状兵.热电材料新进展[J].功能材料, 2002, 33: 115~119
    [23]陈金灿,严子浚.半导体温差发电器性能的优化分析[J].半导体学报,1994,l5(2):123~129.
    [24] Chen Jincan,Lin Bihong, Wang Hongjie. Optimal Design of a Multicouple Thermoelectric Generator [J] .Semiconductor Science and Technology , 2000 , 2(15):184~188.
    [25] Matsubara , K. Development of a High Efficient Thermoelectric Stack for a Waste Exhaust Heat Recovery of Vehicles[A] . Proceedings of ICT[C] . 2002. 418~423.
    [26] Gao Min , D M Rowe. Recent Concepts in Thermoelectric Power Generation [ C ] Proceedings of ICT.2002. 365~374.
    [27]陶文铨.数值传热学[M].西安:交通大学出版社,2001: 7~9
    [28]马铁犹.计算流体动力学[M].北京:航空航天大学出版社,1986:1~5
    [29]苏铭得,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997:2~5
    [30] Bouma P.h.. Methane-air combustion on ceramic foam surface burners, Phd Disserstation[J]. Eindhoven Uinversity of Technology, 1997.
    [31] Schlichting H. Boundary layer theory[C]. 8th ed. New York: McGraw-Hill, 1979.64~69
    [32]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995:10~11.
    [33] Rui-Na Xu, Pei-Xue jiang. Numerical simulation of fluid flow in microporous media[J]. International Journal of Heat and Fluid Flow, 2008,29(5):1447~1455.
    [34]王栋,王维城等.汽车尾气催化转换器内的对流换热[J].工程热物理学报,2002,23(5):621~623
    [35] O.Anwar Beg.R.Bhargava.S.Rawat. Kalim Halim. H.S.Takhar. Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium[J]. Meccanica,2008,43(6):391-410.
    [36]邓洋波,谢茂昭.多孔介质内往复流动下超绝热燃烧系统温度场的理论分析[J].研究与探讨,2005,15(6):1~6.
    [37]杨智博,杨欣,杨嘉祥.汽车废热发电系统中喷管的流速场数值模拟[J].哈尔滨理工大学学报,2006,11(1):124~126.
    [38] Bouma P.h.. Methane-air combustion on ceramic foam surface burners[J], Phd Disserstation. Eindhoven Uinversity of Technology, 1997.
    [39] D.A.S. Rees. The onset of Darcy-Brinkman convection in a porous layer: an asymptotic analysis[J], International Journal of Heat and Mass Transfer, 45:2213~2220, 2002.
    [40] Nelson O. Moraga, Cesar E. Rosas, Valeri I. Bubnovich, Nicola A. Solari. On predicting two-dimensional heat transfer in a cylindrical porous media combustor[J],International Journal of Heat and Mass Transfer, 51(2008): 302~311.
    [41]刘星,卞思荣,朱金福.非结构网格生成技术[J],南京航空航天大学学报,1999,12,(6):696~700
    [42]周天孝,白文.CFD多块网格生成新进展[J],力学进展,1999.8,29(3):344~368
    [43]江帆,黄鹂.FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008:20-28.
    [44]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(20):137~144
    [45]张建华.直喷式柴油机各类燃烧室湍流流动特性研究[D]..吉林工业大学博士学位论文.1996:34~83
    [46] Hanamura K, Echigo R, Zhdanok SA. Superadiabatic combustion in a porous medium[J]. Int J Heat Mass Transfer 1993;36:3201~9.
    [47] Hanamura K, Adachi M, Echigo R. Reciprocating-flow super-adiabatic combustion in porous media[J]. Environ Comb Tech 2000;1:81~94.
    [48] Hanamura K, Echigo R. Third KSME-JSME Thermal Engineering Conference, K yongju, Korea. Thermal structure of superadiabatic combustion in porous media[J], vol. 2. 1996, p. 339~42.
    [49]Hanamura K,Mizouchi H. Super-adiabatic combustion of trace unburnt components in porous catalyst([add title in original language]). Thirty-Ninth Japanese Symposium on Combustion, Yokohama, Japan, Report No.C144:2001. p. 93~4(in Janpanese).
    [50] Hanamura K,Kunmano T. Thermophotovoltaic power generation by super-adiabatic combustion in porous quartz glass[C]. CP653,Thermophotovoltaic generation of electricity: 5nd Conference. 2003 American Institute of Physics 111~120.
    [51]李艳红.多孔介质中预混式燃烧的数学模型[J].煤气与电力,1996,16(5):34~34.
    [52]赵治国,解茂昭.多孔介质发动机燃烧过程的多维数值研究[J].内燃机学报,2007,25(4):339~345.
    [53]周磊,解茂昭,赵治国,史俊瑞.回热式多孔介质发动机的多维数值模拟[J].工程热物理学报,2008,29(3):511~514
    [54]王翔,王维城,王栋.汽车尾气催化器温度场的研究[J].清华大学学报,2002,42(5):669~672.
    [55]张兆顺,崔桂香.湍流理论与模拟[M].北京:清华大学出版社,2005: 23~48.
    [56] Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer, 1972.15:1787-1806.